1
|
Chen J, Wang L, Liu M, Gao G, Zhao W, Fu Q, Wang Y. Implantation of adipose-derived mesenchymal stem cell sheets promotes axonal regeneration and restores bladder function after spinal cord injury. Stem Cell Res Ther 2022; 13:503. [PMID: 36224621 PMCID: PMC9558366 DOI: 10.1186/s13287-022-03188-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell-based therapy using adipose-derived mesenchymal stem cells (ADSCs) is a promising treatment strategy for neurogenic bladder (NB) associated with spinal cord injury (SCI). However, therapeutic efficacy is low because of inefficient cell delivery. Cell sheets improve the efficacy of cell transplantation. Therefore, this study was conducted to investigate the therapeutic efficacy of transplanting ADSC sheets into an SCI rat model and focused on the function and pathological changes of the bladder. METHODS ADSC sheets were prepared from adipose tissue of Sprague-Dawley (SD) rats using temperature-responsive cell culture dishes. Adult female SD rats were subjected to SCI by transection at the T10 level and administered ADSC sheets or gelatin sponge (the control group). Four and 8 weeks later, in vivo cystometrograms were obtained for voiding function assessment. Rats were sacrificed and the expression of various markers was analyzed in spinal and bladder tissues. RESULTS The number of β-tubulin III-positive axons in the ADSC sheet transplantation group was higher than that in the control group. Conversely, expression of glial fibrillary acidic protein in the ADSC sheet transplantation group was lower than that in the control group. Cystometry showed impairment of the voiding function after SCI, which was improved after ADSC sheet transplantation with increased high-frequency oscillation activity. Furthermore, ADSC sheet transplantation prevented disruption of the bladder urothelium in SCI rats, thereby maintaining the intact barrier. Compared with fibrosis of the bladder wall in the control group, the ADSC sheet transplantation group had normal morphology of the bladder wall and reduced tissue fibrosis as shown by downregulation of type 1 collagen. ADSC sheet transplantation also resulted in strong upregulation of contractile smooth muscle cell (SMC) markers (α-smooth muscle actin and smoothelin) and downregulation of synthetic SMC markers (MYH10 and RBP1). CONCLUSION ADSC sheet transplantation significantly improved voiding function recovery in rats after SCI. ADSC sheet transplantation is a promising cell delivery and treatment option for NB related to SCI.
Collapse
Affiliation(s)
- Jiasheng Chen
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2020; 69:513-531. [PMID: 33052610 DOI: 10.1002/glia.23922] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Helena S Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Salehi-Pourmehr H, Hajebrahimi S, Rahbarghazi R, Pashazadeh F, Mahmoudi J, Maasoumi N, Sadigh-Eteghad S. Stem Cell Therapy for Neurogenic Bladder Dysfunction in Rodent Models: A Systematic Review. Int Neurourol J 2020; 24:241-257. [PMID: 33017895 PMCID: PMC7538284 DOI: 10.5213/inj.2040058.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Neurogenic bladder dysfunction (NGB) has an impact on the quality of life, which made it an important research subject in preclinical studies. The present review investigates the effect of stem cell (SC) therapy on bladder functional recovery after the onset of spinal cord injury (SCI), multiple sclerosis (MS), Parkinson disease (PD), and stroke in rodent models. METHODS All experiments evaluated the regenerative potential of SC on the management of NGB in rodent models up to June 2019, were included. From 1,189 relevant publications, 20 studies met our inclusion criteria of which 15 were conducted on SCI, 2 on PD, 2 on stroke, and 1 on MS in the rodent models. We conducted a meta-analysis on SCI experiments and for other neurological diseases, detailed urodynamic findings were reported. RESULTS The common SC sources used for therapeutical purposes were neural progenitor cells, bone marrow mesenchymal SCs, human amniotic fluid SCs, and human umbilical cord blood SCs. There was a significant improvement of micturition pressure in both contusion and transaction SCI models 4 and 8 weeks post-SC transplantation. Residual urine volume, micturition volume, and bladder capacity were improved 28 days after SC transplantation only in the transaction model of SCI. Nonvoiding contraction recovered only in 56 days post-cell transplantation in the contusion model. CONCLUSION Partial bladder recovery has been evident after SC therapy in SCI models. Due to limitations in the number of studies in other neurological diseases, additional studies are necessary to confirm the detailed mechanism for bladder recovery.
Collapse
Affiliation(s)
- Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narjes Maasoumi
- University Hospital Southampton, Southampton, United Kingdom
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- East-Azerbaijan Comprehensive Stroke Program, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, Faculty of Persian Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Liang CC, Shaw SWS, Ko YS, Huang YH, Lee TH. Effect of amniotic fluid stem cell transplantation on the recovery of bladder dysfunction in spinal cord-injured rats. Sci Rep 2020; 10:10030. [PMID: 32572272 PMCID: PMC7308393 DOI: 10.1038/s41598-020-67163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The effects of human amniotic fluid stem cell (hAFSC) transplantation on bladder function and molecular changes in spinal cord-injured (SCI) rats were investigated. Four groups were studied: sham and SCI plus phosphate-buffered saline (SCI + PBS), human embryonic kidney 293 (HEK293) cells, and hAFSCs transplantation. In SCI + PBS rat bladders, cystometry showed increased peak voiding pressure, voiding volume, bladder capacity, residual volume, and number of non-voiding contractions, and the total elastin/collagen amount was increased but collagen concentration was decreased at days 7 and 28. Immunoreactivity and mRNA levels of IGF-1, TGF-β1, and β3-adrenoceptor were increased at days 7 and/or 28. M2 immunoreactivity and M3 mRNA levels of muscarinic receptor were increased at day 7. M2 immunoreactivity was increased, but M2/M3 mRNA and M3 immunoreactivity levels were decreased at day 28. Brain derived-neurotrophic factor mRNA was increased, but immunoreactivity was decreased at day 7. HEK293 cell transplantation caused no difference compared to SCI + PBS group. hAFSCs co-localized with neural cell markers and expressed BDNF, TGF-β1, GFAP, and IL-6. The present results showed that SCI bladders released IGF-1 and TGF-β1 to stimulate elastin and collagen for bladder wall remodelling, and hAFSC transplantation improved these changes, which involved the mechanisms of BDNF, muscarinic receptors, and β3-adrenoceptor expression.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Wen Steven Shaw
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Obstetrics, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Yu-Shien Ko
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yung-Hsin Huang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Zhao H, Sun QL, Duan LJ, Yang YD, Gao YS, Zhao DY, Xiong Y, Wang HJ, Song JW, Yang KT, Wang XM, Yu X. Is cell transplantation a reliable therapeutic strategy for spinal cord injury in clinical practice? A systematic review and meta-analysis from 22 clinical controlled trials. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:1092-1112. [DOI: 10.1007/s00586-019-05882-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/06/2019] [Indexed: 02/07/2023]
|
6
|
El Zayat A, Badran Y. The effect of transplantation of adipose-derived stem cells to spinal cord on the recovery of urinary bladder function in patients having spinal cord injuries: a urodynamic study. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2018. [DOI: 10.4103/err.err_8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Kooshesh M, Safdarian M, Nikfallah A, Vaccaro AR, Rahimi-Movaghar V. Association between detrusor muscle function and level of the spinal cord injury. Cent European J Urol 2018; 71:92-97. [PMID: 29732213 PMCID: PMC5926627 DOI: 10.5173/ceju.2017.1263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/07/2017] [Accepted: 12/26/2017] [Indexed: 01/23/2023] Open
Abstract
Introduction Traumatic spinal cord injury (TSCI) is among the most severe disabilities with an estimation of 2.5 million people affected worldwide. The purpose of this study was to investigate the association between detrusor muscle function and the level of the spinal cord injury. Material and methods All patients with TSCI who underwent urodynamic evaluation at the Brain and Spinal Injury Research Center (BASIR) of Imam Khomeini hospital complex from March 2014 to March 2016 were retrospectively entered in this cross-sectional study. The patients were divided into three groups of suprasacral (C1-T12), sacral (L1-S5) and combined (both suprasacral and sacral) lesions. Results Medical records of 117 patients with spinal cord injury were reviewed. The mean age of the patients was 35.64 (±12.01) years. 86 patients (73.5%) were male and 31 female (26.5%). While 66 (56.4%), 28 (23.9%) and 19 (16.2%) patients had suprasacral, sacral, and combined suprasacral and sacral lesions, respectively. The relationship between the level of injury and emptying disorder (P = 0.50), storage disease (P = 0.20), first desire to void (P = 0.82), hypocompliance (P = 0.95), voided urine volume (P = 0.38) and residual urine volume (P = 0.76) were not significant. We found a significant association between the level of injury and the type of detrusor function (P = 0.019). Conclusions Our study showed an association between detrusor muscle function and level of the spinal cord injury. However, there was no exact relationship between the level and the completeness of the spinal cord injury with the urodynamic characteristics.
Collapse
Affiliation(s)
- Maryam Kooshesh
- Sina Trauma and Surgey Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Safdarian
- Sina Trauma and Surgey Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Nikfallah
- Urology division, Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedic Surgery and Neurosurgery, The Rothman Institute, Thomas Jefferson University, PA, USA
| | - Vafa Rahimi-Movaghar
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Sina Trauma and Surgey Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Liu Q, Wu C, Huang S, Wu Q, Zhou T, Liu X, Liu X, Hu X, Li L. Decreased hyperpolarization-activated cyclic nucleotide-gated channels are involved in bladder dysfunction associated with spinal cord injury. Int J Mol Med 2018; 41:2609-2618. [PMID: 29436607 PMCID: PMC5846662 DOI: 10.3892/ijmm.2018.3489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) leads to bereft voluntary control of bladder, but the possible role of spontaneous excited system in bladder of SCI patients is poorly understood. Hyper polarization-activated cyclic nucleotide-gated (HCN) channels are deemed to regulate the spontaneous contraction of bladder, our study explored the functional role of HCN channels in SCI induced neurogenic bladder. Sixty female Sprague-Dawley rats were randomized into control, sham and SCI groups. Rat models subjected to SCI at S2 levels were successfully established and were assessed using hematoxylin and eosin staining and cystometry. In SCI rats, the mRNA and protein expression levels of HCN channels and the Ih density were significantly reduced, and expression levels of several bladder HCN1 channel regulatory proteins were also significantly changed. The effects of 50 µM forskolin and 50 µM 8-bromoadenosine 3′,5′-cyclic monophosphate on [Ca2+]i of isolated bladder interstitial cells of Cajal-like cells were significantly decreased in SCI rats. The spontaneous contractions in detrusor strips from SCI rats were significantly weakened. Furthermore, detrusor strips from SCI rats exhibited decreased tolerance to two doses of ZD7288 (10 and 50 µM). Taken together, our results indicate that the decreased bladder HCN channel expression and function induced by altered regulatory proteins are involved in the pathological process of SCI induced neurogenic bladder, which present HCN channels as valid therapeutic targets for treating this disease.
Collapse
Affiliation(s)
- Qian Liu
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Chao Wu
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Shengquan Huang
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Qingjian Wu
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tao Zhou
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xiaobing Liu
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Liu
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xiaoyan Hu
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Longkun Li
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
9
|
Fan X, Wang JZ, Lin XM, Zhang L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen Res 2017; 12:815-825. [PMID: 28616040 PMCID: PMC5461621 DOI: 10.4103/1673-5374.206653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury (SCI). DATA SOURCES PubMed, EMBASE, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, Wanfang, and SinoMed databases were systematically searched by computer to select clinical randomized controlled trials using stem cell transplantation to treat SCI, published between each database initiation and July 2016. DATA SELECTION Randomized controlled trials comparing stem cell transplantation with rehabilitation treatment for patients with SCI. Inclusion criteria: (1) Patients with SCI diagnosed according to the American Spinal Injury Association (ASIA) International standards for neurological classification of SCI; (2) patients with SCI who received only stem cell transplantation therapy or stem cell transplantation combined with rehabilitation therapy; (3) one or more of the following outcomes reported: outcomes concerning neurological function including sensory function and locomotor function, activities of daily living, urination functions, and severity of SCI or adverse effects. Studies comprising patients with complications, without full-text, and preclinical animal models were excluded. Quality of the included studies was evaluated using the Cochrane risk of bias assessment tool and RevMan V5.3 software, provided by the Cochrane Collaboration, was used to perform statistical analysis. OUTCOME MEASURES ASIA motor score, ASIA light touch score, ASIA pinprick score, ASIA impairment scale grading improvement rate, activities of daily living score, residual urine volume, and adverse events. RESULTS Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score (odds ratio (OR) = 3.43, 95% confidence interval (CI): 0.01 - 6.86, P = 0.05), lower limb pinprick score (OR = 3.93, 95%CI: 0.74 - 7.12, P = 0.02), ASI grading rate (relative risk (RR) = 2.95, 95%CI: 1.64 - 5.29, P = 0.0003), and notably reduced residual urine volume (OR = -8.10, 95%CI: -15.09 to -1.10, P = 0.02). However, stem cell transplantation did not significantly improve motor score (OR = 1.89, 95%CI: -0.25 to 4.03, P = 0.08) or activities of daily living score (OR = 1.12, 95%CI: -1.17 to 4.04, P = 0.45). Furthermore, stem cell transplantation caused a high rate of mild adverse effects (RR = 14.49, 95%CI: 5.34 - 34.08, P < 0.00001); however, these were alleviated in a short time. CONCLUSION Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Fan
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jin-zhao Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xiao-min Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Li Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Xiamen Medical College, Xiamen, Fujian Province, China
| |
Collapse
|
10
|
Yang YD, Yu X, Wang XM, Mu XH, He F. Tanshinone IIA improves functional recovery in spinal cord injury-induced lower urinary tract dysfunction. Neural Regen Res 2017; 12:267-275. [PMID: 28400810 PMCID: PMC5361512 DOI: 10.4103/1673-5374.200810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 01/14/2023] Open
Abstract
Tanshinone IIA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone IIA 20 mg/kg into rat models of spinal cord injury for 7 consecutive days. Results showed that tanshinone IIA could reduce the inflammation, edema as well as compensatory thickening of the bladder tissue, improve urodynamic parameters, attenuate secondary injury, and promote spinal cord regeneration. The number of hypertrophic and apoptotic dorsal root ganglion (L6-S1) cells was less after treatment with tanshinone IIA. The effects of tanshinone IIA were similar to intravenous injection of 30 mg/kg methylprednisolone. These findings suggested that tanshinone IIA improved functional recovery after spinal cord injury-induced lower urinary tract dysfunction by remodeling the spinal pathway involved in lower urinary tract control.
Collapse
Affiliation(s)
- Yong-dong Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiu-mei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiao-hong Mu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feng He
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Tracking Transplanted Stem Cells Using Magnetic Resonance Imaging and the Nanoparticle Labeling Method in Urology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:231805. [PMID: 26413510 PMCID: PMC4564577 DOI: 10.1155/2015/231805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
A reliable in vivo imaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cells in vivo in the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics.
Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.
Collapse
|