1
|
Rojas-Barón L, Hermosilla C, Taubert A, Velásquez ZD. Toxoplasma gondii Me49 and NED strains arrest host cell cycle progression and alter chromosome segregation in a strain-independent manner. Front Microbiol 2024; 15:1336267. [PMID: 38450167 PMCID: PMC10915083 DOI: 10.3389/fmicb.2024.1336267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that modulates a broad range of host cell functions to guarantee its intracellular development and replication. T. gondii includes three classical clonal lineages exhibiting different degrees of virulence. Regarding the genetic diversity of T. gondii circulating in Europe, type II strains and, to a lesser extent, type III strains are the dominant populations, both in humans and animals. Infections with the type I strain led to widespread parasite dissemination and death in mice, while type III is considered avirulent. Previously, we demonstrated that primary endothelial cells infected with the T. gondii RH strain (haplotype I) were arrested in the G2/M-phase transition, triggering cytokinesis failure and chromosome missegregation. Since T. gondii haplotypes differ in their virulence, we here studied whether T. gondii-driven host cell cycle perturbation is strain-dependent. Primary endothelial cells were infected with T. gondii Me49 (type II strain) or NED (type III strain), and their growth kinetics were compared up to cell lysis (6-30 h p. i.). In this study, only slight differences in the onset of full proliferation were observed, and developmental data in principle matched those of the RH strain. FACS-based DNA quantification to estimate cell proportions experiencing different cell cycle phases (G0/1-, S-, and G2/M-phase) revealed that Me49 and NED strains both arrested the host cell cycle in the S-phase. Cyclins A2 and B1 as key molecules of S- and M-phase were not changed by Me49 infection, while NED infection induced cyclin B1 upregulation. To analyze parasite-driven alterations during mitosis, we demonstrated that both Me49 and NED infections led to impaired host cellular chromosome segregation and irregular centriole overduplication. Moreover, in line with the RH strain, both strains boosted the proportion of binucleated cells within infected endothelial cell layers, thereby indicating enhanced cytokinesis failure. Taken together, we demonstrate that all parasite-driven host cell cycle arrest, chromosome missegregation, and binucleated phenotypes are T. gondii-specific but strain independent.
Collapse
Affiliation(s)
- Lisbeth Rojas-Barón
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
2
|
Warschkau D, Seeber F. Advances towards the complete in vitro life cycle of Toxoplasma gondii. Fac Rev 2023; 12:1. [PMID: 36846606 PMCID: PMC9944905 DOI: 10.12703/r/12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts (bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle in vitro.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
3
|
Naumov AV, Wang C, Chaput D, Ting LM, Alvarez CA, Keller T, Ramadan A, White MW, Kim K, Suvorova ES. Restriction Checkpoint Controls Bradyzoite Development in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0070222. [PMID: 35652638 PMCID: PMC9241953 DOI: 10.1128/spectrum.00702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.
Collapse
Affiliation(s)
- Anatoli V. Naumov
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Li-Min Ting
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Carmelo A. Alvarez
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas Keller
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ahmed Ramadan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael W. White
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Kidaka T, Sugi T, Hayashida K, Suzuki Y, Xuan X, Dubey JP, Yamagishi J. TSS-seq of Toxoplasma gondii sporozoites revealed a novel motif in stage-specific promoters. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105213. [PMID: 35041968 DOI: 10.1016/j.meegid.2022.105213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Toxoplasma gondii is one of the most common zoonotic protozoan parasites. It has three major infectious stages: rapidly multiplying tachyzoites (Tz), slowly replicating bradyzoites (Bz) and a resting/free-living stage, sporozoites (Sz). The regulatory mechanisms governing stage-specific gene expression are not fully understood. Few transcriptional start sites (TSS) are known for Sz. In this study, we obtained TSS of Sz using an oligo-capping method and RNA-seq analysis. We identified 1,043,503 TSS in the Sz transcriptome. These defined 38,973 TSS clusters, of which, 11,925 were expressed in Sz and 1535 TSS differentially expressed in Sz. Based on these data, we defined promoter regions and novel sporozoite stage-specific motifs using MEME. TGTANNTACA was distributed around -55 to -75 regions from each TSS. Interestingly, the same motif was reported in another apicomplexan, Plasmodium berghei, as a cis-element of female-specific gametocyte genes, implying the presence of common regulatory machinery. Further comparative analysis should better define the distribution and function of these elements in other members of this important parasitic phylum.
Collapse
Affiliation(s)
- Taishi Kidaka
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
5
|
Nardelli SC, Silmon de Monerri NC, Vanagas L, Wang X, Tampaki Z, Sullivan WJ, Angel SO, Kim K. Genome-wide localization of histone variants in Toxoplasma gondii implicates variant exchange in stage-specific gene expression. BMC Genomics 2022; 23:128. [PMID: 35164683 PMCID: PMC8842566 DOI: 10.1186/s12864-022-08338-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. RESULTS H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. CONCLUSIONS Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.
Collapse
Affiliation(s)
- Sheila C Nardelli
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Present address: Instituto Carlos Chagas/Fiocruz-PR, Curitiba, PR, CEP 81.350-010, Brazil
| | - Natalie C Silmon de Monerri
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Present address: Pfizer Inc, Pearl River, NY, 10965, USA
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Xiaonan Wang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: School of Public Health, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Zoi Tampaki
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Kami Kim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Internal Medicine, Division of Infectious Disease and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Ramakrishnan C, Smith NC. Recent achievements and doors opened for coccidian parasite research and development through transcriptomics of enteric sexual stages. Mol Biochem Parasitol 2021; 243:111373. [PMID: 33961917 DOI: 10.1016/j.molbiopara.2021.111373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The Coccidia is the largest group of parasites within the Apicomplexa, a phylum of unicellular, obligate parasites characterized by the possession of an apical complex of organelles and structures in the asexual stages of their life cycles, as well as by a sexual reproductive phase that occurs enterically in host animals. Coccidian sexual reproduction involves morphologically distinct microgametes and macrogametes that combine to form a diploid zygote and, ultimately, following meiosis and mitosis, haploid, infectious sporozoites, inside sporocysts within an oocyst. Recent transcriptomic analyses have identified genes involved in coccidian sexual stage development and reproduction, including genes encoding for microgamete- and macrogamete-specific proteins with roles in gamete motility, fusion and fertilization, and in the formation of the resilient oocyst wall that allows coccidians to persist for long periods in the environment. Transcriptomics has also provided important clues about the regulation of gene expression in the transformation of parasites from one developmental stage to the next, a complex sequence of events that may involve transcription factors such as the apicomplexan Apetala2 (ApiAP2) family, alternative splicing, regulatory RNAs and MORC (a microrchida homologue and regulator of sexual stage development in Toxoplasma gondii). The molecular dissection of coccidian sexual development and reproduction by transcriptomic analyses may lead to the development of novel transmission-blocking strategies.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
7
|
Menard KL, Bu L, Denkers EY. Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genomics 2021; 22:130. [PMID: 33622246 PMCID: PMC7903719 DOI: 10.1186/s12864-021-07437-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a globally distributed protozoan parasite that establishes life-long asymptomatic infection in humans, often emerging as a life-threatening opportunistic pathogen during immunodeficiency. As an intracellular microbe, Toxoplasma establishes an intimate relationship with its host cell from the outset of infection. Macrophages are targets of infection and they are important in early innate immunity and possibly parasite dissemination throughout the host. Here, we employ an RNA-sequencing approach to identify host and parasite transcriptional responses during infection of mouse bone marrow-derived macrophages (BMDM). We incorporated into our analysis infection with the high virulence Type I RH strain and the low virulence Type II strain PTG. Because the well-known TLR-MyD88 signaling axis is likely of less importance in humans, we examined transcriptional responses in both MyD88+/+ and MyD88-/- BMDM. Long noncoding (lnc) RNA molecules are emerging as key regulators in infection and immunity, and were, therefore, included in our analysis. RESULTS We found significantly more host genes were differentially expressed in response to the highly virulent RH strain rather than with the less virulent PTG strain (335 versus 74 protein coding genes for RH and PTG, respectively). Enriched in these protein coding genes were subsets associated with the immune response as well as cell adhesion and migration. We identified 249 and 83 non-coding RNAs as differentially expressed during infection with RH and PTG strains, respectively. Although the majority of these are of unknown function, one conserved lncRNA termed mir17hg encodes the mir17 microRNA gene cluster that has been implicated in down-regulating host cell apoptosis during T. gondii infection. Only a minimal number of transcripts were differentially expressed between MyD88 knockout and wild type cells. However, several immune genes were among the differences. While transcripts for parasite secretory proteins were amongst the most highly expressed T. gondii genes during infection, no differentially expressed parasite genes were identified when comparing infection in MyD88 knockout and wild type host BMDM. CONCLUSIONS The large dataset presented here lays the groundwork for continued studies on both the MyD88-independent immune response and the function of lncRNAs during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Kayla L Menard
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Proteomic Characterization of Host-Pathogen Interactions during Bovine Trophoblast Cell Line Infection by Neospora caninum. Pathogens 2020; 9:pathogens9090749. [PMID: 32942559 PMCID: PMC7557738 DOI: 10.3390/pathogens9090749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/02/2023] Open
Abstract
Despite the importance of bovine neosporosis, relevant knowledge gaps remain concerning the pathogenic mechanisms of Neospora caninum. Infection of the placenta is a crucial event in the pathogenesis of the disease; however, very little is known about the relation of the parasite with this target organ. Recent studies have shown that isolates with important variations in virulence also show different interactions with the bovine trophoblast cell line F3 in terms of proliferative capacity and transcriptome host cell modulation. Herein, we used the same model of infection to study the interaction of Neospora with these target cells at the proteomic level using LC-MS/MS over the course of the parasite lytic cycle. We also analysed the proteome differences between high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates. The results showed that mitochondrial processes and metabolism were the main points of Neospora-host interactions. Interestingly, Nc-Spain1H infection showed a higher level of influence on the host cell proteome than Nc-Spain7 infection.
Collapse
|
9
|
Wong ZS, Borrelli SLS, Coyne CC, Boyle JP. Cell type- and species-specific host responses to Toxoplasma gondii and its near relatives. Int J Parasitol 2020; 50:423-431. [PMID: 32407716 PMCID: PMC8281328 DOI: 10.1016/j.ijpara.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Toxoplasma gondii is remarkably unique in its ability to successfully infect vertebrate hosts from multiple phyla and can successfully infect most cells within these organisms. The infection outcome in each of these species is determined by the complex interaction between parasite and host genotype. As techniques to quantify global changes in cell function become more readily available and precise, new data are coming to light about how (i) different host cell types respond to parasitic infection and (ii) different parasite species impact the host. Here we focus on recent studies comparing the response to intracellular parasitism by different cell types and insights into understanding host-parasite interactions from comparative studies on T. gondii and its close extant relatives.
Collapse
Affiliation(s)
- Zhee S Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah L Sokol Borrelli
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carolyn C Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
10
|
Rico-San Román L, Horcajo P, Regidor-Cerrillo J, Fernández-Escobar M, Collantes-Fernández E, Gutiérrez-Blázquez D, Hernáez-Sánchez ML, Saeij JPJ, Ortega-Mora LM. Comparative tachyzoite proteome analyses among six Neospora caninum isolates with different virulence. Int J Parasitol 2020; 50:377-388. [PMID: 32360428 DOI: 10.1016/j.ijpara.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
The biological variability among Neospora caninum isolates has been widely shown, however, the molecular basis that determines this diversity has not been thoroughly elucidated to date. The latest studies have focused on a limited number of isolates. Therefore, the goal of the present study was to compare the proteome of a larger number of N. caninum isolates with different origins and virulence. Label-free LC-MS/MS was used to investigate the tachyzoite proteomic differences among Nc-Bahia, Nc-Spain4H and Nc-Spain7, representing high virulence isolates and Nc-Ger6, Nc-Spain2H and Nc-Spain1H, representing low virulence isolates. Pairwise comparisons between all isolates and between high virulence and low virulence groups identified a subset of proteins with higher abundance in high virulence isolates. These proteins were involved in energy and redox metabolism, and DNA/RNA processing, which might determine the faster growth rates and parasite survival of the high virulence isolates. Highlighted proteins included a predicted member of the rhoptry kinase family ROP20 specific for N. caninum, Bradyzoite pseudokinase 1 and several dense granule proteins. DNA polymerase, which was more abundant in all high virulence isolates in all comparisons, might also be implicated in virulence. These results reveal insights into possible mechanisms involved in specific phenotypic traits and virulence in N. caninum, and the relevance of these candidate proteins for N. caninum virulence deserves further investigation.
Collapse
Affiliation(s)
- Laura Rico-San Román
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; SALUVET-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Dolores Gutiérrez-Blázquez
- Proteomics Unit of Complutense University of Madrid, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - María Luisa Hernáez-Sánchez
- Proteomics Unit of Complutense University of Madrid, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Label-Free Quantitative Acetylome Analysis Reveals Toxoplasma gondii Genotype-Specific Acetylomic Signatures. Microorganisms 2019; 7:microorganisms7110510. [PMID: 31671511 PMCID: PMC6921067 DOI: 10.3390/microorganisms7110510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Distinct genotypic and pathogenic differences exist between Toxoplasma gondii genotypes. For example, genotype I is highly virulent, whereas genotype II and genotype III are less virulent. Moreover, Chinese 1 genotype (ToxoDB#9) is also virulent. Here, we compare the acetylomes of genotype 1 (RH strain) and Chinese 1 genotype (ToxoDB#9, PYS strain) of T. gondii. Using mass spectrometry enriched for acetylated peptides, we found a relationship between the levels of protein acetylation and parasite genotype-specific virulence. Notably, lysine acetylation was the largest (458 acetylated proteins) in RH strain, followed by PYS strain (188 acetylated proteins), whereas only 115 acetylated proteins were detected in PRU strain. Our analysis revealed four, three, and four motifs in RH strain, PRU strain and PYS strain, respectively. Three conserved sequences around acetylation sites, namely, xxxxxKAcHxxxx, xxxxxKAcFxxxx, and xxxxGKAcSxxxx, were detected in the acetylome of the three strains. However, xxxxxKAcNxxxx (asparagine) was found in RH and PYS strains but was absent in PRU strain. Our analysis also identified 15, 3, and 26 differentially expressed acetylated proteins in RH strain vs. PRU strain, PRU strain vs. PYS strain and PYS strain vs. RH strain, respectively. KEGG pathway analysis showed that a large proportion of the acetylated proteins are involved in metabolic processes. Pathways for the biosynthesis of secondary metabolites, biosynthesis of antibiotics and microbial metabolism in diverse environments were featured in the top five enriched pathways in all three strains. However, acetylated proteins from the virulent strains (RH and PYS) were more enriched in the pyruvate metabolism pathway compared to acetylated proteins from PRU strain. Increased levels of histone-acetyl-transferase and glycyl-tRNA synthase were detected in RH strain compared to PRU strain and PYS strain. Both enzymes play roles in stress tolerance and proliferation, key features in the parasite virulence. These findings reveal novel insight into the acetylomic profiles of major T. gondii genotypes and provide a new important resource for further investigations of the roles of the acetylated parasite proteins in the modulation of the host cell response to the infection of T. gondii.
Collapse
|
12
|
Rezansoff AM, Laing R, Martinelli A, Stasiuk S, Redman E, Bartley D, Holroyd N, Devaney E, Sargison ND, Doyle S, Cotton JA, Gilleard JS. The confounding effects of high genetic diversity on the determination and interpretation of differential gene expression analysis in the parasitic nematode Haemonchus contortus. Int J Parasitol 2019; 49:847-858. [PMID: 31525371 DOI: 10.1016/j.ijpara.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
Abstract
Differential expression analysis between parasitic nematode strains is commonly used to implicate candidate genes in anthelmintic resistance or other biological functions. We have tested the hypothesis that the high genetic diversity of an organism such as Haemonchus contortus could complicate such analyses. First, we investigated the extent to which sequence polymorphism affects the reliability of differential expression analysis between the genetically divergent H. contortus strains MHco3(ISE), MHco4(WRS) and MHco10(CAVR). Using triplicates of 20 adult female worms from each population isolated under parallel experimental conditions, we found that high rates of sequence polymorphism in RNAseq reads were associated with lower efficiency read mapping to gene models under default TopHat2 parameters, leading to biased estimates of inter-strain differential expression. We then showed it is possible to largely compensate for this bias by optimising the read mapping single nucleotide polymorphism (SNP) allowance and filtering out genes with particularly high single nucleotide polymorphism rates. Once the sequence polymorphism biases were removed, we then assessed the genuine transcriptional diversity between the strains, finding ≥824 differentially expressed genes across all three pairwise strain comparisons. This high level of inter-strain transcriptional diversity not only suggests substantive inter-strain phenotypic variation but also highlights the difficulty in reliably associating differential expression of specific genes with phenotypic differences. To provide a practical example, we analysed two gene families of potential relevance to ivermectin drug resistance; the ABC transporters and the ligand-gated ion channels (LGICs). Over half of genes identified as differentially expressed using default TopHat2 parameters were shown to be an artifact of sequence polymorphism differences. This work illustrates the need to account for sequence polymorphism in differential expression analysis. It also demonstrates that a large number of genuine transcriptional differences can occur between H. contortus strains and these must be considered before associating the differential expression of specific genes with phenotypic differences between strains.
Collapse
Affiliation(s)
- Andrew M Rezansoff
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Susan Stasiuk
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Dave Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Neil D Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Stephen Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
13
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
14
|
Alonso AM, Corvi MM, Diambra L. Gene target discovery with network analysis in Toxoplasma gondii. Sci Rep 2019; 9:646. [PMID: 30679502 PMCID: PMC6345969 DOI: 10.1038/s41598-018-36671-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are of great relevance for global health, but needed drugs and vaccines have not been developed yet or are not effective in many cases. In fact, traditional scientific approaches with intense focus on individual genes or proteins have not been successful in providing new treatments. Hence, innovations in technology and computational methods provide new tools to further understand complex biological systems such as pathogen biology. In this paper, we apply a gene regulatory network approach to analyze transcriptomic data of the parasite Toxoplasma gondii. By means of an optimization procedure, the phenotypic transitions between the stages associated with the life cycle of T. gondii were embedded into the dynamics of a gene regulatory network. Thus, through this methodology we were able to reconstruct a gene regulatory network able to emulate the life cycle of the pathogen. The community network analysis has revealed that nodes of the network can be organized in seven communities which allow us to assign putative functions to 338 previously uncharacterized genes, 25 of which are predicted as new pathogenic factors. Furthermore, we identified a small gene circuit that drives a series of phenotypic transitions that characterize the life cycle of this pathogen. These new findings can contribute to the understanding of parasite pathogenesis.
Collapse
Affiliation(s)
- Andres M Alonso
- Instituto de Investigaciones Biotecnológicas "Dr. Raul Alfonsin", CONICET-Universidad Nacional de General San Martín, Chascomús, B7130IWA, Argentina
- CREG, CONICET-Universidad Nacional de La Plata, La Plata, CP 1900, Argentina
| | - Maria M Corvi
- Instituto de Investigaciones Biotecnológicas "Dr. Raul Alfonsin", CONICET-Universidad Nacional de General San Martín, Chascomús, B7130IWA, Argentina
| | - Luis Diambra
- CREG, CONICET-Universidad Nacional de La Plata, La Plata, CP 1900, Argentina.
| |
Collapse
|
15
|
Jeffers V, Tampaki Z, Kim K, Sullivan WJ. A latent ability to persist: differentiation in Toxoplasma gondii. Cell Mol Life Sci 2018; 75:2355-2373. [PMID: 29602951 PMCID: PMC5988958 DOI: 10.1007/s00018-018-2808-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023]
Abstract
A critical factor in the transmission and pathogenesis of Toxoplasma gondii is the ability to convert from an acute disease-causing, proliferative stage (tachyzoite), to a chronic, dormant stage (bradyzoite). The conversion of the tachyzoite-containing parasitophorous vacuole membrane into the less permeable bradyzoite cyst wall allows the parasite to persist for years within the host to maximize transmissibility to both primary (felids) and secondary (virtually all other warm-blooded vertebrates) hosts. This review presents our current understanding of the latent stage, including the factors that are important in bradyzoite induction and maintenance. Also discussed are the recent studies that have begun to unravel the mechanisms behind stage switching.
Collapse
Affiliation(s)
- Victoria Jeffers
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Zoi Tampaki
- Departments of Medicine, Microbiology and Immunology, and Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kami Kim
- Departments of Medicine, Microbiology and Immunology, and Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
16
|
Sokol SL, Primack AS, Nair SC, Wong ZS, Tembo M, Verma SK, Cerqueira-Cezar CK, Dubey JP, Boyle JP. Dissection of the in vitro developmental program of Hammondia hammondi reveals a link between stress sensitivity and life cycle flexibility in Toxoplasma gondii. eLife 2018; 7:36491. [PMID: 29785929 PMCID: PMC5963921 DOI: 10.7554/elife.36491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic parasites are obligately heteroxenous, requiring sequential infection of different host species in order to survive. Toxoplasma gondii is a rare exception to this rule, having a uniquely facultative heteroxenous life cycle. To understand the origins of this phenomenon, we compared development and stress responses in T. gondii to those of its its obligately heteroxenous relative, Hammondia hammondi and have identified multiple H. hammondi growth states that are distinct from those in T. gondii. Of these, the most dramatic difference was that H. hammondi was refractory to stressors that robustly induce cyst formation in T. gondii, and this was reflected most dramatically in its unchanging transcriptome after stress exposure. We also found that H. hammondi could be propagated in vitro for up to 8 days post-excystation, and we exploited this to generate the first ever transgenic H. hammondi line. Overall our data show that H. hammondi zoites grow as stringently regulated, unique life stages that are distinct from T. gondii tachyzoites, and implicate stress sensitivity as a potential developmental innovation that increased the flexibility of the T. gondii life cycle.
Collapse
Affiliation(s)
- Sarah L Sokol
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Abby S Primack
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Sethu C Nair
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Zhee S Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Maiwase Tembo
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Shiv K Verma
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Camila K Cerqueira-Cezar
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
17
|
Acar İE, Saçar Demirci MD, Groß U, Allmer J. The Expressed MicroRNA—mRNA Interactions of Toxoplasma gondii. Front Microbiol 2018; 8:2630. [PMID: 29354114 PMCID: PMC5759179 DOI: 10.3389/fmicb.2017.02630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional modulation of gene expression and thereby have a large influence on the resulting phenotype. We have previously shown that miRNAs may be involved in the communication between Toxoplasma gondii and its hosts and further confirmed a number of proposed specific miRNAs. Yet, little is known about the internal regulation via miRNAs in T. gondii. Therefore, we predicted pre-miRNAs directly from the type II ME49 genome and filtered them. For the confident hairpins, we predicted the location of the mature miRNAs and established their target genes. To add further confidence, we evaluated whether the hairpins and their targets were co-expressed. Such co-expressed miRNA and target pairs define a functional interaction. We extracted all such functional interactions and analyzed their differential expression among strains of all three clonal lineages (RH, PLK, and CTG) and between the two stages present in the intermediate host (tachyzoites and bradyzoites). Overall, we found ~65,000 expressed interactions of which ~5,500 are differentially expressed among strains but none are significantly differentially expressed between developmental stages. Since miRNAs and target decoys can be used as therapeutics we believe that the list of interactions we provide will lead to novel approaches in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- İlhan E. Acar
- Biotechnology, Izmir Institute of Technology, Izmir, Turkey
| | | | - Uwe Groß
- Medical Microbiology, Universitätsmedizin Göttingen, Göttingen, Germany
- *Correspondence: Uwe Groß
| | - Jens Allmer
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
- Jens Allmer
| |
Collapse
|
18
|
Integrative transcriptome and proteome analyses define marked differences between Neospora caninum isolates throughout the tachyzoite lytic cycle. J Proteomics 2017; 180:108-119. [PMID: 29154927 DOI: 10.1016/j.jprot.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 11/22/2022]
Abstract
Neospora caninum is one of the main causes of transmissible abortion in cattle. Intraspecific variations in virulence have been widely shown among N. caninum isolates. However, the molecular basis governing such variability have not been elucidated to date. In this study label free LC-MS/MS was used to investigate proteome differences between the high virulence isolate Nc-Spain7 and the low virulence isolate Nc-Spain1H throughout the tachyzoite lytic cycle. The results showed greater differences in the abundance of proteins at invasion and egress with 77 and 62 proteins, respectively. During parasite replication, only 19 proteins were differentially abundant between isolates. The microneme protein repertoire involved in parasite invasion and egress was more abundant in the Nc-Spain1H isolate, which displays a lower invasion rate. Rhoptry and dense granule proteins, proteins related to metabolism and stress responses also showed differential abundances between isolates. Comparative RNA-Seq analyses during tachyzoite egress were also performed, revealing an expression profile of genes associated with the bradyzoite stage in the low virulence Nc-Spain1H isolate. The differences in proteome and RNA expression profiles between these two isolates reveal interesting insights into likely mechanisms involved in specific phenotypic traits and virulence in N. caninum. SIGNIFICANCE The molecular basis that governs biological variability in N. caninum and the pathogenesis of neosporosis has not been well-established yet. This is the first study in which high throughput technology of LC-MS/MS and RNA-Seq is used to investigate differences in the proteome and transcriptome between two well-characterized isolates. Both isolates displayed different proteomes throughout the lytic cycle and the transcriptomes also showed marked variations but were inconsistent with the proteome results. However, both datasets identified a pre-bradyzoite status of the low virulence isolate Nc-Spain1H. This study reveals interesting insights into likely mechanisms involved in virulence in N. caninum and shed light on a subset of proteins that are potentially involved in the pathogenesis of this parasite.
Collapse
|
19
|
Horcajo P, Jiménez-Pelayo L, García-Sánchez M, Regidor-Cerrillo J, Collantes-Fernández E, Rozas D, Hambruch N, Pfarrer C, Ortega-Mora LM. Transcriptome modulation of bovine trophoblast cells in vitro by Neospora caninum. Int J Parasitol 2017; 47:791-799. [PMID: 28899691 DOI: 10.1016/j.ijpara.2017.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/21/2022]
Abstract
Neospora caninum is one of the most efficient transplacentally transmitted pathogens in cattle and is a cause of abortion in this domestic species. The invasion and proliferation of Neospora caninum in the placenta and its dissemination to the foetus are crucial events in the outcome of an infection. In the bovine placenta, the placentomes are formed by maternal caruncles, which are delimited by a maternal epithelium and foetal cotyledons, which are delimited by an epithelial layer named the trophoblast. These epithelia form a physical barrier against foetal infection. Furthermore, trophoblast cells act as an innate immune defence at the foetal-maternal interface. Neospora caninum invades and proliferates in trophoblast cells in vitro, but it is unknown whether host cell modulation events, which affect the immune response and other processes in the trophoblast, occur. In this work, we investigated the transcriptomic modulation by Neospora caninum infection in the bovine trophoblast cell line F3. In addition, two Neospora caninum isolates with marked differences in virulence, Nc-Spain1H and the Nc-Spain7, were used in this study to investigate the influence of these isolates in F3 modulation. The results showed a clear influence on extracellular matrix reorganisation, cholesterol biosynthesis and the transcription factor AP-1 network. Interestingly, although differences in the transcriptome profiles induced by each isolate were observed, specific isolate-modulated processes were not identified, suggesting very similar regulation in both isolates. Differential expression of the N. caninum genes between both isolates was also investigated. Genes involved in host cell attachment and invasion (SAG-related and microneme proteins), glideosome, rhoptries, metabolic processes, cell cycle and stress response were differentially expressed between the isolates, which could explain their variability. This study provides a global view of Neospora caninum interactions with bovine trophoblast cells and of the intra-specific differences between two Neospora caninum isolates with biological differences.
Collapse
Affiliation(s)
- Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Laura Jiménez-Pelayo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Marta García-Sánchez
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Daniel Rozas
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Nina Hambruch
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Opposing Transcriptional Mechanisms Regulate Toxoplasma Development. mSphere 2017; 2:mSphere00347-16. [PMID: 28251183 PMCID: PMC5322347 DOI: 10.1128/msphere.00347-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway. The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCEToxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.
Collapse
|
21
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
de Monerri NCS, Weiss LM. Integration of RNA-seq and proteomics data with genomics for improved genome annotation in Apicomplexan parasites. Proteomics 2015; 15:2557-9. [PMID: 26152714 PMCID: PMC4552184 DOI: 10.1002/pmic.201500253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 11/07/2022]
Abstract
While high quality genomic sequence data is available for many pathogenic organisms, the corresponding gene annotations are often plagued with inaccuracies that can hinder research that utilizes such genomic data. Experimental validation of gene models is clearly crucial in improving such gene annotations; the field of proteogenomics is an emerging area of research wherein proteomic data is applied to testing and improving genetic models. Krishna et al. [Proteomics 2015, 15, 2618-2628] investigated whether incorporation of RNA-seq data into proteogenomics analyses can contribute significantly to validation studies of genome annotation, in two important parasitic organisms Toxoplasma gondii and Neospora caninum. They applied a systematic approach to combine new and previously published proteomics data from T. gondii and N. caninum with transcriptomics data, leading to substantially improved gene models for these organisms. This study illustrates the importance of incorporating experimental data from both proteomics and RNA-seq studies into routine genome annotation protocols.
Collapse
Affiliation(s)
- Natalie C. Silmon de Monerri
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer, Bronx, NY, 10461
| | - Louis M. Weiss
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer, Bronx, NY, 10461
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer, Bronx, NY, 10461
| |
Collapse
|
23
|
Rhee DB, Croken MM, Shieh KR, Sullivan J, Micklem G, Kim K, Golden A. toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav066. [PMID: 26130662 PMCID: PMC4485433 DOI: 10.1093/database/bav066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community. Database URL:http://toxomine.org
Collapse
Affiliation(s)
- David B Rhee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA,
| | - Matthew McKnight Croken
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kevin R Shieh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julie Sullivan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK and
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK and
| | - Kami Kim
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA,
| | - Aaron Golden
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, USA
| |
Collapse
|