1
|
Ma D, Marey MA, Shimada M, Miyamoto A. Toll-like Receptor 2 is Involved in Calcium Influx and Acrosome Reaction to Facilitate Sperm Penetration to Oocytes During in vitro Fertilization in Cattle. Front Cell Dev Biol 2022; 10:810961. [PMID: 35281105 PMCID: PMC8907135 DOI: 10.3389/fcell.2022.810961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cumulus cells of ovulated cumulus-oocyte complexes (COCs) express Toll-like receptor 2 (TLR2), pathogen recognition receptors, to recognize and react to sperm signals during fertilization. Sperm also express TLR2, but its contribution to the sperm-oocytes crosstalk is still unclear. Here, we adapted the in vitro fertilization (IVF) model to characterize the potential relevance of sperm TLR2 in sperm-oocytes interactions during fertilization in bovine. The IVF results showed that the ligation of sperm TLR2 with its specific antagonist/agonist resulted in down/up-regulation of the cleavage and blastocyst rates either in COCs or cumulus-free oocytes, but not in zona pellucida (ZP)-free oocytes. The computer-assisted sperm analysis (CASA) system revealed that sperm motility parameters were not affected in TLR2 antagonist/agonist-treated sperm. However, fluorescence imaging of sperm-ZP interactions revealed that the blockage or activation of the TLR2 system in sperm reduced or enhanced both binding and penetration abilities of sperm to ZP compared to control, respectively. Flow cytometrical analysis of acrosome reaction (AR) demonstrated that the TLR2 system adjusted the occurrence of AR in ZP-attached sperm, suggesting that sperm TLR2 plays physiological impacts on the sperm-oocyte crosstalk via regulating ZP-triggered AR in sperm. Given that calcium (Ca2+) influx is a pre-requisite step for the induction of AR, we investigated the impact of the TLR2 system on the ionophore A23187-induced Ca2+ influx into sperm. Notably, the exposure of sperm to TLR2 antagonist/agonist reduced/increased the intracellular Ca2+ level in sperm. Together, these findings shed new light that the TLR2 system is involved in sperm AR induction which enables sperm to penetrate and fertilize oocytes during the fertilization, at least in vitro, in cows. This suggests that sperm possibly developed a quite flexible sensing mechanism simultaneously against pathogens as well as COCs toward fertilization with the same TLR2 of the innate immune system.
Collapse
Affiliation(s)
- Dongxue Ma
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Akio Miyamoto,
| |
Collapse
|
2
|
Potaczek DP, Przytulska-Szczerbik A, Bazan-Socha S, Nastałek M, Wojas-Pelc A, Okumura K, Nishiyama C, Jurczyszyn A, Undas A, Wypasek E. Interaction between functional polymorphisms in FCER1A and TLR2 and the severity of atopic dermatitis. Hum Immunol 2020; 81:709-713. [PMID: 32883546 DOI: 10.1016/j.humimm.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
Dendritic cell toll-like receptors (TLRs) and the high-affinity immunoglobulin E (IgE) receptor (FcεRI) may biologically interact with regard to atopic dermatitis (AD) development and, especially, severity. Our aim here was to test if such interaction can be detected on the genetic level. The combined effect of the TLR2 gene (TLR2) rs4696480 and the FcεRI α-chain gene (FCER1A) rs2252226 and rs2251746 polymorphisms on the AD severity as measured by SCORAD was assessed. The FCER1A rs2252226 and TLR2 rs4696480 polymorphisms interacted with regard to SCORAD. Higher SCORAD was observed in patients being the TLR2 rs4696480 major homozygotes and carrying at the same time the FCER1A rs2252226 minor allele, compared to those characterized by (any other of) the remaining combined rs2252226 and rs4696480 genotypes. The observation of the epistatic effect of TLR2 and FCER1A genetic variants on SCORAD is in line with the involvement of the interaction TLRs-FcεRI in the pathophysiology of AD.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany; Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
| | | | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Nastałek
- Faculty of Rehabilitation, University of Physical Education in Krakow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical College, Krakow, Poland
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland; Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland.
| |
Collapse
|
3
|
Kytikova OY, Perelman JM, Novgorodtseva TP, Denisenko YK, Kolosov VP, Antonyuk MV, Gvozdenko TA. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res 2020; 2020:8906968. [PMID: 32395125 PMCID: PMC7201810 DOI: 10.1155/2020/8906968] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
The complexity of the pathogenetic mechanisms of the development of chronic inflammation in asthma determines its heterogeneity and insufficient treatment effectiveness. Nuclear transcription factors, which include peroxisome proliferator-activated receptors, that is, PPARs, play an important role in the regulation of initiation and resolution of the inflammatory process. The ability of PPARs to modulate not only lipid homeostasis but also the activity of the inflammatory response makes them an important pathogenetic target in asthma therapy. At present, special attention is focused on natural (polyunsaturated fatty acids (PUFAs), endocannabinoids, and eicosanoids) and synthetic (fibrates, thiazolidinediones) PPAR ligands and the study of signaling mechanisms involved in the implementation of their anti-inflammatory effects in asthma. This review summarizes current views on the structure and function of PPARs, as well as their participation in the pathogenesis of chronic inflammation in asthma. The potential use of PPAR ligands as therapeutic agents for treating asthma is under discussion.
Collapse
Affiliation(s)
- Oxana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Viktor P. Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
4
|
Castells M, Butterfield J. Mast Cell Activation Syndrome and Mastocytosis: Initial Treatment Options and Long-Term Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1097-1106. [DOI: 10.1016/j.jaip.2019.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
5
|
Nedoszytko B, Lange M, Renke J, Niedoszytko M, Zabłotna M, Gleń J, Nowicki R. The Possible Role of Gene Variant Coding Nonfunctional Toll-Like Receptor 2 in the Pathogenesis of Mastocytosis. Int Arch Allergy Immunol 2018; 177:80-86. [PMID: 29909409 DOI: 10.1159/000489343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Data on the genetic predisposition to mastocytosis are scarce. The aim of this work was to study the association of single nucleotide polymorphisms of Toll-like receptor (TLR)-2, TLR-4, and TLR-9 genes in Polish patients with mastocytosis. OBJECTIVES The study comprised 137 patients with mastocytosis (102 cutaneous [60 children and 42 adults] and 35 systemic cases); 171 disease-free individuals were used as controls. METHOD The frequency of polymorphisms R753Q (rs5743708) of TLR-2, 896 A>G (rs496790) of TLR-4, and -1237C>T (rs5743836) of TLR-9 genes were determined with the use of the amplification refractory mutation system polymerase chain reaction method. RESULTS It was found that the R753Q TLR-2 gene polymorphism was significantly more frequent in patients with mastocytosis in comparison to healthy controls (p = 0.037) and in the group of SM versus controls (p = 0.0076). The presence in the genotype 753Q variant of TLR-2 gene increased the risk of mastocytosis more than 2-fold (OR 2.51; p = 0.04), and the risk of SM more than 4-fold (OR 4.22; p = 0.01). TLR-4 and TLR-9 polymorphisms were not associated with mastocytosis. CONCLUSIONS Our results suggest that the R753Q polymorphism of the TLR-2 gene may be involved in the pathogenesis of mastocytosis.
Collapse
Affiliation(s)
- Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Renke
- Department of General and Medical Biochemistry, University of Gdansk, Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol 2018; 9:1027. [PMID: 29867994 PMCID: PMC5963123 DOI: 10.3389/fimmu.2018.01027] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease that is influenced by the interplay between genetic factors and exposure to environmental allergens, microbes, or microbial products where toll-like receptors (TLRs) play a pivotal role. TLRs recognize a wide range of microbial or endogenous molecules as well as airborne environmental allergens and act as adjuvants that influence positively or negatively allergic sensitization. TLRs are qualitatively and differentially expressed on hematopoietic and non-hematopoietic stromal or structural airway cells that when activated by TLRs agonists exert an immune-modulatory role in asthma development. Therefore, understanding mechanisms and pathways by which TLRs orchestrate asthma outcomes may offer new strategies to control the disease. Here, we aim to review and critically discuss the role of TLRs in human asthma and murine models of allergic airway inflammation, highlighting the complexity of TLRs function in development, exacerbation, or control of airway allergic inflammation.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
8
|
Protective Effect of an Antibody against Specific Extracellular Domain of TLR2 on Agonists-Driven Inflammatory and Allergic Response. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9803846. [PMID: 27213155 PMCID: PMC4860216 DOI: 10.1155/2016/9803846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/02/2022]
Abstract
Specific blocking strategies of TLR2-mediated inflammatory signaling and hypersensitivity reactions may offer novel therapeutic strategies to prevent a variety of diseases. In this study, we investigated the blocking effects of a new anti-TLR2 antibody anti-T20 against a 20 mer peptide T20 located in the extracellular specific domain of mouse TLR2. In addition, the effects of the anti-T20 in vitro, measuring the inhibition of the IL-6 and TNF-α production in response to PGN, LTA, and Pam3CSK4-stimulated RAW264.7 cells, were determined. In vivo, the effects of anti-T20 on a lethal anaphylaxis model using PGN-challenged OVA allergic mice, including the rectal temperature and mortality, and serum levels of TNF-α, IL-6, and LTC4 were assayed. The results showed that anti-T20 specifically bound to TLR2 and significantly inhibited PGN, LTA, and Pam3CSK4-driven TNF-α and IL-6 production by RAW264.7 cells. Also, anti-T20 protected OVA allergic mice from PGN-induced lethal anaphylaxis, and the serum levels of TNF-α, IL-6, and LTC4 of anti-T20 treated PGN-challenged OVA allergic mice were decreased as compared to isotype control of anti-T20 treated mice. In summary, this study produced a new antibody against the specific extracellular domain of TLR2 which has protective effect on TLR2 agonists-driven inflammatory and allergic response.
Collapse
|
9
|
Hoffmann HJ. News in Cellular Allergology: A Review of the Human Mast Cell and Basophil Granulocyte Literature from January 2013 to May 2015. Int Arch Allergy Immunol 2016; 168:253-62. [DOI: 10.1159/000443960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Zhang YY, Yu YY, Zhang YR, Zhang W, Yu B. The modulatory effect of TLR2 on LL-37-induced human mast cells activation. Biochem Biophys Res Commun 2016; 470:368-374. [DOI: 10.1016/j.bbrc.2016.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
|