1
|
Chadwick BJ, Lin X. Effects of CO 2 in fungi. Curr Opin Microbiol 2024; 79:102488. [PMID: 38759247 PMCID: PMC11162916 DOI: 10.1016/j.mib.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO2 is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO2. Different organisms can tolerate different CO2 levels to various degrees, and experiencing higher CO2 is toxic and can lead to death. The fungal kingdom shows great variations in response to CO2 that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO2, and emphasize the effects of CO2 on fungal metabolism and morphogenesis.
Collapse
Affiliation(s)
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Gene, virulence and related regulatory mechanisms in Cryptococcus gattii. Acta Biochim Biophys Sin (Shanghai) 2022; 54:593-603. [PMID: 35593469 PMCID: PMC9828318 DOI: 10.3724/abbs.2022029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cryptococcus gattii is a kind of basidiomycetous yeast, which grows in human and animal hosts. C. gattii has four distinct genomes, VGI/AFLP4, VGII/AFLP6, VGIII/AFLP5, and VGIV/AFLP7. The virulence of C. gattii is closely associated with genotype and related stress-signaling pathways, but the pathogenic mechanism of C. gattii has not been fully identified. With the development of genomics and transcriptomics, the relationship among genes, regulatory mechanisms, virulence, and treatment is gradually being recognized. In this review, to better understand how C. gattii causes disease and to characterize hypervirulent C. gattii strains, we summarize the current understanding of C. gattii genotypes, phenotypes, virulence, and the regulatory mechanisms.
Collapse
|
3
|
Dang Y, Wei Y, Batool W, Sun X, Li X, Zhang SH. Contribution of the Mitochondrial Carbonic Anhydrase (MoCA1) to Conidiogenesis and Pathogenesis in Magnaporthe oryzae. Front Microbiol 2022; 13:845570. [PMID: 35250959 PMCID: PMC8891501 DOI: 10.3389/fmicb.2022.845570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 01/12/2023] Open
Abstract
The interconversion of CO2 and HCO3− catalyzed by carbonic anhydrases (CAs) is a fundamental biochemical process in organisms. During mammalian–pathogen interaction, both host and pathogen CAs play vital roles in resistance and pathogenesis; during planta–pathogen interaction, however, plant CAs function in host resistance but whether pathogen CAs are involved in pathogenesis is unknown. Here, we biologically characterized the Magnaporthe oryzae CA (MoCA1). Through detecting the DsRED-tagged proteins, we observed the fusion MoCA1 in the mitochondria of M. oryzae. Together with the measurement of CA activity, we confirmed that MoCA1 is a mitochondrial zinc-binding CA. MoCA1 expression, upregulated with H2O2 or NaHCO3 treatment, also showed a drastic upregulation during conidiogenesis and pathogenesis. When MoCA1 was deleted, the mutant ΔMoCA1 was defective in conidiophore development and pathogenicity. 3,3′-Diaminobenzidine (DAB) staining indicated that more H2O2 accumulated in ΔMoCA1; accordingly, ATPase genes were downregulated and ATP content decreased in ΔMoCA1. Summarily, our data proved the involvement of the mitochondrial MoCA1 in conidiogenesis and pathogenesis in the rice blast fungus. Considering the previously reported HCO3− transporter MoAE4, we propose that MoCA1 in cooperation with MoAE4 constitutes a HCO3− homeostasis-mediated disease pathway, in which MoCA1 and MoAE4 can be a drug target for disease control.
Collapse
Affiliation(s)
- Yuejia Dang
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wajjiha Batool
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xicen Sun
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoqian Li
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Shi-Hong Zhang,
| |
Collapse
|
4
|
Kim S, Yeon J, Sung J, Kim NJ, Hong S, Jin MS. Structural insights into novel mechanisms of inhibition of the major β-carbonic anhydrase CafB from the pathogenic fungus Aspergillus fumigatus. J Struct Biol 2021; 213:107700. [PMID: 33545350 DOI: 10.1016/j.jsb.2021.107700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023]
Abstract
In fungi the β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes that are essential for growth, survival, differentiation, and virulence. Aspergillus fumigatus is the most important pathogen responsible for invasive aspergillosis and possesses two major β-CAs, CafA and CafB. Recently we reported the biochemical characterization and 1.8 Å crystal structure of CafA. Here, we report a crystallographic analysis of CafB revealing the mechanism of enzyme catalysis and establish the relationship of this enzyme to other β-CAs. While CafA has a typical open conformation, CafB, when exposed to acidic pH and/or an oxidative environment, has a novel type of active site in which a disulfide bond is formed between two zinc-ligating cysteines, expelling the zinc ion and stabilizing the inactive form of the enzyme. Based on the structural data, we generated an oxidation-resistant mutant (Y159A) of CafB. The crystal structure of the mutant under reducing conditions retains a catalytic zinc at the expected position, tetrahedrally coordinated by three residues (C57, H113 and C116) and an aspartic acid (D59), and replacing the zinc-bound water molecule in the closed form. Furthermore, the active site of CafB crystals grown under zinc-limiting conditions has a novel conformation in which the solvent-exposed catalytic cysteine (C116) is flipped out of the metal coordination sphere, facilitating release of the zinc ion. Taken together, our results suggest that A. fumigatus use sophisticated activity-inhibiting strategies to enhance its survival during infection.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jungyoon Yeon
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongmin Sung
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Na Jin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Semi Hong
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
5
|
Kim S, Yeon J, Sung J, Jin MS. Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus. Mol Cells 2020; 43:831-840. [PMID: 32975213 PMCID: PMC7528686 DOI: 10.14348/molcells.2020.0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/07/2023] Open
Abstract
The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible ″open″ conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jungyoon Yeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jongmin Sung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
6
|
Chadwick BJ, Lin X. On the History and Applications of Congenic Strains in Cryptococcus Research. Pathogens 2020; 9:pathogens9090750. [PMID: 32942570 PMCID: PMC7560043 DOI: 10.3390/pathogens9090750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/23/2023] Open
Abstract
Congenic strains have been utilized in numerous model organisms to determine the genetic underpinning of various phenotypic traits. Congenic strains are usually derived after 10 backcrosses to a recipient parent, at which point they are 99.95% genetically identical to the parental strain. In recent decades, congenic pairs have provided an invaluable tool for genetics and molecular biology research in the Cryptococcus neoformans species complex. Here, we summarize the history of Cryptococcus congenic pairs and their application in Cryptococcus research on topics including the impact of the mating type locus on unisexual reproduction, virulence, tissue tropism, uniparental mitochondrial inheritance, and the genetic underpinning of other various traits. We also discuss the limitations of these approaches and other biological questions, which could be explored by employing congenic pairs.
Collapse
Affiliation(s)
- Benjamin J. Chadwick
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Xiaorong Lin
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA;
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
7
|
Kim S, Kim NJ, Hong S, Kim S, Sung J, Jin MS. The structural basis of the low catalytic activities of the two minor β-carbonic anhydrases of the filamentous fungus Aspergillus fumigatus. J Struct Biol 2019; 208:61-68. [PMID: 31376470 DOI: 10.1016/j.jsb.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
The β-carbonic anhydrases (β-CAs) are widely distributed zinc-metalloenzymes that play essential roles in growth, survival, development and virulence in fungi. The majority of filamentous ascomycetes possess multiple β-CA isoforms among which major and minor forms have been characterized. We examined the catalytic behavior of the two minor β-CAs, CafC and CafD, of Aspergillus fumigatus, and found that both enzymes exhibited low CO2 hydration activities. To understand the structural basis of their low activities, we performed X-ray crystallographic and site-directed mutagenesis studies. Both enzymes exist as homodimers. Like other Type-I β-CAs, the CafC active site has an "open" conformation in which the zinc ion is tetrahedrally coordinated by three residues (C36, H88 and C91) and a water molecule. However, L25 and L78 on the rim of the catalytic entry site protrude into the active site cleft, partially occluding access to it. Single (L25G or L78G) and double mutants provided evidence that widening the entrance to the active site greatly accelerates catalytic activity. By contrast, CafD has a typical Type-II "closed" conformation in which the zinc-bound water molecule is replaced by aspartic acid (D36). The most likely explanation for this result is that an arginine that is largely conserved within the β-CA family is replaced by glycine (G38), so that D36 cannot undergo a conformational change by forming a D-R pair that creates the space for a zinc-bound water molecule and switches the enzyme to the active form. The CafD structure also reveals the presence of a "non-catalytic" zinc ion in the dimer interface, which may contribute to stabilizing the dimeric assembly.
Collapse
Affiliation(s)
- Songwon Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Na Jin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Semi Hong
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongmin Sung
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Sherrington SL, Kumwenda P, Kousser C, Hall RA. Host Sensing by Pathogenic Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:159-221. [PMID: 29680125 DOI: 10.1016/bs.aambs.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to cause disease extends from the ability to grow within the host environment. The human host provides a dynamic environment to which fungal pathogens must adapt to in order to survive. The ability to grow under a particular condition (i.e., the ability to grow at mammalian body temperature) is considered a fitness attribute and is essential for growth within the human host. On the other hand, some environmental conditions activate signaling mechanisms resulting in the expression of virulence factors, which aid pathogenicity. Therefore, pathogenic fungi have evolved fitness and virulence attributes to enable them to colonize and infect humans. This review highlights how some of the major pathogenic fungi respond and adapt to key environmental signals within the human host.
Collapse
Affiliation(s)
- Sarah L Sherrington
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Pizga Kumwenda
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Courtney Kousser
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
9
|
CO 2 sensing in fungi: at the heart of metabolic signaling. Curr Genet 2017; 63:965-972. [PMID: 28493119 DOI: 10.1007/s00294-017-0700-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Adaptation to the changing environmental CO2 levels is essential for all living cells. In particular, microorganisms colonizing and infecting the human body are exposed to highly variable concentrations, ranging from atmospheric 0.04 to 5% and more in blood and specific host niches. Carbonic anhydrases are highly conserved metalloenzymes that enable fixation of CO2 by its conversion into bicarbonate. This process is not only crucial to ensure the supply of adequate carbon amounts for cellular metabolism, but also contributes to several signaling processes in fungi, including morphology and communication. The fungal specific carbonic anhydrase gene NCE103 is transcribed in response to CO2 availability. As recently shown, this regulation relies on the ATF/CREB transcription factor Cst6 and the AGC family protein kinase Sch9. Here, we review the regulatory mechanisms which control NCE103 expression in the model organism Saccharomyces cerevisiae and the pathogenic yeasts Candida albicans and Candida glabrata and discuss which additional factors might contribute in this novel CO2 sensing cascade.
Collapse
|