1
|
Kang S, Lee J, Ali DN, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice. Sci Rep 2024; 14:23989. [PMID: 39402264 PMCID: PMC11473946 DOI: 10.1038/s41598-024-75202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Alcohol use disorder has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the brain of APP/PS1 mice using IHC and ELISA in response to low to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake using 18F- fluorodeoxyglucose (FDG)-positron emission tomography (PET). Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble object recognition test, and Morris water maze. Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression was accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced levels of anti-inflammatory cytokines IL-4, and IL-10 without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of APP/PS1 mice exposed to ethanol starting at pre-symptomatic stage. Consistently, MEE increased FDG-PET-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte-derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pharmacology College of Medicine, Soonchunhyang University, 22 Soonchunhyango-ro, Ansan, Chungcheongnam-do, 31508, South Korea
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dina N Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
- Neuroscience Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Su Q, Liu Q, Li B, Ma Z, Bai F, Li Y, Yu X, Li M, Li J, Sun D. Exploration of plasma biomarkers for Alzheimer's disease by targeted lipid metabolomics based on nuclear magnetic resonance (NMR) spectroscopy. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02844-5. [PMID: 39382682 DOI: 10.1007/s00702-024-02844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, but the disease lacks convenient and cost-effective alternative biomarkers currently. We utilized targeted lipid metabolomics based on nuclear magnetic resonance (NMR) spectroscopy to identify plasma biomarkers in AD patients. Our study was a cross-sectional study that enrolled 58 AD patients and 40 matched health controls (HCs). Firstly, we identified plasma lipid metabolites that were significantly different between the two groups based on P < 0.05 and variable importance in the projection (VIP) > 1. Then we examined the correlation between the lipid metabolites and cognitive function using partial correlation analysis and assessed the diagnostic ability of the lipid metabolites using receiver operating characteristic (ROC) curves. Seventeen lipoproteins showed significant differences between AD patients and HCs among 114 lipid metabolites. All 17 lipoproteins were subtypes of low-density lipoprotein (LDL). Among them, LDL-3 particle number, LDL-3 apolipoprotein-B, LDL-3 phospholipids, LDL free cholesterol and LDL phospholipids were significantly correlated with cognitive function. The ROC curves showed that LDL-2 triglycerides (TG) and LDL-3 TG could significantly distinguish AD patients from HCs, with the area under the curve (AUC) above 0.7. In addition, we explored a strategy of combined diagnosis that significantly improved the diagnostic efficacy for AD (AUC = 0.879). Our study provides insight into the lipoprotein alterations associated with AD and potential biomarkers for its diagnosis and cognitive function assessment.
Collapse
Affiliation(s)
- Qiao Su
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Qinghe Liu
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Baozhu Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Zhonghui Ma
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Fengfeng Bai
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Yanzhe Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xue Yu
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jie Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| | - Daliang Sun
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
- Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Safieh M, Liraz O, Ovadia M, Michaelson D. The Role of Impaired Receptor Trafficking in Mediating the Pathological Effects of APOE4 in Alzheimer's Disease. J Alzheimers Dis 2024; 97:753-775. [PMID: 38217595 PMCID: PMC10894586 DOI: 10.3233/jad-230514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Apolipoprotein E4 (APOE4) is the most prevalent genetic risk factor of Alzheimer's disease. Several studies suggest that APOE4 binding to its receptors is associated with their internalization and accumulation in intracellular compartments. Importantly, this phenomenon also occurs with other, non-ApoE receptors. Based on these observations, we hypothesized that APOE4 pathological effects are mediated by impairment in the life cycle of distinct receptors (APOER2, LRP1, IR, VEGFR). OBJECTIVE To examine the effects of APOE genotype on receptors protein levels and compartmentalization. METHODS Primary mouse neurons were prepared from APOE3 or APOE4 targeted replacement mice, or APOE-KO mice. Specific receptors protein levels were evaluated in these neurons, utilizing immunofluorescent staining. Additionally, surface membrane protein levels of those receptors were assessed by cell surface biotinylation assay and ELISA. Receptors' colocalization with intracellular compartments was assessed by double staining and confocal microscopy, followed by colocalization analysis. Finally, LRP1 or APOER2 were knocked-down with CRISPR/Cas9 system to examine their role in mediating APOE4 effects on the receptors. RESULTS Our results revealed lower receptors' levels in APOE4, specifically on the membrane surface. Additionally, APOE4 affects the compartmentation of these receptors in two patterns: the first was observed with LRP1 and was associated with decreased receptor levels in numerous intracellular compartments. The second was obtained with the other receptors and was associated with their accumulation in early endosomes and their decrease in the late endosomes. CONCLUSIONS These results provide a unifying mechanism, in which APOE4 drives the down regulation of various receptors, which plays important roles in distinct APOE4 related pathological processes.
Collapse
Affiliation(s)
- Mirna Safieh
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ori Liraz
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Maayan Ovadia
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Danny Michaelson
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
4
|
Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Moderate ethanol exposure reduces astrocyte-induced neuroinflammatorysignaling and cognitive decline in presymptomatic APP/PS1 mice. RESEARCH SQUARE 2023:rs.3.rs-3627637. [PMID: 38077051 PMCID: PMC10705690 DOI: 10.21203/rs.3.rs-3627637/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alcohol use disorder (AUD) has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. Methods We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the mouse brain using IHC and ELISA in response to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake activity using 18F-FDG in APP/PS1 mice. Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble objective recognition (NOR) test, and Morris water maze (MWM). Results Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression is accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced anti-inflammatory cytokines, IL-4, and IL-10 levels without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of ethanol-exposed presymptomatic APP/PS1 mice. Consistently, MEE increased fluorodeoxyglucose (FDG)-positron emission tomography (PET)-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Conclusions Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- Mayo Clinic College of Medicine, and Science
| | - Sun Choi
- Mayo Clinic College of Medicine, and Science
| | | | - Paul H Min
- Mayo Clinic College of Medicine, and Science
| | | | | |
Collapse
|
5
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
6
|
Rennich BJ, Luth ES, Hofer J, Juo P. Low-Density Lipoprotein Receptor LRP-2 regulates GLR-1 glutamate receptors and glutamatergic behavior in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000837. [PMID: 37179968 PMCID: PMC10172966 DOI: 10.17912/micropub.biology.000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
We identified the Low-Density Lipoprotein (LDL) Receptor Related Protein-2 (LRP-2) in a RNAi screen for genes that regulate glutamatergic behavior in C. elegans . lrp-2 loss-of-function mutants have defects in glutamatergic mechanosensory nose-touch behavior and suppress increased spontaneous reversals induced by GLR-1(A/T), a constitutively-active form of the AMPA-type glutamate receptor GLR-1. Total and surface levels of GLR-1 are increased throughout the ventral nerve cord of lrp-2 mutants suggesting that LRP-2 promotes glutamatergic signaling by regulating some aspect of GLR-1 trafficking, localization or function.
Collapse
Affiliation(s)
- Bethany J Rennich
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Biology, Simmons University, Boston, MA 02115
| | - Julia Hofer
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Peter Juo
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Correspondence to: Peter Juo (
)
| |
Collapse
|
7
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
8
|
Yu Z, Sakai M, Fukushima H, Ono C, Kikuchi Y, Koyama R, Matsui K, Furuyashiki T, Kida S, Tomita H. Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia. Brain Res Bull 2022; 189:57-68. [PMID: 35987296 DOI: 10.1016/j.brainresbull.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Mai Sakai
- Department of Psychiatry Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan; Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Peters JJ, Leitz J, Oses-Prieto JA, Burlingame AL, Brunger AT. Molecular Characterization of AMPA-Receptor-Containing Vesicles. Front Mol Neurosci 2021; 14:754631. [PMID: 34720876 PMCID: PMC8554035 DOI: 10.3389/fnmol.2021.754631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Regulated delivery of AMPA receptors (AMPARs) to the postsynaptic membrane is an essential step in synaptic strength modification, and in particular, long-term potentiation (LTP). While LTP has been extensively studied using electrophysiology and light microscopy, several questions regarding the molecular mechanisms of AMPAR delivery via trafficking vesicles remain outstanding, including the gross molecular make up of AMPAR trafficking organelles and identification and location of calcium sensors required for SNARE complex-dependent membrane fusion of such trafficking vesicles with the plasma membrane. Here, we isolated AMPA-containing vesicles (ACVs) from whole mouse brains via immunoisolation and characterized them using immunoelectron microscopy, immunoblotting, and liquid chromatography–tandem mass spectrometry (LC–MS/MS). We identified several proteins on ACVs that were previously found to play a role in AMPAR trafficking, including synaptobrevin-2, Rabs, the SM protein Munc18-1, the calcium-sensor synaptotagmin-1, as well as several new candidates, including synaptophysin and synaptogyrin on ACV membranes. Additionally, we identified two populations of ACVs based on size and molecular composition: small-diameter, synaptobrevin-2- and GluA1-containing ACVs, and larger transferrin- receptor-, GluA1-, GluA2-, and GluA3-containing ACVs. The small-diameter population of ACVs may represent a fusion-capable population of vesicles due to the presence of synaptobrevin-2. Because the fusion of ACVs may be a requisite of LTP, this population could represent trafficking vesicles related to LTP.
Collapse
Affiliation(s)
- John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States.,Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Photon Science, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States.,Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Photon Science, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States.,Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Photon Science, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Auderset L, Pitman KA, Cullen CL, Pepper RE, Taylor BV, Foa L, Young KM. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Negative Regulator of Oligodendrocyte Progenitor Cell Differentiation in the Adult Mouse Brain. Front Cell Dev Biol 2020; 8:564351. [PMID: 33282858 PMCID: PMC7691426 DOI: 10.3389/fcell.2020.564351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large, endocytic cell surface receptor that is highly expressed by oligodendrocyte progenitor cells (OPCs) and LRP1 expression is rapidly downregulated as OPCs differentiate into oligodendrocytes (OLs). We report that the conditional deletion of Lrp1 from adult mouse OPCs (Pdgfrα-CreER :: Lrp1fl/fl) increases the number of newborn, mature myelinating OLs added to the corpus callosum and motor cortex. As these additional OLs extend a normal number of internodes that are of a normal length, Lrp1-deletion increases adult myelination. OPC proliferation is also elevated following Lrp1 deletion in vivo, however, this may be a secondary, homeostatic response to increased OPC differentiation, as our in vitro experiments show that LRP1 is a direct negative regulator of OPC differentiation, not proliferation. Deleting Lrp1 from adult OPCs also increases the number of newborn mature OLs added to the corpus callosum in response to cuprizone-induced demyelination. These data suggest that the selective blockade of LRP1 function on adult OPCs may enhance myelin repair in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
11
|
Lv C, Niu S, Yan S, Bai C, Yu X, Hou J, Gao W, Zhang J, Zhao Z, Yang C, Zhang Y. Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Poult Sci 2019; 98:3418-3425. [PMID: 30982888 DOI: 10.3382/ps/pez168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an important signal protein that is widely involved in physiological processes, such as lipid metabolism, cell movement, and disease processes. However, the relationship between LRP1 and meat quality remains unknown in chickens. The present study aimed to investigate the correlation between LRP1 and meat quality that builds on our preliminary research, as well as to reveal the underlying molecular mechanism of LRP1 on meat-quality traits. The results showed that LRP1 was significantly correlated with shear force (P < 0.05). Several key genes involved in muscle growth and development, including IGF-1, IGFBP-5, IGF-1R, IGF-2, and MyoD, were down-regulated significantly (P < 0.05 or P < 0.01), and MSTN was up-regulated significantly (P < 0.01) in the presence of LRP1 interference. Cell proliferation- or apoptosis-related genes, including PMP22, CDKN2C, and p53, increased significantly (P < 0.05 or P < 0.01), whereas Bcl-x decreased significantly (P < 0.05) in the RNAi group. We conclude that LRP1 regulates muscle fiber development in cooperation with related genes that affect myoblast proliferation and apoptosis, thereby impacting shear force in chickens. This study will provide a valuable resource for biological investigations of muscle growth and meat-quality-related genes in chickens. The results could be useful in identifying candidate genes that could be used for selective breeding to improve meat quality.
Collapse
Affiliation(s)
- Chao Lv
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Shuling Niu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.,Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Xi Yu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jiani Hou
- Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Wenjing Gao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jinyu Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Caini Yang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
12
|
Torrico B, Shaw AD, Mosca R, Vivó-Luque N, Hervás A, Fernàndez-Castillo N, Aloy P, Bayés M, Fullerton JM, Cormand B, Toma C. Truncating variant burden in high-functioning autism and pleiotropic effects of LRP1 across psychiatric phenotypes. J Psychiatry Neurosci 2019; 44:350-359. [PMID: 31094488 PMCID: PMC6710089 DOI: 10.1503/jpn.180184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous research has implicated de novo and inherited truncating mutations in autism-spectrum disorder. We aim to investigate whether the load of inherited truncating mutations contributes similarly to high-functioning autism, and to characterize genes that harbour de novo variants in high-functioning autism. METHODS We performed whole-exome sequencing in 20 high-functioning autism families (average IQ = 100). RESULTS We observed no difference in the number of transmitted versus nontransmitted truncating alleles for high-functioning autism (117 v. 130, p = 0.78). Transmitted truncating and de novo variants in high-functioning autism were not enriched in gene ontology (GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG) categories, or in autism-related gene sets. However, in a patient with high-functioning autism we identified a de novo variant in a canonical splice site of LRP1, a postsynaptic density gene that is a target for fragile X mental retardation protein (FRMP). This de novo variant leads to in-frame skipping of exon 29, removing 2 of 6 blades of the β-propeller domain 4 of LRP1, with putative functional consequences. Large data sets implicate LRP1 across a number of psychiatric disorders: de novo variants are associated with autism-spectrum disorder (p = 0.039) and schizophrenia (p = 0.008) from combined sequencing projects; common variants using genome-wide association study data sets from the Psychiatric Genomics Consortium show gene-based association in schizophrenia (p = 6.6 × E−07) and in a meta-analysis across 7 psychiatric disorders (p = 2.3 × E−03); and the burden of ultra-rare pathogenic variants has been shown to be higher in autism-spectrum disorder (p = 1.2 × E−05), using whole-exome sequencing from 6135 patients with schizophrenia, 1778 patients with autism-spectrum disorder and 7875 controls. LIMITATIONS We had a limited sample of patients with high-functioning autism, related to difficulty in recruiting probands with high cognitive performance and no family history of psychiatric disorders. CONCLUSION Previous studies and ours suggest an effect of truncating mutations restricted to severe autism-spectrum disorder phenotypes that are associated with intellectual disability. We provide evidence for pleiotropic effects of common and rare variants in the LRP1 gene across psychiatric phenotypes.
Collapse
Affiliation(s)
- Bàrbara Torrico
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Alex D. Shaw
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Roberto Mosca
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Norma Vivó-Luque
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Amaia Hervás
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Noèlia Fernàndez-Castillo
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Patrick Aloy
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Mònica Bayés
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Janice M. Fullerton
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Bru Cormand
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| | - Claudio Toma
- From the Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain (Torrico, Vivó-Luque, Fernàndez-Castillo, Cormand, Toma); the Institute of Biomedicine, University of Barcelona, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand, Toma); the Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain (Torrico, Fernàndez-Castillo, Cormand); the Neuroscience Research Australia, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia (Shaw, Fullerton, Toma); the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Institute of Science and Technology, Barcelona, Spain (Mosca, Aloy); the Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, Spain (Hervás); the Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Aloy); and the Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain (Bayés)
| |
Collapse
|
13
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
14
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Lin JP, Mironova YA, Shrager P, Giger RJ. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. eLife 2017; 6:30498. [PMID: 29251594 PMCID: PMC5752207 DOI: 10.7554/elife.30498] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of Lrp1−/− OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Yevgeniya A Mironova
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Rondón-Ortiz AN, Lino Cardenas CL, Martínez-Málaga J, Gonzales-Urday AL, Gugnani KS, Böhlke M, Maher TJ, Pino-Figueroa AJ. High Concentrations of Rosiglitazone Reduce mRNA and Protein Levels of LRP1 in HepG2 Cells. Front Pharmacol 2017; 8:772. [PMID: 29201005 PMCID: PMC5696635 DOI: 10.3389/fphar.2017.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor involved in the uptake of a variety of molecules, such as apoE, α2-macroglobulin, and the amyloid β peptide (Aβ), for either transcellular transport, protein trafficking or lysosomal degradation. The LRP1 gene can be transcribed upon activation of peroxisome proliferator receptor activated-γ (PPARγ) by the potent PPARγ agonist, rosiglitazone (RGZ). In previous studies, RGZ was shown to upregulate LRP1 levels in concentrations between 0.1 and 5 μM in HepG2 cells. In this study, we sought to replicate previous studies and to investigate the molecular mechanism by which high concentrations of RGZ reduce LRP1 levels in HepG2 cells. Our data confirmed that transcriptional activation of LRP1 occurred in response to RGZ at 3 and 10 μM, in agreement with the study reported by Moon et al. (2012a). On the other hand, we found that high concentrations of RGZ decreased both mRNA and protein levels of LRP1. Mechanistically, transcriptional dysregulation of LRP1 was affected by the downregulation of PPARγ in a time- and concentration-dependent manner. However, downregulation of PPARγ was responsible for only 40% of the LRP1 reduction and thereby the remaining loss of LRP1 (60%) was found to be through degradation in the lysosomal system. In conclusion, our findings demonstrate the mechanisms by which high concentrations of RGZ caused LRP1 levels to be reduced in HepG2 cells. Taken together, this data will be helpful to better explain the pharmacological modulation of this pivotal membrane receptor by PPARγ agonists.
Collapse
Affiliation(s)
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States.,Scientific Consulting Group, BioMolecular-LC E.I.R.L, Arequipa, Peru
| | - Jimena Martínez-Málaga
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States.,Department of Pharmaceutical, Biochemical and Biotechnological Sciences, Catholic University of Santa Maria, Arequipa, Peru
| | - Ana L Gonzales-Urday
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States.,Department of Pharmaceutical, Biochemical and Biotechnological Sciences, Catholic University of Santa Maria, Arequipa, Peru
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States
| | - Timothy J Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States
| | | |
Collapse
|
18
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
19
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
20
|
Sutherland HG, Griffiths LR. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017; 57:537-569. [PMID: 28271496 DOI: 10.1111/head.13053] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
21
|
Auderset L, Cullen CL, Young KM. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS One 2016; 11:e0155878. [PMID: 27280679 PMCID: PMC4900551 DOI: 10.1371/journal.pone.0155878] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022] Open
Abstract
The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation-where expression levels are much higher.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Carlie L. Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Kaylene M. Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
22
|
Talme T, Bergdahl E, Sundqvist KG. Methotrexate and its therapeutic antagonists caffeine and theophylline, target a motogenic T-cell mechanism driven by thrombospondin-1 (TSP-1). Eur J Immunol 2016; 46:1279-90. [DOI: 10.1002/eji.201546122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Toomas Talme
- Department of Medicine; Division of Dermatology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| | - Eva Bergdahl
- Department of Laboratory Medicine; Division of Clinical Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| | - Karl-Gösta Sundqvist
- Department of Laboratory Medicine; Division of Clinical Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
- Department of Laboratory Medicine; Division of Therapeutic Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
23
|
Tachibana M, Shinohara M, Yamazaki Y, Liu CC, Rogers J, Bu G, Kanekiyo T. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Exp Neurol 2015; 277:1-9. [PMID: 26688581 DOI: 10.1016/j.expneurol.2015.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
Apolipoprotein E (apoE) plays a critical role in maintaining synaptic integrity by transporting cholesterol to neurons through the low-density lipoprotein receptor related protein-1 (LRP1). Bexarotene, a retinoid X receptor (RXR) agonist, has been reported to have potential beneficial effects on cognition by increasing brain apoE levels and lipidation. To investigate the effects of bexarotene on aging-related synapse loss and the contribution of neuronal LRP1 to the pathway, forebrain neuron-specific LRP1 knockout (nLrp1(-/-)) and littermate control mice were administered with bexarotene-formulated diet (100mg/kg/day) or control diet at the age of 20-24 months for 8 weeks. Upon bexarotene treatment, levels of brain apoE and ATP-binding cassette sub-family A member 1 (ABCA1) were significantly increased in both mice. While levels of PSD95, glutamate receptor 1 (GluR1), and N-methyl-d-aspartate receptor NR1 subunit (NR1), which are key postsynaptic proteins that regulate synaptic plasticity, were decreased with aging, they were restored by bexarotene treatment in the brains of control but not nLrp1(-/-) mice. These results indicate that the beneficial effects of bexarotene on synaptic integrity depend on the presence of neuronal LRP1. However, we also found that bexarotene treatment led to the activation of glial cells, weight loss and hepatomegaly, which are likely due to hepatic failure. Taken together, our results demonstrate that apoE-targeted treatment through the RXR pathway has a potential beneficial effect on synapses during aging; however, the therapeutic application of bexarotene requires extreme caution due to its toxic side effects.
Collapse
Affiliation(s)
- Masaya Tachibana
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Mitsuru Shinohara
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Justin Rogers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
24
|
Abstract
Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy.
Collapse
|