1
|
Hermanova Z, Valihrach L, Kriska J, Maheta M, Tureckova J, Kubista M, Anderova M. The deletion of AQP4 and TRPV4 affects astrocyte swelling/volume recovery in response to ischemia-mimicking pathologies. Front Cell Neurosci 2024; 18:1393751. [PMID: 38818517 PMCID: PMC11138210 DOI: 10.3389/fncel.2024.1393751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Astrocytic Transient receptor potential vanilloid 4 (TRPV4) channels, together with Aquaporin 4 (AQP4), are suspected to be the key players in cellular volume regulation, and therefore may affect the development and severity of cerebral edema during ischemia. In this study, we examined astrocytic swelling/volume recovery in mice with TRPV4 and/or AQP4 deletion in response to in vitro ischemic conditions, to determine how the deletion of these channels can affect the development of cerebral edema. Methods We used three models of ischemia-related pathological conditions: hypoosmotic stress, hyperkalemia, and oxygenglucose deprivation (OGD), and observed their effect on astrocyte volume changes in acute brain slices of Aqp4-/-, Trpv4-/- and double knockouts. In addition, we employed single-cell RT-qPCR to assess the effect of TRPV4 and AQP4 deletion on the expression of other ion channels and transporters involved in the homeostatic functioning of astrocytes. Results Quantification of astrocyte volume changes during OGD revealed that the deletion of AQP4 reduces astrocyte swelling, while simultaneous deletion of both AQP4 and TRPV4 leads to a disruption of astrocyte volume recovery during the subsequent washout. Of note, astrocyte exposure to hypoosmotic stress or hyperkalemia revealed no differences in astrocyte swelling in the absence of AQP4, TRPV4, or both channels. Moreover, under ischemia-mimicking conditions, we identified two distinct subpopulations of astrocytes with low and high volumetric responses (LRA and HRA), and their analyses revealed that mainly HRA are affected by the deletion of AQP4, TRPV4, or both channels. Furthermore, gene expression analysis revealed reduced expression of the ion transporters KCC1 and ClC2 as well as the receptors GABAB and NMDA in Trpv4-/- mice. The deletion of AQP4 instead caused reduced expression of the serine/cysteine peptidase inhibitor Serpina3n. Discussion Thus, we showed that in AQP4 or TRPV4 knockouts, not only the specific function of these channels is affected, but also the expression of other proteins, which may modulate the ischemic cascade and thus influence the final impact of ischemia.
Collapse
Affiliation(s)
- Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mansi Maheta
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| |
Collapse
|
2
|
Kálmán M, Sebők OM. Entopallium Lost GFAP Immunoreactivity during Avian Evolution: Is GFAP a "Condition Sine Qua Non"? BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:302-313. [PMID: 38071961 PMCID: PMC10885840 DOI: 10.1159/000535281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
INTRODUCTION The present study demonstrates that in the same brain area the astroglia can express GFAP (the main cytoskeletal protein of astroglia) in some species but not in the others of the same vertebrate class. It contrasts the former opinions that the distribution of GFAP found in a species is characteristic of the entire class. The present study investigated birds in different phylogenetic positions: duck (Cairina moschata domestica), chicken (Gallus gallus domesticus), and quails (Coturnix japonica and Excalfactoria chinensis) of Galloanserae; pigeon (Columba livia domestica) of a group of Neoaves, in comparison with representatives of other Neoaves lineages, which emerged more recently in evolution: finches (Taeniopygia guttata and Erythrura gouldiae), magpie (Pica pica), and parrots (Melopsittacus undulatus and Nymphicus hollandicus). METHODS Following a perfusion with 4% buffered paraformaldehyde, immunoperoxidase reactions were performed with two types of anti-GFAP: monoclonal and polyclonal, on floating sections. RESULTS The entopallium (formerly "ectostriatum," a telencephalic area in birds) was GFAP-immunopositive in pigeon and in the representatives of Galloanserae but not in songbirds and parrots, which emerged more recently in evolution. The lack of GFAP expression of a brain area, however, does not mean the lack of astroglia. Lesions induced GFAP expression in the territory of GFAP-immunonegative entopallia. It proved that the GFAP immunonegativity is not due to the lack of capability, but rather the suppression of GFAP production of the astrocytes in this territory. In the other areas investigated besides the entopallium (optic tectum and cerebellum), no considerable interspecific differences of GFAP immunopositivity were found. It proved that the immunonegativity of entopallium is due to neither the general lack of GFAP expression nor the incapability of our reagents to detect GFAP in these species. CONCLUSION The data are congruent with our proposal that a lack of GFAP expression has evolved in different brain areas in vertebrate evolution, typically in lineages that emerged more recently. Comparative studies on GFAP-immunopositive and GFAP-immunonegative entopallia may promote understanding the role of GFAP in neural networks.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Olivér M Sebők
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Chmelova M, Androvic P, Kirdajova D, Tureckova J, Kriska J, Valihrach L, Anderova M, Vargova L. A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke. Front Cell Neurosci 2023; 17:1296455. [PMID: 38107409 PMCID: PMC10723838 DOI: 10.3389/fncel.2023.1296455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Modification of the extracellular matrix (ECM) is one of the major processes in the pathology of brain damage following an ischemic stroke. However, our understanding of how age-related ECM alterations may affect stroke pathophysiology and its outcome is still very limited. Methods We conducted an ECM-targeted re-analysis of our previously obtained RNA-Seq dataset of aging, ischemic stroke and their interactions in young adult (3-month-old) and aged (18-month-old) mice. The permanent middle cerebral artery occlusion (pMCAo) in rodents was used as a model of ischemic stroke. Altogether 56 genes of interest were chosen for this study. Results We identified an increased activation of the genes encoding proteins related to ECM degradation, such as matrix metalloproteinases (MMPs), proteases of a disintegrin and metalloproteinase with the thrombospondin motifs (ADAMTS) family and molecules that regulate their activity, tissue inhibitors of metalloproteinases (TIMPs). Moreover, significant upregulation was also detected in the mRNA of other ECM molecules, such as proteoglycans, syndecans and link proteins. Notably, we identified 8 genes where this upregulation was enhanced in aged mice in comparison with the young ones. Ischemia evoked a significant downregulation in only 6 of our genes of interest, including those encoding proteins associated with the protective function of ECM molecules (e.g., brevican, Hapln4, Sparcl1); downregulation in brevican was more prominent in aged mice. The study was expanded by proteome analysis, where we observed an ischemia-induced overexpression in three proteins, which are associated with neuroinflammation (fibronectin and vitronectin) and neurodegeneration (link protein Hapln2). In fibronectin and Hapln2, this overexpression was more pronounced in aged post-ischemic animals. Conclusion Based on these results, we can conclude that the ratio between the protecting and degrading mechanisms in the aged brain is shifted toward degradation and contributes to the aged tissues' increased sensitivity to ischemic insults. Altogether, our data provide fresh perspectives on the processes underlying ischemic injury in the aging brain and serve as a freely accessible resource for upcoming research.
Collapse
Affiliation(s)
- Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences – BIOCEV, Vestec, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences – BIOCEV, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
5
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
6
|
Tureckova J, Kamenicka M, Kolenicova D, Filipi T, Hermanova Z, Kriska J, Meszarosova L, Pukajova B, Valihrach L, Androvic P, Zucha D, Chmelova M, Vargova L, Anderova M. Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:783120. [PMID: 35153718 PMCID: PMC8829436 DOI: 10.3389/fnagi.2021.783120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
Collapse
Affiliation(s)
- Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jana Tureckova,
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Meszarosova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Arizono M, Inavalli VVGK, Bancelin S, Fernández-Monreal M, Nägerl UV. Super-resolution shadow imaging reveals local remodeling of astrocytic microstructures and brain extracellular space after osmotic challenge. Glia 2021; 69:1605-1613. [PMID: 33710691 DOI: 10.1002/glia.23995] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The extracellular space (ECS) plays a central role in brain physiology, shaping the time course and spread of neurochemicals, ions, and nutrients that ensure proper brain homeostasis and neuronal communication. Astrocytes are the most abundant type of glia cell in the brain, whose processes densely infiltrate the brain's parenchyma. As astrocytes are highly sensitive to changes in osmotic pressure, they are capable of exerting a potent physiological influence on the ECS. However, little is known about the spatial distribution and temporal dynamics of the ECS that surrounds astrocytes, owing mostly to a lack of appropriate techniques to visualize the ECS in live brain tissue. Mitigating this technical limitation, we applied the recent SUper-resolution SHadow Imaging technique (SUSHI) to astrocyte-labeled organotypic hippocampal brain slices, which allowed us to concurrently image the complex morphology of astrocytes and the ECS with unprecedented spatial resolution in a live experimental setting. Focusing on ring-like astrocytic microstructures in the spongiform domain, we found them to enclose sizable pools of interstitial fluid and cellular structures like dendritic spines. Upon experimental osmotic challenge, these microstructures remodeled and swelled up at the expense of the pools, effectively increasing the physical interface between astrocytic and cellular structures. Our study reveals novel facets of the dynamic microanatomical relationships between astrocytes, neuropil, and the ECS in living brain tissue, which could be of functional relevance for neuron-glia communication in a variety of (patho)physiological settings, for example, LTP induction, epileptic seizures or acute ischemic stroke, where osmotic disturbances are known to occur.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - V V G Krishna Inavalli
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Stéphane Bancelin
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Mónica Fernández-Monreal
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France.,Bordeaux Imaging Center, UMS 3420, CNRS, Université de Bordeaux, US4 INSERM, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| |
Collapse
|
9
|
Abo El Gheit RE, Atef MM, Badawi GA, Elwan WM, Alshenawy HA, Emam MN. Role of serine protease inhibitor, ulinastatin, in rat model of hepatic encephalopathy: aquaporin 4 molecular targeting and therapeutic implication. J Physiol Biochem 2020; 76:573-586. [PMID: 32794154 DOI: 10.1007/s13105-020-00762-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy (HE) is a devastating neuropsychiatric presentation of the advanced hepatic insufficiency. It is associated with high morbidity and mortality. Aquaporin-4 (AQP4), the principal astrocyte water channel, is primarily involved in brain edema development. Ulinastatin (ULI) is a potent protease inhibitor, extracted from fresh human urine. We hypothesized that ULI could be neuroprotective in acute HE through molecular targeting of brain AQP4, which is known to be upregulated in HE. To induce acute liver failure (ALF), the rats were acutely intoxicated with thioacetamide (TAA). Animals were randomized into HE- and ULI-treated HE groups, with control normal group. Total bilirubin, albumin, serum aminotransferases, and serum/brain ammonia/proinflammatory cytokines, blood-brain barrier (BBB) integrity/tight junction proteins, brain water content, and neurological scores were assessed. Additionally, brain AQP4 and α-Syntrophin mRNA expression and protein levels were evaluated by quantitative real-time PCR and enzyme-linked immunosorbent assay, respectively. Brain and liver tissues were stripped and processed for further microscopic and histological analyses. ULI exerted potent dual neuro/hepato protective potential, improved neurological score, animals' survival, ameliorated brain edema, probably via anti-inflammatory activity, preserved BBB integrity, down-regulated AQP4 expression, and membrane polarization by decreased α-syntrophin level, with rescued brain bioenergetics. ULI could be tooled as a possible therapeutic option in HE in ALF.Graphical abstract The possible ULI mediated protection in TAA-induced HE rat model.
Collapse
Affiliation(s)
- Rehab E Abo El Gheit
- Physiology Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt.
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish, Egypt
| | - Walaa M Elwan
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - H A Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| |
Collapse
|
10
|
Lõrincz D, Kálmán M. Distribution of GFAP in Squamata: Extended Immunonegative Areas, Astrocytes, High Diversity, and Their Bearing on Evolution. Front Neuroanat 2020; 14:49. [PMID: 32922269 PMCID: PMC7457009 DOI: 10.3389/fnana.2020.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 11/27/2022] Open
Abstract
Squamata is one of the richest and most diverse extant groups. The present study investigates the glial fibrillary acidic protein (GFAP)-immunopositive elements of five lizard and three snake species; each represents a different family. The study continues our former studies on bird, turtle, and caiman brains. Although several studies have been published on lizards, they usually only investigated one species. Almost no data are available on snakes. The animals were transcardially perfused. Immunoperoxidase reactions were performed with a mouse monoclonal anti-GFAP (Novocastra). The original radial ependymoglia is enmeshed by secondary, non-radial processes almost beyond recognition in several brain areas like in other reptiles. Astrocytes occur but only as complementary elements like in caiman but unlike in turtles, where astrocytes are absent. In most species, extended areas are free of GFAP—a meaningful difference from other reptiles. The predominance of astrocytes and the presence of areas free of GFAP immunopositivity are characteristic of birds and mammals; therefore, they must be apomorphic features of Squamata, which appeared independently from the evolution of avian glia. However, these features show a high diversity; in some lizards, they are even absent. There was no principal difference between the glial structures of snakes and lizards. In conclusion, the glial structure of Squamata seems to be the most apomorphic one among reptiles. The high diversity suggests that its evolution is still intense. The comparison of identical brain areas with different GFAP contents in different species may promote understanding the role of GFAP in neuronal networks. Our findings are in accordance with the supposal based on our previous studies that the GFAP-free areas expand during evolution.
Collapse
Affiliation(s)
- Dávid Lõrincz
- Faculty of Veterinary Science, University of Veterinary Medicine, Budapest, Hungary
| | - Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Zheng Z, Chopp M, Chen J. Multifaceted roles of pericytes in central nervous system homeostasis and disease. J Cereb Blood Flow Metab 2020; 40:1381-1401. [PMID: 32208803 PMCID: PMC7308511 DOI: 10.1177/0271678x20911331] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pericytes, the mural cells surrounding microcirculation, are gaining increasing attention for their roles in health and disease of the central nervous system (CNS). As an essential part of the neurovascular unit (NVU), pericytes are actively engaged in interactions with neighboring cells and work in synergy with them to maintain homeostasis of the CNS, such as maintaining the blood-brain barrier (BBB), regulating cerebral blood flow (CBF) and the glymphatic system as well as mediating immune responses. However, the dysfunction of pericytes may contribute to the progression of various pathologies. In this review, we discuss: (1) origin of pericytes and different pericyte markers; (2) interactions of pericytes with endothelial cells (ECs), astrocytes, microglia, oligodendrocytes, and neurons; (3) physiological roles of pericytes in the CNS; (4) effects of pericytes in different CNS diseases; (5) relationship of pericytes with extracellular vesicles (EVs) and microRNAs (miRs); (6) recent advances in pericytes studies and future perspective.
Collapse
Affiliation(s)
- Zhitong Zheng
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
12
|
Kirsch E, Szejko N, Falcone GJ. Genetic underpinnings of cerebral edema in acute brain injury: an opportunity for pathway discovery. Neurosci Lett 2020; 730:135046. [PMID: 32464484 PMCID: PMC7372633 DOI: 10.1016/j.neulet.2020.135046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022]
Abstract
Cerebral edema constitutes an important contributor to secondary injury in acute brain injury. The quantification of cerebral edema in neuroimaging, a well-established biomarker of secondary brain injury, represents a useful intermediate phenotype to study edema formation. Population genetics provides powerful tools to identify novel susceptibility genes, biological pathways and therapeutic targets related to brain edema formation. Here, we provide an overview of the pathogenesis of cerebral edema, introduce relevant genetic methods to study this process, and discuss the ongoing research on the genetic underpinnings of edema formation in acute brain injury. The epsilon 2 and 4 variants within the Apolipoprotein E (APOE) gene are associated with worse outcome after traumatic brain injury and intracerebral hemorrhage, and recent studies link these polymorphisms to inflammatory processes that lead to blood-brain barrier disruption and vasogenic edema. For the Haptoglobin gene (HP), the Hp 2-2 genotype associates with worse outcome after acute brain injury, whereas the haptoglobin Hp 1-1 genotype correlates with increased edema in the early phases of intracerebral hemorrhage. Another important protein in cerebral edema is aquaporin 4, coded by the AQP4 gene. AQP4 mutations contribute to the formation of cytotoxic edema, and further genetic research is necessary to help elucidate the mediating mechanism. Findings supporting the target genes outlined above require replication in larger samples and evaluation in non-white populations. These next steps will be significantly facilitated by the rapid changes observed in the field of population genetics, including large international collaborations, open access to genetic data, and significant reductions in the cost of genotyping technologies.
Collapse
Affiliation(s)
- Elayna Kirsch
- Duke University School of Medicine, Durham, NC, USA; Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT 06510, USA
| | - Natalia Szejko
- Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT 06510, USA; Department of Neurology, Medical University of Warsaw, Warsaw, Poland; Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
| | - Guido J Falcone
- Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Dong Y, Yuan Y, Fang Y, Zheng T, Du D, Gao D, Du J, Liu L, He Q. Effect of aquaporin 4 protein overexpression in nigrostriatal system on development of Parkinson's disease. Int J Neurosci 2020; 131:666-673. [PMID: 32259464 DOI: 10.1080/00207454.2020.1753727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTS Recent studies indicated that aquaporin 4 (AQP4), as the main water channel in the central nervous system (CNS), participated in the onset and progression of Parkinson's disease (PD). But how the AQP4 influenced the exacerbation of PD has not been described in detail. In this study, the effect of the AQP4 protein overexpression in nigrostriatal system that include substantia nigra (SN) and striatum (CPu) on the development of PD was investigated. METHODS Forty male Sprague Dawley rats were equally divided into two groups at random: PD group and control group, PD group undergoing surgery and receiving 6-hydroxydopamine (6-OHDA). Using MRI tracer-based method, extracellular space (ECS) diffusion parameters of nigrostriatal system for all rats were measured, including the clearance coefficient (k') and the half-life (t1/2). Immunohistochemistry of AQP4 was performed for 20 rats. RESULTS The area of dark-stained AQP4 immunoreactivity increased markedly in SN of PD rats, there were significant differences between two groups (SN: t = 5.809, p < 0.0001; CPu: t = 5.943, p < 0.0001). And the diffusion parameters were significantly greater in PD group than that of control group, including k' (SN: t = 5.519, p < 0.0001; CPu: t = 2.149, p = 0.045) and t1/2 (SN: t = 6.131, p < 0.0001; CPu: t = 6.708, p < 0.0001). There was a significant positive correlation between the AQP4 expression level and the k' values (SN: r = 0.827, p = 0.0031; CPu: r = 0.641, p = 0.0046), and a significant negative correlation between AQP4 and the t1/2 values (SN: r=-0.654, p = 0.0403; CPu: r=-0.664, p = 0.0362). CONCLUSIONS The results indicated that AQP4 expression was increased in nigrostriatal system of PD rats, therefore, the overexpression of AQP4 led to acceleration of the diffusion and drainage process of drugs in ECS, reduced the effect of drugs for the treatment of PD, inhibited the development of PD.
Collapse
Affiliation(s)
- Yanchao Dong
- Department of Interventional Therapy, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- College of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yuan Fang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Dawei Gao
- College of Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Kolenicova D, Tureckova J, Pukajova B, Harantova L, Kriska J, Kirdajova D, Vorisek I, Kamenicka M, Valihrach L, Androvic P, Kubista M, Vargova L, Anderova M. High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol Aging 2019; 86:162-181. [PMID: 31757575 DOI: 10.1016/j.neurobiolaging.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
In this study, we focused on age-related changes in astrocyte functioning, predominantly on the ability of astrocytes to regulate their volume in response to a pathological stimulus, namely extracellular 50 mM K+ concentration. The aim of our project was to identify changes in the expression and function of transport proteins in the astrocytic membrane and properties of the extracellular space, triggered by aging. We used three-dimensional confocal morphometry, gene expression profiling, immunohistochemical analysis, and diffusion measurement in the hippocampal slices from 3-, 9-, 12-, and 18-month-old mice, in which astrocytes are visualized by enhanced green fluorescent protein under the control of the promoter for human glial fibrillary acidic protein. Combining a pharmacological approach and the quantification of astrocyte volume changes evoked by hyperkalemia, we found that marked diversity in the extent of astrocyte swelling in the hippocampus during aging is due to the gradually declining participation of Na+-K+-Cl- transporters, glutamate transporters (glutamate aspartate transporter and glutamate transporter 1), and volume-regulated anion channels. Interestingly, there was a redistribution of Na+-K+-Cl- cotransporter and glutamate transporters from astrocytic soma to processes. In addition, immunohistochemical analysis confirmed an age-dependent decrease in the content of Na+-K+-Cl- cotransporter in astrocytes. The overall extracellular volume changes revealed a similar age-dependent diversity during hyperkalemia as observed in astrocytes. In addition, the recovery of the extracellular space was markedly impaired in aged animals.
Collapse
Affiliation(s)
- Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Harantova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
15
|
The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging. Neurochem Res 2019; 45:68-82. [PMID: 31664654 DOI: 10.1007/s11064-019-02894-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.
Collapse
|
16
|
Chmelova M, Sucha P, Bochin M, Vorisek I, Pivonkova H, Hermanova Z, Anderova M, Vargova L. The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur J Neurosci 2019; 50:1685-1699. [PMID: 30633415 DOI: 10.1111/ejn.14338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
The proper function of the nervous system is dependent on the balance of ions and water between the intracellular and extracellular space (ECS). It has been suggested that the interaction of aquaporin-4 (AQP4) and the transient receptor potential vaniloid isoform 4 (TRPV4) channels play a role in water balance and cell volume regulation, and indirectly, of the ECS volume. Using the real-time iontophoretic method, we studied the changes of the ECS diffusion parameters: ECS volume fraction α (α = ECS volume fraction/total tissue volume) and tortuosity λ (λ2 = free/apparent diffusion coefficient) in mice with a genetic deficiency of AQP4 or TRPV4 channels, and in control animals. The used models of cytotoxic edema included: mild and severe hypotonic stress or oxygen-glucose deprivation (OGD) in situ and terminal ischemia/anoxia in vivo. This study shows that an AQP4 or TRPV4 deficit slows down the ECS volume shrinkage during severe ischemia in vivo. We further demonstrate that a TRPV4 deficit slows down the velocity and attenuates an extent of the ECS volume decrease during OGD treatment in situ. However, in any of the cytotoxic edema models in situ (OGD, mild or severe hypotonic stress), we did not detect any alterations in the cell swelling or volume regulation caused by AQP4 deficiency. Overall, our results indicate that the AQP4 and TRPV4 channels may play a crucial role in severe pathological states associated with their overexpression and enhanced cell swelling. However, detailed interplay between AQP4 and TRPV4 channels requires further studies and additional research.
Collapse
Affiliation(s)
- Martina Chmelova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Petra Sucha
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Marcel Bochin
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Helena Pivonkova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Lydia Vargova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| |
Collapse
|
17
|
Bursting at the Seams: Molecular Mechanisms Mediating Astrocyte Swelling. Int J Mol Sci 2019; 20:ijms20020330. [PMID: 30650535 PMCID: PMC6359623 DOI: 10.3390/ijms20020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/31/2023] Open
Abstract
Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.
Collapse
|
18
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
19
|
Awadová T, Pivoňková H, Heřmanová Z, Kirdajová D, Anděrová M, Malínský J. Cell volume changes as revealed by fluorescence microscopy: Global vs local approaches. J Neurosci Methods 2018; 306:38-44. [DOI: 10.1016/j.jneumeth.2018.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
|
20
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Hubbard JA, Binder DK. Unaltered Glutamate Transporter-1 Protein Levels in Aquaporin-4 Knockout Mice. ASN Neuro 2017; 9:1759091416687846. [PMID: 28078912 PMCID: PMC5315234 DOI: 10.1177/1759091416687846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maintenance of glutamate and water homeostasis in the brain is crucial to healthy brain activity. Astrocytic glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) are the main regulators of extracellular glutamate and osmolarity, respectively. Several studies have reported colocalization of GLT1 and AQP4, but the existence of a physical interaction between the two has not been well studied. Therefore, we used coimmunoprecipitation to determine whether a strong interaction exists between these two important molecules in mice on both a CD1 and C57BL/6 background. Furthermore, we used Western blot and immunohistochemistry to examine GLT1 levels in AQP4 knockout (AQP4−/−) mice. An AQP4-GLT1 precipitate was not detected, suggesting the lack of a strong physical interaction between AQP4 and GLT1. In addition, GLT1 protein levels remained unaltered in tissue from CD1 and C57BL/6 AQP4−/− mice. Finally, immunohistochemical analysis revealed that AQP4 and GLT1 do colocalize, but only in a region-specific manner. Taken together, these findings suggest that AQP4 and GLT1 do not have a strong physical interaction between them and are, instead, differentially regulated.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- 1 Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Devin K Binder
- 1 Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
22
|
Murphy TR, Davila D, Cuvelier N, Young LR, Lauderdale K, Binder DK, Fiacco TA. Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress. Front Cell Neurosci 2017; 11:275. [PMID: 28979186 PMCID: PMC5611379 DOI: 10.3389/fncel.2017.00275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - David Davila
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Nicholas Cuvelier
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Leslie R. Young
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Kelli Lauderdale
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
23
|
Turning down the volume: Astrocyte volume change in the generation and termination of epileptic seizures. Neurobiol Dis 2017; 104:24-32. [PMID: 28438505 DOI: 10.1016/j.nbd.2017.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 1% of the global population suffers from epilepsy, a class of disorders characterized by recurrent and unpredictable seizures. Of these cases roughly one-third are refractory to current antiepileptic drugs, which typically target neuronal excitability directly. The events leading to seizure generation and epileptogenesis remain largely unknown, hindering development of new treatments. Some recent experimental models of epilepsy have provided compelling evidence that glial cells, especially astrocytes, could be central to seizure development. One of the proposed mechanisms for astrocyte involvement in seizures is astrocyte swelling, which may promote pathological neuronal firing and synchrony through reduction of the extracellular space and elevated glutamate concentrations. In this review, we discuss the common conditions under which astrocytes swell, the resultant effects on neural excitability, and how seizure development may ultimately be influenced by these effects.
Collapse
|
24
|
Bémeur C, Cudalbu C, Dam G, Thrane AS, Cooper AJL, Rose CF. Brain edema: a valid endpoint for measuring hepatic encephalopathy? Metab Brain Dis 2016; 31:1249-1258. [PMID: 27272740 DOI: 10.1007/s11011-016-9843-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) is a major complication of liver failure/disease which frequently develops during the progression of end-stage liver disease. This metabolic neuropsychiatric syndrome involves a spectrum of symptoms, including cognition impairment, attention deficits and motor dysfunction which eventually can progress to coma and death. Pathologically, HE is characterized by swelling of the astrocytes which consequently leads to brain edema, a common feature found in patients with acute liver failure (ALF) as well as in cirrhotic patients suffering from HE. The pathogenic factors involved in the onset of astrocyte swelling and brain edema in HE are unresolved. However, the role of astrocyte swelling/brain edema in the development of HE remains ambiguous and therefore measuring brain edema as an endpoint to evaluate HE is questioned. The following review will determine the effect of astrocyte swelling and brain edema on neurological function, discuss the various possible techniques to measure brain edema and lastly to propose a number of neurobehavioral tests to evaluate HE.
Collapse
Affiliation(s)
- Chantal Bémeur
- Département de nutrition, Université de Montréal, Montréal, Québec, Canada
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Québec, Canada
| | - Cristina Cudalbu
- Centre d'Imagerie Biomédicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gitte Dam
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus, Denmark
| | - Alexander S Thrane
- Department of Ophthalmology, Haukeland University Hospital, 5012, Bergen, Norway
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, 10595, USA
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
25
|
Lee CY, Dallérac G, Ezan P, Anderova M, Rouach N. Glucose Tightly Controls Morphological and Functional Properties of Astrocytes. Front Aging Neurosci 2016; 8:82. [PMID: 27148048 PMCID: PMC4834307 DOI: 10.3389/fnagi.2016.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
The main energy source powering the brain is glucose. Strong energy needs of our nervous system are fulfilled by conveying this essential metabolite through blood via an extensive vascular network. Glucose then reaches brain tissues by cell uptake, diffusion and metabolization, processes primarily undertaken by astrocytes. Deprivation of glucose can however occur in various circumstances. In particular, ageing is associated with cognitive disturbances that are partly attributable to metabolic deficiency leading to brain glycopenia. Despite the crucial role of glucose and its metabolites in sustaining neuronal activity, little is known about its moment-to-moment contribution to astroglial physiology. We thus here investigated the early structural and functional alterations induced in astrocytes by a transient metabolic challenge consisting in glucose deprivation. Electrophysiological recordings of hippocampal astroglial cells of the stratum radiatumin situ revealed that shortage of glucose specifically increases astrocyte membrane capacitance, whilst it has no impact on other passive membrane properties. Consistent with this change, morphometric analysis unraveled a prompt increase in astrocyte volume upon glucose deprivation. Furthermore, characteristic functional properties of astrocytes are also affected by transient glucose deficiency. We indeed found that glucoprivation decreases their gap junction-mediated coupling, while it progressively and reversibly increases their intracellular calcium levels during the slow depression of synaptic transmission occurring simultaneously, as assessed by dual electrophysiological and calcium imaging recordings. Together, these data indicate that astrocytes rapidly respond to metabolic dysfunctions, and are therefore central to the neuroglial dialog at play in brain adaptation to glycopenia.
Collapse
Affiliation(s)
- Chun-Yao Lee
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech RepublicPrague, Czech Republic; Department of Neuroscience, 2nd Faculty of Medicine, Charles UniversityPrague, Czech Republic
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| |
Collapse
|
26
|
Jia SW, Liu XY, Wang SC, Wang YF. Vasopressin Hypersecretion-Associated Brain Edema Formation in Ischemic Stroke: Underlying Mechanisms. J Stroke Cerebrovasc Dis 2016; 25:1289-300. [PMID: 27068863 DOI: 10.1016/j.jstrokecerebrovasdis.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain edema formation is a major cause of brain damages and the high mortality of ischemic stroke. The aim of this review is to explore the relationship between ischemic brain edema formation and vasopressin (VP) hypersecretion in addition to the oxygen and glucose deprivation and the ensuing reperfusion injury. METHODS Pertinent studies involving ischemic stroke, brain edema formation, astrocytes, and VP were identified by a search of the PubMed and the Web of Science databases in January 2016. Based on clinical findings and reports of animal experiments using ischemic stroke models, this systematic review reanalyzes the implication of individual reports in the edema formation and then establishes the inherent links among them. RESULTS This systematic review reveals that cytotoxic edema and vasogenic brain edema in classical view are mainly under the influence of a continuous malfunction of astrocytic plasticity. Adaptive VP secretion can modulate membrane ion transport, water permeability, and blood-brain barrier integrity, which are largely via changing astrocytic plasticity. Maladaptive VP hypersecretion leads to disruptions of ion and water balance across cell membranes as well as the integrity of the blood-brain barrier. This review highlights our current understandings of the cellular mechanisms underlying ischemic brain edema formation and its association with VP hypersecretion. CONCLUSIONS VP hypersecretion promotes brain edema formation in ischemic stroke by disrupting hydromineral balance in the neurovascular unit; suppressing VP hypersecretion has the potential to alleviate ischemic brain edema.
Collapse
Affiliation(s)
- Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Surgery, Albany Medical Center, Albany, New York
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
27
|
Heller JP, Rusakov DA. Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 2015; 63:2133-51. [PMID: 25782611 PMCID: PMC4737250 DOI: 10.1002/glia.22821] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area.
Collapse
Affiliation(s)
- Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| |
Collapse
|
28
|
Correction: altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice. PLoS One 2015; 10:e0119744. [PMID: 25775461 PMCID: PMC4361693 DOI: 10.1371/journal.pone.0119744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|