1
|
Abstract
Among the factors that have been strongly implicated in regulating cancerous transformation, the primary monocilium (cilium) has gained increasing attention. The cilium is a small organelle extending from the plasma membrane, which provides a localized hub for concentration of transmembrane receptors. These receptors transmit signals from soluble factors (including Sonic hedgehog (SHH), platelet-derived growth factor (PDGF-AA), WNT, TGFβ, NOTCH, and others) that regulate cell growth, as well as mechanosensory cues provided by flow or extracellular matrix. Ciliation is regulated by cell cycle, with most cells that are in G0 (quiescent) or early G1 ciliation and cilia typically absent in G2/M cells. Notably, while most cells organized in solid tissues are ciliated, cancerous transformation induces significant changes in ciliation. Most cancer cells lose cilia; medulloblastomas and basal cell carcinomas, dependent on an active SHH pathway, rely on ciliary maintenance. Changes in cancer cell ciliation are driven by core oncogenic pathways (EGFR, KRAS, AURKA, PI3K), and importantly ciliation status regulates functionality of those pathways. Ciliation is both influenced by targeted cancer therapies and linked to therapeutic resistance; recent studies suggest ciliation may also influence cancer cell metabolism and stem cell identity. We review recent studies defining the relationship between cilia and cancer.
Collapse
|
2
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Masyuk TV, Masyuk AI, LaRusso NF. Polycystic Liver Disease: Advances in Understanding and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:251-269. [PMID: 34724412 DOI: 10.1146/annurev-pathol-042320-121247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| |
Collapse
|
4
|
Kiseleva AA, Korobeynikov VA, Nikonova AS, Zhang P, Makhov P, Deneka AY, Einarson MB, Serebriiskii IG, Liu H, Peterson JR, Golemis EA. Unexpected Activities in Regulating Ciliation Contribute to Off-target Effects of Targeted Drugs. Clin Cancer Res 2019; 25:4179-4193. [PMID: 30867219 DOI: 10.1158/1078-0432.ccr-18-3535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE For many tumors, signaling exchanges between cancer cells and other cells in their microenvironment influence overall tumor signaling. Some of these exchanges depend on expression of the primary cilium on nontransformed cell populations, as extracellular ligands including Sonic Hedgehog (SHH), PDGFRα, and others function through receptors spatially localized to cilia. Cell ciliation is regulated by proteins that are themselves therapeutic targets. We investigated whether kinase inhibitors of clinical interest influence ciliation and signaling by proteins with ciliary receptors in cancer and other cilia-relevant disorders, such as polycystic kidney disease (PKD). EXPERIMENTAL DESIGN We screened a library of clinical and preclinical kinase inhibitors, identifying drugs that either prevented or induced ciliary disassembly. Specific bioactive protein targets of the drugs were identified by mRNA depletion. Mechanism of action was defined, and activity of select compounds investigated. RESULTS We identified multiple kinase inhibitors not previously linked to control of ciliation, including sunitinib, erlotinib, and an inhibitor of the innate immune pathway kinase, IRAK4. For all compounds, activity was mediated through regulation of Aurora-A (AURKA) activity. Drugs targeting cilia influenced proximal cellular responses to SHH and PDGFRα. In vivo, sunitinib durably limited ciliation and cilia-related biological activities in renal cells, renal carcinoma cells, and PKD cysts. Extended analysis of IRAK4 defined a subset of innate immune signaling effectors potently affecting ciliation. CONCLUSIONS These results suggest a paradigm by which targeted drugs may have unexpected off-target effects in heterogeneous cell populations in vivo via control of a physical platform for receipt of extracellular ligands.
Collapse
Affiliation(s)
- Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Vladislav A Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Anna S Nikonova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Peishan Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Petr Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russian Federation
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Exp Mol Med 2018; 50:1-17. [PMID: 29959317 PMCID: PMC6026120 DOI: 10.1038/s12276-018-0108-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies comprise a large number of hereditary human diseases and syndromes caused by mutations resulting in dysfunction of either primary or motile cilia. Both types of cilia share a similar architecture. While primary cilia are present on most cell types, expression of motile cilia is limited to specialized tissues utilizing ciliary motility. We characterized protein complexes of ciliopathy proteins and identified the conserved AAA-ATPase Ruvbl1 as a common novel component. Here, we demonstrate that Ruvbl1 is crucial for the development and maintenance of renal tubular epithelium in mice: both constitutive and inducible deletion in tubular epithelial cells result in renal failure with tubular dilatations and fewer ciliated cells. Moreover, inducible deletion of Ruvbl1 in cells carrying motile cilia results in hydrocephalus, suggesting functional relevance in both primary and motile cilia. Cilia of Ruvbl1-negative cells lack crucial proteins, consistent with the concept of Ruvbl1-dependent cytoplasmic pre-assembly of ciliary protein complexes. A protein involved in building and maintaining thin protrusions from cell surfaces called cilia is implicated in “ciliopathies”, diseases in which ciliary function is disrupted. These include polycystic kidney disease and disorders collectively known as ciliary dyskinesias. “Primary cilia” perform sensory functions, detecting external chemical and physical signals and initiating responses within cells. In addition, “motile cilia” beat rhythmically to move fluids surrounding cells. Researchers in Germany and the Netherlands, led by Bernhard Schermer and Max C. Liebau at the University of Cologne, studied a protein called Ruvbl1, known to interact with DNA and other proteins. The researchers found it is crucial for the functioning of both types of cilia. Deleting the gene for Ruvbl1 in mice caused kidney failure and a build-up of fluid in the brain known as hydrocephalus. The research could help understand and ultimately treat ciliopathies.
Collapse
|
6
|
Nikonova AS, Deneka AY, Kiseleva AA, Korobeynikov V, Gaponova A, Serebriiskii IG, Kopp MC, Hensley HH, Seeger-Nukpezah TN, Somlo S, Proia DA, Golemis EA. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD). FASEB J 2018; 32:2735-2746. [PMID: 29401581 DOI: 10.1096/fj.201700909r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is associated with progressive formation of renal cysts, kidney enlargement, hypertension, and typically end-stage renal disease. In ADPKD, inherited mutations disrupt function of the polycystins (encoded by PKD1 and PKD2), thus causing loss of a cyst-repressive signal emanating from the renal cilium. Genetic studies have suggested ciliary maintenance is essential for ADPKD pathogenesis. Heat shock protein 90 (HSP90) clients include multiple proteins linked to ciliary maintenance. We determined that ganetespib, a clinical HSP90 inhibitor, inhibited proteasomal repression of NEK8 and the Aurora-A activator trichoplein, rapidly activating Aurora-A kinase and causing ciliary loss in vitro. Using conditional mouse models for ADPKD, we performed long-term (10 or 50 wk) dosing experiments that demonstrated HSP90 inhibition caused durable in vivo loss of cilia, controlled cystic growth, and ameliorated symptoms induced by loss of Pkd1 or Pkd2. Ganetespib efficacy was not increased by combination with 2-deoxy-d-glucose, a glycolysis inhibitor showing some promise for ADPKD. These studies identify a new biologic activity for HSP90 and support a cilia-based mechanism for cyst repression.-Nikonova, A. S., Deneka, A. Y., Kiseleva, A. A., Korobeynikov, V., Gaponova, A., Serebriiskii, I. G., Kopp, M. C., Hensley, H. H., Seeger-Nukpezah, T. N., Somlo, S., Proia, D. A., Golemis, E. A. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).
Collapse
Affiliation(s)
- Anna S Nikonova
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Alexander Y Deneka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Kazan Federal University, Kazan, Russia
| | - Anna A Kiseleva
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Kazan Federal University, Kazan, Russia
| | - Vladislav Korobeynikov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Anna Gaponova
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Laboratory of Genome Engineering, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Immanuel Kant Baltic Federal University, Konigsberg, Russia
| | - Ilya G Serebriiskii
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Kazan Federal University, Kazan, Russia
| | - Meghan C Kopp
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Harvey H Hensley
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tamina N Seeger-Nukpezah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Department I of Internal Medicine and Center for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - David A Proia
- Synta Pharmaceuticals Corporation, Lexington, Massachusetts, USA
| | - Erica A Golemis
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Nikonova AS, Deneka AY, Eckman L, Kopp MC, Hensley HH, Egleston BL, Golemis EA. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol 2015; 5:228. [PMID: 26528438 PMCID: PMC4607875 DOI: 10.3389/fonc.2015.00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023] Open
Abstract
Aurora-A kinase (AURKA) overexpression in numerous tumors induces aneuploidy, in part because of cytokinetic defects. Alisertib and other small-molecule inhibitors targeting AURKA are effective in some patients as monotherapies or combination therapies. Epidermal growth factor receptor (EGFR) pro-proliferative signaling activity is commonly elevated in cancer, and the EGFR inhibitor erlotinib is commonly used as a standard of care agent for cancer. An erlotinib/alisertib combination therapy is currently under assessment in clinical trials, following pre-clinical studies that indicated synergy of these drugs in cancer. We were interested in further exploring the activity of this drug combination. Beyond well-established functions for AURKA in mitotic progression, additional non-mitotic AURKA functions include control of ciliary stability and calcium signaling. Interestingly, alisertib exacerbates the disease phenotype in mouse models for autosomal-dominant polycystic kidney disease (ADPKD), a common inherited syndrome induced by aberrant signaling from PKD1 and PKD2, cilia-localized proteins that have calcium channel activity. EGFR is also more active in ADPKD, making erlotinib also of potential interest in this disease setting. In this study, we have explored the interaction of alisertib and erlotinib in an ADPKD model. These experiments indicated erlotinib-restrained cystogenesis, opposing alisertib action. Erlotinib also interacted with alisertib to regulate proliferative signaling proteins, albeit in a complicated manner. Results suggest a nuanced role of AURKA signaling in different pathogenic conditions and inform the clinical use of AURKA inhibitors in cancer patients with comorbidities.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Alexander Y Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA ; Cancer Biology, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Louisa Eckman
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Meghan C Kopp
- Cancer Biology, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Harvey H Hensley
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Brian L Egleston
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| |
Collapse
|
8
|
Park F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front Physiol 2015; 6:219. [PMID: 26300785 PMCID: PMC4528294 DOI: 10.3389/fphys.2015.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|