1
|
Saavedra-Díaz C, Trujillo-Montenegro JH, Jaimes HA, Londoño A, Villareal FAS, López LO, Valens CAV, López-Gerena J, Riascos JJ, Quevedo YM, Aguilar FS. Genetic association analysis in sugarcane (Saccharum spp.) for sucrose accumulation in humid environments in Colombia. BMC PLANT BIOLOGY 2024; 24:570. [PMID: 38886648 PMCID: PMC11184777 DOI: 10.1186/s12870-024-05233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Sucrose accumulation in sugarcane is affected by several environmental and genetic factors, with plant moisture being of critical importance for its role in the synthesis and transport of sugars within the cane stalks, affecting the sucrose concentration. In general, rainfall and high soil humidity during the ripening stage promote plant growth, increasing the fresh weight and decreasing the sucrose yield in the humid region of Colombia. Therefore, this study aimed to identify markers associated with sucrose accumulation or production in the humid environment of Colombia through a genome-wide association study (GWAS). RESULTS Sucrose concentration measurements were taken in 220 genotypes from the Cenicaña's diverse panel at 10 (early maturity) and 13 (normal maturity) months after planting. For early maturity data was collected during plant cane and first ratoon, while at normal maturity it was during plant cane, first, and second ratoon. A total of 137,890 SNPs were selected after sequencing the 220 genotypes through GBS, RADSeq, and whole-genome sequencing. After GWAS analysis, a total of 77 markers were significantly associated with sucrose concentration at both ages, but only 39 were close to candidate genes previously reported for sucrose accumulation and/or production. Among the candidate genes, 18 were highlighted because they were involved in sucrose hydrolysis (SUS6, CIN3, CINV1, CINV2), sugar transport (i.e., MST1, MST2, PLT5, SUT4, ERD6 like), phosphorylation processes (TPS genes), glycolysis (PFP-ALPHA, HXK3, PHI1), and transcription factors (ERF12, ERF112). Similarly, 64 genes were associated with glycosyltransferases, glycosidases, and hormones. CONCLUSIONS These results provide new insights into the molecular mechanisms involved in sucrose accumulation in sugarcane and contribute with important genomic resources for future research in the humid environments of Colombia. Similarly, the markers identified will be validated for their potential application within Cenicaña's breeding program to assist the development of breeding populations.
Collapse
Affiliation(s)
- Carolina Saavedra-Díaz
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
- Pontificia Universidad Javeriana, Cali, Colombia
| | | | - Hugo Arley Jaimes
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | - Alejandra Londoño
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | - Luis Orlando López
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | - Jershon López-Gerena
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | - John J Riascos
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | - Fernando S Aguilar
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia.
- Colombian Sugarcane Research Center (Cenicaña), km 26 Vía Cali-Florida, Valle del Cauca, Colombia.
| |
Collapse
|
2
|
Zhang B, Huang Y, Zhang L, Zhou Z, Zhou S, Duan W, Yang C, Gao Y, Li S, Chen M, Li Y, Yang X, Zhang G, Huang D. Genome-Wide Association Study Unravels Quantitative Trait Loci and Genes Associated with Yield-Related Traits in Sugarcane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16815-16826. [PMID: 37856846 DOI: 10.1021/acs.jafc.3c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Sugarcane, a major sugar and energy crop worldwide faces an increasing demand for higher yields. Identifying yield-related markers and candidate genes is valuable for breeding high-yield varieties using molecular techniques. In this work, seven yield-related traits were evaluated in a diversity panel of 159 genotypes, derived from Tripidium arundinaceum, Saccharum spontaneum, and modern sugarcane genotypes. All traits exhibited significant genetic variance with high heritability and high correlations. Genetic diversity analysis reveals a genomic decay of 23 kb and an average single nucleotide polymorphism (SNP) number of 25,429 per genotype. These 159 genotypes were divided into 4 subgroups. Genome-wide association analysis identified 47 SNPs associated with brix, spanning 36 quantitative trait loci (QTLs), and 138 SNPs for other traits across 104 QTLs, covering all 32 chromosomes. Interestingly, 12 stable QTLs associated with yield-related traits were identified, which contained 35 candidate genes. This work provides markers and candidate genes for marker-assisted breeding to improve sugarcane yields.
Collapse
Affiliation(s)
- Baoqing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Yuxin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Zhongfeng Zhou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Shan Zhou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Weixing Duan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Cuifang Yang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Yijing Gao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Meiyan Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Gemin Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
3
|
Xiao S, Wu Y, Xu S, Jiang H, Hu Q, Yao W, Zhang M. Field evaluation of TaDREB2B-ectopic expression sugarcane ( Saccharum spp. hybrid) for drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:963377. [PMID: 36388609 PMCID: PMC9664057 DOI: 10.3389/fpls.2022.963377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane is one of the most crucial sugar crops globally that supplies the main raw material for sugar and ethanol production, but drought stress causes a severe decline in sugarcane yield worldwide. Enhancing sugarcane drought resistance and reducing yield and quality losses is an ongoing challenge in sugarcane genetic improvement. Here, we introduced a Tripidium arundinaceum dehydration-responsive element-binding transcription factor (TaDREB2B) behind the drought-responsible RD29A promoter into a commercial sugarcane cultivar FN95-1702 and subsequently conducted a series of drought tolerance experiments and investigation of agronomic and quality traits. Physiological analysis indicated that Prd29A: TaDREB2B transgenic sugarcane significantly confers drought tolerance in both the greenhouses and the field by enhancing water retention capacity and reducing membrane damage without compromising growth. These transgenic plants exhibit obvious improvements in yield performance and various physiological traits under the limited-irrigation condition in the field, such as increasing 41.9% yield and 44.4% the number of ratooning sugarcane seedlings. Moreover, Prd29A: TaDREB2B transgenic plants do not penalize major quality traits, including sucrose content, gravity purity, Brix, etc. Collectively, our results demonstrated that the Prd29A-TaDREB2B promoter-transgene combination will be a useful biotechnological tool for the increase of drought tolerance and the minimum of yield losses in sugarcane.
Collapse
|
4
|
Wu J, Zhang M, Liu J, Huang Y, Xu L, Deng Z, Zhao X. Efficient Anchoring of Erianthus arundinaceus Chromatin Introgressed into Sugarcane by Specific Molecular Markers. Int J Mol Sci 2022; 23:ijms23169435. [PMID: 36012702 PMCID: PMC9408830 DOI: 10.3390/ijms23169435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Erianthus arundinaceus is a valuable gene reservoir for sugarcane improvement. However, insufficient molecular markers for high-accuracy identification and tracking of the introgression status of E. arundinaceus chromatin impede sugarcane breeding. Fortunately, suppression subtractive hybridization (SSH) technology provides an excellent opportunity for the development of high-throughput E. arundinaceus-specific molecular markers at a reasonable cost. In this study, we constructed a SSH library of E. arundinaceus. In total, 288 clones of E. arundinaceus-specific repetitive sequences were screened out and their distribution patterns on chromosomes were characterized by fluorescence in situ hybridization (FISH). A subtelomeric repetitive sequence Ea086 and a diffusive repetitive sequence Ea009, plus 45S rDNA-bearing E. arundinaceus chromosome repetitive sequence EaITS were developed as E. arundinaceus-specific molecular markers, namely, Ea086-128, Ea009-257, and EaITS-278, covering all the E. arundinaceus chromosomes for high-accuracy identification of putative progeny. Both Ea086-128 and Ea009-257 were successfully applied to identify the authenticity of F1, BC1, BC2, BC3, and BC4 progeny between sugarcane and E. arundinaceus. In addition, EaITS-278 was a 45S rDNA-bearing E. arundinaceus chromosome-specific molecular marker for rapid tracking of the inherited status of this chromosome in a sugarcane background. Three BC3 progeny had apparently lost the 45S rDNA-bearing E. arundinaceus chromosome. We reported herein a highly effective and reliable SSH-based technology for discovery of high-throughput E. arundinaceus-specific sequences bearing high potential as molecular markers. Given its reliability and savings in time and efforts, the method is also suitable for development of species-specific molecular markers for other important wild relatives to accelerate introgression of wild relatives into sugarcane.
Collapse
Affiliation(s)
- Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Mingxiao Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Liu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (X.Z.)
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (X.Z.)
| |
Collapse
|
5
|
Metcalfe CJ, Li J, Zheng B, Stiller J, Healey A, Piperidis N, Aitken KS. Isolation and sequencing of a single copy of an introgressed chromosome from a complex genome for gene and SNP identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1279-1292. [PMID: 35275251 DOI: 10.1007/s00122-022-04030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
This manuscript describes the identification, isolation and sequencing of a single chromosome containing high value resistance genes from a complex polyploid where sequencing the whole genome is too costly. The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry; however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat, and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridization (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jingchuan Li
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Adam Healey
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
6
|
Yu F, Chai J, Li X, Yu Z, Yang R, Ding X, Wang Q, Wu J, Yang X, Deng Z. Chromosomal Characterization of Tripidium arundinaceum Revealed by Oligo-FISH. Int J Mol Sci 2021; 22:ijms22168539. [PMID: 34445245 PMCID: PMC8395171 DOI: 10.3390/ijms22168539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Sugarcane is of important economic value for producing sugar and bioethanol. Tripidium arundinaceum (old name: Erianthus arundinaceum) is an intergeneric wild species of sugarcane that has desirable resistance traits for improving sugarcane varieties. However, the scarcity of chromosome markers has hindered the cytogenetic study of T. arundinaceum. Here we applied maize chromosome painting probes (MCPs) to identify chromosomes in sorghum and T. arundinaceum using a repeated fluorescence in situ hybridization (FISH) system. Sequential FISH revealed that these MCPs can be used as reliable chromosome markers for T. arundinaceum, even though T. arundinaceum has diverged from maize over 18 MYs (million years). Using these MCPs, we identified T. arundinaceum chromosomes based on their sequence similarity compared to sorghum and labeled them 1 through 10. Then, the karyotype of T. arundinaceum was established by multiple oligo-FISH. Furthermore, FISH results revealed that 5S rDNA and 35S rDNA are localized on chromosomes 5 and 6, respectively, in T. arundinaceum. Altogether, these results represent an essential step for further cytogenetic research of T. arundinaceum in sugarcane breeding.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehuai Yu
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
| | - Ruiting Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueer Ding
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiusong Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
- Correspondence: (J.W.); (Z.D.)
| | - Xiping Yang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
- Correspondence: (J.W.); (Z.D.)
| |
Collapse
|
7
|
Li X, Huang F, Chai J, Wang Q, Yu F, Huang Y, Wu J, Wang Q, Xu L, Zhang M, Deng Z. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F 1 hybrids. BMC PLANT BIOLOGY 2021; 21:139. [PMID: 33726673 PMCID: PMC7968283 DOI: 10.1186/s12870-021-02911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In recent years, sugarcane has attracted increasing attention as an energy crop. Wild resources are widely used to improve the narrow genetic base of sugarcane. However, the infertility of F1 hybrids between Saccharum officinarum (S. officinarum) and Erianthus arundinaceus (E. arundinaceus) has hindered sugarcane breeding efforts. To discover the cause of this infertility, we studied the hybridization process from a cytological perspective. RESULTS We examined the meiotic process of pollen mother cells (PMCs) in three F1 hybrids between S. officinarum and E. arundinaceus. Cytological analysis showed that the male parents, Hainan 92-77 and Hainan 92-105, had normal meiosis. However, the meiosis process in F1 hybrids showed various abnormal phenomena, including lagging chromosomes, micronuclei, uneven segregation, chromosome bridges, and inability to form cell plates. Genomic in situ hybridization (GISH) showed unequal chromatin distribution during cell division. Interestingly, 96.70% of lagging chromosomes were from E. arundinaceus. Furthermore, fluorescence in situ hybridization (FISH) was performed using 45S rDNA and 5S rDNA as probes. Either 45S rDNA or 5S rDNA sites were lost during abnormal meiosis, and results of unequal chromosomal separation were also clearly observed in tetrads. CONCLUSIONS Using cytogenetic analysis, a large number of meiotic abnormalities were observed in F1. GISH further confirmed that 96.70% of the lagging chromosomes were from E. arundinaceus. Chromosome loss was found by further investigation of repeat sequences. Our findings provide insight into sugarcane chromosome inheritance to aid innovation and utilization in sugarcane germplasm resources.
Collapse
Affiliation(s)
- Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fei Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiusong Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Qinnan Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Sobhakumari VP, Mohanraj K, Nair NV, Mahadevaswamy HK, Ram B. Cytogenetic and Molecular Approaches to Detect Alien Chromosome Introgression and Its Impact in Three Successive Generations of Erianthus procerus × Saccharum. CYTOLOGIA 2020. [DOI: 10.1508/cytologia.85.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | - Bakshi Ram
- Crop Improvement Division, ICAR-Sugarcane Breeding Institute
| |
Collapse
|
9
|
Yang S, Zeng K, Chen K, Wu J, Wang Q, Li X, Deng Z, Huang Y, Huang F, Chen R, Zhang M. Chromosome transmission in BC 4 progenies of intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus (Retz.) Jeswiet. Sci Rep 2019; 9:2528. [PMID: 30792411 PMCID: PMC6385618 DOI: 10.1038/s41598-019-38710-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus and clones derived from these hybrids and backcrosses to Saccharum spp. were used to study the transmission of E. arundinaceus chromosomes by genomic in situ hybridization (GISH). True hybrid progenies were precisely identified using PCR with a primer pair, AGRP52/53. The results showed that AGRP52/53 was an E. arundinaceus-specific primer pair and could be used as molecular marker to assist breeding. EaHN92, a 364 bp E. arundinaceus-specific tandem repeat satellite DNA sequence, was cloned from the E. arundinaceus clone HN92-105 with AGRP52/53, and was localized on sub-telomeric regions of all E. arundinaceus chromosomes. YCE06-61, a BC3 progeny, had 7 E. arundinaceus chromosomes and its progenies had approximately 1-6 E. arundinaceus chromosomes. The number of E. arundinaceus chromosomes in true hybrids appeared as Gaussian distribution in 3 cross combinations. In addition, GISH detected intergeneric chromosome translocation in a few progenies. Hence, screening clones containing approximately 1-2 E. arundinaceus chromosomes without translocation could be used for sorting and sequencing E. arundinaceus chromosomes. This study provides a method for breeders to select true hybrid progenies between Saccharum spp. and E. arundinaceus, which will accelerate this intergeneric hybridization breeding.
Collapse
Affiliation(s)
- Shan Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zeng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ke Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayun Wu
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Qinnan Wang
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Xueting Li
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rukai Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Pachakkil B, Terajima Y, Ohmido N, Ebina M, Irei S, Hayashi H, Takagi H. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Sci Rep 2019; 9:1748. [PMID: 30742000 PMCID: PMC6370852 DOI: 10.1038/s41598-018-38316-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
In sugarcane (Saccharum spp. hybrid) breeding, introgression of useful genes via intergeneric hybridization is a powerful strategy for improving the crop productivity. Erianthus arundinaceus shows great potential in terms of useful traits; however, little is known about the cytogenetic and agronomic characteristics of intergeneric hybrids between these two species. Here, we examine the cytogenetic and agronomic characteristics, and relationships between the two in intergeneric F1 hybrids between modern sugarcane cultivar and E. arundinaceus identified by amplification of 5S rDNA markers and morphological characteristics. The nuclear DNA content of the hybrids varied from 6.07 to 8.94 pg/2C, with intra-clonal variation in DNA content and 5S rDNA sites. Genomic in situ hybridization revealed 53 to 82 chromosomes in the hybrids, with 53 to 56 derived from sugarcane and 1 to 29 from E. arundinaceus. There were significant positive correlations between the number of E. arundinaceus chromosomes and dry matter yield, millable stalk weight, single stalk weight, and stalk diameter, but not sucrose content, reducing sugar content, sucrose/reducing sugar ratio or fiber content. This detailed information on intergeneric F1 hybrids between modern sugarcane cultivar and E. arundinaceus will contribute to effective utilization of E. arundinaceus in sugarcane breeding.
Collapse
Affiliation(s)
- Babil Pachakkil
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, 907-0002, Japan.,Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yoshifumi Terajima
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, 907-0002, Japan.
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Masumi Ebina
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, 329-2793, Japan
| | - Shin Irei
- Okinawa Prefectural Agricultural Research Center, Itoman, 901-0336, Japan
| | | | - Hiroko Takagi
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, 907-0002, Japan
| |
Collapse
|
11
|
Lloyd Evans D, Joshi SV, Wang J. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evol Biol 2019; 19:33. [PMID: 30683070 PMCID: PMC6347779 DOI: 10.1186/s12862-019-1356-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background For over 50 years, attempts have been made to introgress agronomically useful traits from Erianthus sect. Ripidium (Tripidium) species into sugarcane based on both genera being part of the ‘Saccharum Complex’, an interbreeding group of species believed to be involved in the origins of sugarcane. However, recent low copy number gene studies indicate that Tripidium and Saccharum are more divergent than previously thought. The extent of genus Tripidium has not been fully explored and many species that should be included in Tripidium are still classified as Saccharum. Moreover, Tripidium is currently defined as incertae sedis within the Andropogoneae, though it has been suggested that members of this genus are related to the Germainiinae. Results Eight newly-sequenced chloroplasts from potential Tripidium species were combined in a phylogenetic study with 46 members of the Panicoideae, including seven Saccharum accessions, two Miscanthidium and three Miscanthus species. A robust chloroplast phylogeny was generated and comparison with a gene locus phylogeny clearly places a monophyletic Tripidium clade outside the bounds of the Saccharinae. A key to the currently identified Tripidium species is presented. Conclusion For the first time, we have undertaken a large-scale whole plastid study of eight newly assembled Tripidium accessions and a gene locus study of five Tripidium accessions. Our findings show that Tripidium and Saccharum are 8 million years divergent, last sharing a common ancestor 12 million years ago. We demonstrate that four species should be removed from Saccharum/Erianthus and included in genus Tripidium. In a genome context, we show that Tripidium evolved from a common ancestor with and extended Germainiinae clade formed from Germainia, Eriochrysis, Apocopis, Pogonatherum and Imperata. We re-define the ‘Saccharum complex’ to a group of genera that can interbreed in the wild and extend the Saccharinae to include Sarga along with Sorghastrum, Microstegium vimineum and Polytrias (but excluding Sorghum). Monophyly of genus Tripidium is confirmed and the genus is expanded to include Tripidium arundinaceum, Tripidium procerum, Tripidium kanashiroi and Tripidium rufipilum. As a consequence, these species are excluded from genus Saccharum. Moreover, we demonstrate that genus Tripidium is distinct from the Germainiinae. Electronic supplementary material The online version of this article (10.1186/s12862-019-1356-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa. .,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa. .,BeauSci Ltd., Waterbeach, Cambridge, CB25 9TL, UK.
| | - Shailesh V Joshi
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa.,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA.,Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.,Plant Molecular and Biology Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Yu F, Huang Y, Luo L, Li X, Wu J, Chen R, Zhang M, Deng Z. An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex). BMC PLANT BIOLOGY 2018; 18:269. [PMID: 30400857 PMCID: PMC6220460 DOI: 10.1186/s12870-018-1471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sugarcane has recently attracted increased attention for its potential as a source of bioethanol and methane. However, a narrow genetic base has limited germplasm enhancement of sugarcane. Erianthus arundinaceus is an important wild genetic resource that has many excellent traits for improving cultivated sugarcane via wide hybridization. Species-specific repetitive sequences are useful for identifying genome components and investigating chromosome inheritance in noblization between sugarcane and E. arundinaceus. Here, suppression subtractive hybridization (SSH) targeting E. arundinaceus-specific repetitive sequences was performed. The five critical components of the SSH reaction system, including enzyme digestion of genomic DNA (gDNA), adapters, digested gDNA concentrations, primer concentrations, and LA Taq polymerase concentrations, were improved using a stepwise optimization method to establish a SSH system suitable for obtaining E. arundinaceus-specific gDNA fragments. RESULTS Specificity of up to 85.42% was confirmed for the SSH method as measured by reverse dot blot (RDB) of an E. arundinaceus subtractive library. Furthermore, various repetitive sequences were obtained from the E. arundinaceus subtractive library via fluorescence in situ hybridization (FISH), including subtelomeric and centromeric regions. EaCEN2-166F/R and EaSUB1-127F/R primers were then designed as species-specific markers to accurately validate E. arundinaceus authenticity. CONCLUSIONS This is the first report that E. arundinaceus-specific repetitive sequences were obtained via an improved SSH method. These results suggested that this novel SSH system could facilitate screening of species-specific repetitive sequences for species identification and provide a basis for development of similar applications for other plant species.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Muqing Zhang
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
13
|
Huang Y, Luo L, Hu X, Yu F, Yang Y, Deng Z, Wu J, Chen R, Zhang M. Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus. FRONTIERS IN PLANT SCIENCE 2017; 8:924. [PMID: 28638390 PMCID: PMC5461294 DOI: 10.3389/fpls.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/17/2017] [Indexed: 06/16/2023]
Abstract
Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequence organization of genomes. In the current study, we investigate the phylogenetic diversity and genomic abundance of Ty1-copia retrotransposons for the first time and inspect their chromosomal distribution patterns in E. arundinaceus. In total, 70 Ty1-copia reverse transcriptase (RT) sequences with significant levels of heterogeneity were obtained. The phylogenetic analysis revealed these Ty1-copia retrotransposons were classified into four distinct evolutionary lineages (Tork/TAR, Tork/Angela, Retrofit/Ale, and Sire/Maximus). Dot-blot analysis showed estimated the total copy number of Ty1-copia retrotransposons to be about 4.5 × 103 in the E. arundinaceus genome, indicating they were a significant component. Fluorescence in situ hybridization revealed that Ty1-copia retrotransposons from the four lineages had strikingly similar patterns of chromosomal enrichment, being exclusively enriched in the subterminal heterochromatic regions of most E. arundinaceus chromosomes. This is the first clear evidence of the presence of Ty1-copia retrotransposons in the subterminal heterochromatin of E. arundinaceus. Altogether, these results promote the understanding of the diversification of Ty1-copia retrotransposons and shed light on their chromosomal distribution patterns in E. arundinaceus.
Collapse
Affiliation(s)
- Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xuguang Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yongqing Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and BiorefineryGuangzhou, China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research InstituteGuangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muqing Zhang
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| |
Collapse
|
14
|
Yan J, Zhang J, Sun K, Chang D, Bai S, Shen Y, Huang L, Zhang J, Zhang Y, Dong Y. Ploidy Level and DNA Content of Erianthus arundinaceus as Determined by Flow Cytometry and the Association with Biological Characteristics. PLoS One 2016; 11:e0151948. [PMID: 27010798 PMCID: PMC4806844 DOI: 10.1371/journal.pone.0151948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Erianthus arundinaceus is not only an important germplasm resource for sugarcane breeding but also a potential bioenergy plant. Making clear the distribution of the chromosome ploidy of wild E. arundinaceus in china is the premise of the research and utilization of this species. Therefore, the objectives of this study were to determine the ploidy level and DNA content of the 55 E. arundinaceus accessions using flow cytometry and to identify the correlation between ploidy and phenotypic traits. Among the 55 accessions, four tetraploids and 51 hexaploids were identified. The four tetraploids originated from Mengma Yunnan, Shuangjiang Yunnan, Gaozhou Guangdong and Chengle Sichuan. The mean DNA content was 4.82 pg/2C for the tetraploid and 7.30 pg/2C for the hexaploid plants. The ploidy was negatively correlated with cellulose content and positively correlated (P<0.05) with plant height, stem diameter, leaf width, dry weight per plant, fresh weight per plant and hemicellulose content. However, ploidy was not correlated with leaf length, tiller number and the ratio of dry weight and fresh weight. This study will be useful for revealing the distribution of the ploidy of wild E. arundinaceus in Chin, traits markers analysis, and utilization of this species, such as cultivar improvement and sugarcane breeding in the future.
Collapse
Affiliation(s)
- Jiajun Yan
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Jianbo Zhang
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Kaiyan Sun
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
- Department of Grassland Science, Animal Science and Technology College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dan Chang
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
- Department of Grassland Science, Animal Science and Technology College,Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Yixin Shen
- Department of Grassland Science, Animal Science and Technology College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College,Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jin Zhang
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Yu Zhang
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Yanhai Dong
- Department of Grassland Science, Animal Science and Technology College,Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
15
|
Huang Y, Wu J, Wang P, Lin Y, Fu C, Deng Z, Wang Q, Li Q, Chen R, Zhang M. Characterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One 2015. [PMID: 26196281 PMCID: PMC4510360 DOI: 10.1371/journal.pone.0133722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erianthus arundinaceus (E. arundinaceus) has many desirable agronomic traits for sugarcane improvement, such as high biomass, vigor, rationing ability, tolerance to drought, and water logging, as well as resistance to pests and disease. To investigate the introgression of the E. arundinaceus genome into sugarcane in the higher generations, intergeneric BC2 and BC3 progeny generated between Saccharum spp. and E. arundinaceus were studied using the genomic in situ hybridization (GISH) technique. The results showed that the BC2 and BC3 generations resulted from n + n chromosome transmission. Furthermore, chromosome translocation occurred at terminal fragments from the E. arundinaceus chromosome in some progeny of Saccharum spp. and E. arundinaceus. Notably, the translocated chromosomes could be stably transmitted to their progeny. This study illustrates the characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and E. arundinaceus. This work could provide more useful molecular cytogenetic information for the germplasm resources of E. arundinaceus, and may promote further understanding of the germplasm resources of E. arundinaceus for sugarcane breeders to accelerate its progress in sugarcane commercial breeding.
Collapse
Affiliation(s)
- Yongji Huang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Ping Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanquan Lin
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Fu
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Zuhu Deng
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Collaborative Center for Sugarcane & Cane Sugar Industries, Guangxi, China
- * E-mail:
| | - Qinnan Wang
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qiwei Li
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Rukai Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muqing Zhang
- Guangxi Collaborative Center for Sugarcane & Cane Sugar Industries, Guangxi, China
| |
Collapse
|