1
|
Rao L, Yuan Y, Shen X, Yu G, Chen X. Designing nanotheranostics with machine learning. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01753-8. [PMID: 39362960 DOI: 10.1038/s41565-024-01753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/08/2024] [Indexed: 10/05/2024]
Abstract
The inherent limits of traditional diagnoses and therapies have driven the development and application of emerging nanotechnologies for more effective and safer management of diseases, herein referred to as 'nanotheranostics'. Although many important technological successes have been achieved in this field, widespread adoption of nanotheranostics as a new paradigm is hindered by specific obstacles, including time-consuming synthesis of nanoparticles, incomplete understanding of nano-bio interactions, and challenges regarding chemistry, manufacturing and the controls required for clinical translation and commercialization. As a key branch of artificial intelligence, machine learning (ML) provides a set of tools capable of performing time-consuming and result-perception tasks, thus offering unique opportunities for nanotheranostics. This Review summarizes the progress and challenges in this emerging field of ML-aided nanotheranostics, and discusses the opportunities in developing next-generation nanotheranostics with reliable datasets and advanced ML models to offer better clinical benefits to patients.
Collapse
Affiliation(s)
- Lang Rao
- Shenzhen Bay Laboratory, Shenzhen, China.
| | - Yuan Yuan
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computer Science, Boston College, Chestnut Hill, MA, USA
| | - Xi Shen
- Tencent AI Lab, Shenzhen, China
- Intellindust, Shenzhen, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
2
|
Ahmad F, Muhmood T. Clinical translation of nanomedicine with integrated digital medicine and machine learning interventions. Colloids Surf B Biointerfaces 2024; 241:114041. [PMID: 38897022 DOI: 10.1016/j.colsurfb.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Nanomaterials based therapeutics transform the ways of disease prevention, diagnosis and treatment with increasing sophistications in nanotechnology at a breakneck pace, but very few could reach to the clinic due to inconsistencies in preclinical studies followed by regulatory hinderances. To tackle this, integrating the nanomedicine discovery with digital medicine provide technologies as tools of specific biological activity measurement. Hence, overcome the redundancies in nanomedicine discovery by the on-site data acquisition and analytics through integrating intelligent sensors and artificial intelligence (AI) or machine learning (ML). Integrated AI/ML wearable sensors directly gather clinically relevant biochemical information from the subject's body and process data for physicians to make right clinical decision(s) in a time and cost-effective way. This review summarizes insights and recommend the infusion of actionable big data computation enabled sensors in burgeoning field of nanomedicine at academia, research institutes, and pharmaceutical industries, with a potential of clinical translation. Furthermore, many blind spots are present in modern clinically relevant computation, one of which could prevent ML-guided low-cost new nanomedicine development from being successfully translated into the clinic was also discussed.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Tahir Muhmood
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal.
| |
Collapse
|
3
|
Chen Z, Liang N, Li H, Zhang H, Li H, Yan L, Hu Z, Chen Y, Zhang Y, Wang Y, Ke D, Shi N. Exploring explainable AI features in the vocal biomarkers of lung disease. Comput Biol Med 2024; 179:108844. [PMID: 38981214 DOI: 10.1016/j.compbiomed.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
This review delves into the burgeoning field of explainable artificial intelligence (XAI) in the detection and analysis of lung diseases through vocal biomarkers. Lung diseases, often elusive in their early stages, pose a significant public health challenge. Recent advancements in AI have ushered in innovative methods for early detection, yet the black-box nature of many AI models limits their clinical applicability. XAI emerges as a pivotal tool, enhancing transparency and interpretability in AI-driven diagnostics. This review synthesizes current research on the application of XAI in analyzing vocal biomarkers for lung diseases, highlighting how these techniques elucidate the connections between specific vocal features and lung pathology. We critically examine the methodologies employed, the types of lung diseases studied, and the performance of various XAI models. The potential for XAI to aid in early detection, monitor disease progression, and personalize treatment strategies in pulmonary medicine is emphasized. Furthermore, this review identifies current challenges, including data heterogeneity and model generalizability, and proposes future directions for research. By offering a comprehensive analysis of explainable AI features in the context of lung disease detection, this review aims to bridge the gap between advanced computational approaches and clinical practice, paving the way for more transparent, reliable, and effective diagnostic tools.
Collapse
Affiliation(s)
- Zhao Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyuan Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijiao Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziteng Hu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Ke
- Special Disease Clinic, Huaishuling Branch of Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China.
| | - Nannan Shi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
5
|
Surfactants, Nanomedicines and Nanocarriers: A Critical Evaluation on Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13030381. [PMID: 33805639 PMCID: PMC7999832 DOI: 10.3390/pharmaceutics13030381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Advances, perspectives and innovation in drug delivery have increased in recent years; however, there is limited information available regarding the actual presence of surfactants, nanomedicines and nanocarriers in investigational medicinal products submitted as part of a request for authorization of clinical trials, particularly for those authorized in the European Economic Area. We retrieve, analyze and report data available at the Clinical Trial Office of the Italian Medicines Agency (AIFA), increasing the transparency and availability of relevant information. An analysis of quality documentation submitted along with clinical trials authorized by the AIFA in 2018 was carried out, focusing on the key terms "surfactant", "nanomedicine" and "nanocarrier". Results suggest potential indications and inputs for further reflection and actions for regulators to actively and safely drive innovation from a regulatory perspective and to transpose upcoming evolution of clinical trials within a strong regulatory framework.
Collapse
|
6
|
Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Exploiting machine learning for end-to-end drug discovery and development. NATURE MATERIALS 2019; 18:435-441. [PMID: 31000803 PMCID: PMC6594828 DOI: 10.1038/s41563-019-0338-z] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 05/20/2023]
Abstract
A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, USA.
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, USA
| | | | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, USA
| | - Daniel P Russo
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, USA
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA
| | | | - Anthony J Hickey
- RTI International, Research Triangle Park, NC, USA
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, Quebec, Canada
| |
Collapse
|
7
|
Mujtaba G, Shuib L, Raj RG, Rajandram R, Shaikh K, Al-Garadi MA. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection. PLoS One 2017; 12:e0170242. [PMID: 28166263 PMCID: PMC5293233 DOI: 10.1371/journal.pone.0170242] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/30/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. METHODS Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. RESULTS Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. CONCLUSION The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.
Collapse
Affiliation(s)
- Ghulam Mujtaba
- Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Computer Science, Sukkur Institute of Business Administration, Sukkur, Pakistan
| | - Liyana Shuib
- Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Ram Gopal Raj
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairunisa Shaikh
- Department of Community Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
| | - Mohammed Ali Al-Garadi
- Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Bai T, Gong L, Wang Y, Wang Y, Kulikowski CA, Huang L. A method for exploring implicit concept relatedness in biomedical knowledge network. BMC Bioinformatics 2016; 17 Suppl 9:265. [PMID: 27454167 PMCID: PMC4959351 DOI: 10.1186/s12859-016-1131-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. RESULTS In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. CONCLUSIONS Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.
Collapse
Affiliation(s)
- Tian Bai
- College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 2699 Qianjin St, Changchun, China
| | - Leiguang Gong
- College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China
- Yantai Intelligent Information Technologies Ltd., 2699 Qianjin St, Yantai, China
| | - Ye Wang
- College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China
| | - Yan Wang
- College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 2699 Qianjin St, Changchun, China
| | - Casimir A. Kulikowski
- Department of Computer Science, Rutgers, The State University of New Jersey, 2699 Qianjin St, Piscataway, NJ USA
| | - Lan Huang
- College of Computer Science and Technology, Jilin Univesity, 2699 Qianjin St, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 2699 Qianjin St, Changchun, China
| |
Collapse
|
9
|
Dieb TM, Yoshioka M, Hara S, Newton MC. Framework for automatic information extraction from research papers on nanocrystal devices. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1872-82. [PMID: 26665057 PMCID: PMC4660922 DOI: 10.3762/bjnano.6.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 05/16/2023]
Abstract
To support nanocrystal device development, we have been working on a computational framework to utilize information in research papers on nanocrystal devices. We developed an annotated corpus called " NaDev" (Nanocrystal Device Development) for this purpose. We also proposed an automatic information extraction system called "NaDevEx" (Nanocrystal Device Automatic Information Extraction Framework). NaDevEx aims at extracting information from research papers on nanocrystal devices using the NaDev corpus and machine-learning techniques. However, the characteristics of NaDevEx were not examined in detail. In this paper, we conduct system evaluation experiments for NaDevEx using the NaDev corpus. We discuss three main issues: system performance, compared with human annotators; the effect of paper type (synthesis or characterization) on system performance; and the effects of domain knowledge features (e.g., a chemical named entity recognition system and list of names of physical quantities) on system performance. We found that overall system performance was 89% in precision and 69% in recall. If we consider identification of terms that intersect with correct terms for the same information category as the correct identification, i.e., loose agreement (in many cases, we can find that appropriate head nouns such as temperature or pressure loosely match between two terms), the overall performance is 95% in precision and 74% in recall. The system performance is almost comparable with results of human annotators for information categories with rich domain knowledge information (source material). However, for other information categories, given the relatively large number of terms that exist only in one paper, recall of individual information categories is not high (39-73%); however, precision is better (75-97%). The average performance for synthesis papers is better than that for characterization papers because of the lack of training examples for characterization papers. Based on these results, we discuss future research plans for improving the performance of the system.
Collapse
Affiliation(s)
- Thaer M Dieb
- Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Masaharu Yoshioka
- Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Shinjiro Hara
- Research Center for Integrated Quantum Electronics, Hokkaido University, Kita 13, Nishi 8, Sapporo 060-8628, Japan
| | - Marcus C Newton
- Physics & Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
10
|
Lewinski NA, McInnes BT. Using natural language processing techniques to inform research on nanotechnology. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6. [PMID: 26199848 PMCID: PMC4505089 DOI: 10.3762/bjnano.6.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Literature in the field of nanotechnology is exponentially increasing with more and more engineered nanomaterials being created, characterized, and tested for performance and safety. With the deluge of published data, there is a need for natural language processing approaches to semi-automate the cataloguing of engineered nanomaterials and their associated physico-chemical properties, performance, exposure scenarios, and biological effects. In this paper, we review the different informatics methods that have been applied to patent mining, nanomaterial/device characterization, nanomedicine, and environmental risk assessment. Nine natural language processing (NLP)-based tools were identified: NanoPort, NanoMapper, TechPerceptor, a Text Mining Framework, a Nanodevice Analyzer, a Clinical Trial Document Classifier, Nanotoxicity Searcher, NanoSifter, and NEIMiner. We conclude with recommendations for sharing NLP-related tools through online repositories to broaden participation in nanoinformatics.
Collapse
Affiliation(s)
- Nastassja A Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Bridget T McInnes
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|