1
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
2
|
Khare S, Khare T, Ramanathan R, Ibdah JA. Hepatocellular Carcinoma: The Role of MicroRNAs. Biomolecules 2022; 12:biom12050645. [PMID: 35625573 PMCID: PMC9138333 DOI: 10.3390/biom12050645] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. HCC is diagnosed in its advanced stage when limited treatment options are available. Substantial morphologic, genetic and epigenetic heterogeneity has been reported in HCC, which poses a challenge for the development of a targeted therapy. In this review, we discuss the role and involvement of several microRNAs (miRs) in the heterogeneity and metastasis of hepatocellular carcinoma with a special emphasis on their possible role as a diagnostic and prognostic tool in the risk prediction, early detection, and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| | - Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
| | - Raghu Ramanathan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; (S.K.); (T.K.); (R.R.)
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: 1-573-882-7349; Fax: 1-573-884-4595
| |
Collapse
|
3
|
Xu T, Dong M, Li H, Zhang R, Li X. Elevated mRNA expression levels of DLGAP5 are associated with poor prognosis in breast cancer. Oncol Lett 2020; 19:4053-4065. [PMID: 32391106 PMCID: PMC7204629 DOI: 10.3892/ol.2020.11533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most commonly diagnosed type of cancer and one of the leading causes of cancer-associated mortality in women. In addition, the underlying molecular mechanisms of the occurrence and development of breast cancer requires further investigation. In the present study, bioinformatics analysis was performed to identify differentially expressed genes (DEGs) between breast cancer and normal breast tissues to investigate the underlying molecular mechanisms. In addition, reverse transcription-quantitative PCR and immunohistochemistry (IHC) were performed to investigate the protein and mRNA expression levels of a specific DEG, discs large-associated protein 5 (DLGAP5). A Cell Counting Kit-8 assay and flow cytometry analysis were used to assess the effects of DLGAP5 on cell proliferation. In total, 85 DEGs were identified in the three Gene Expression Omnibus datasets, including 40 upregulated and 45 downregulated genes. In addition, 30 hub genes were identified following the construction of a protein-protein interaction network, and 28 of the 30 hub genes were established to be indicators of breast cancer prognosis. DLGAP5 was highly expressed in breast cancer specimens, and its expression levels were correlated with clinical stage and lymph node status. In addition, downregulation of DLGAP5 repressed the proliferation of breast cancer MDA-MB-231 cells and induced cell cycle arrest. Additionally, DLGAP5 was identified to be localized in the mitochondria, and the presence of a conserved microtubule-associated proteins 1A/1B light chain 3B-interacting region motif suggested that DLGAP5 may serve a role in mitophagy. The present results demonstrated an association between DLGAP5 expression levels and the clinicopathological characteristics of patients with breast cancer using IHC. In conclusion, DLGAP5 may be a promising target in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
4
|
Identification of Hub Genes Related to Carcinogenesis and Prognosis in Colorectal Cancer Based on Integrated Bioinformatics. Mediators Inflamm 2020; 2020:5934821. [PMID: 32351322 PMCID: PMC7171686 DOI: 10.1155/2020/5934821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
The high mortality of colorectal cancer (CRC) patients and the limitations of conventional tumor-node-metastasis (TNM) stage emphasized the necessity of exploring hub genes closely related to carcinogenesis and prognosis in CRC. The study is aimed at identifying hub genes associated with carcinogenesis and prognosis for CRC. We identified and validated 212 differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA) database. We investigated functional enrichment analysis for DEGs. The protein-protein interaction (PPI) network was constructed, and hub modules and genes in CRC carcinogenesis were extracted. A prognostic signature was developed and validated based on Cox proportional hazards regression analysis. The DEGs mainly regulated biological processes covering response to stimulus, metabolic process, and affected molecular functions containing protein binding and catalytic activity. The DEGs played important roles in CRC-related pathways involving in preneoplastic lesions, carcinogenesis, metastasis, and poor prognosis. Hub genes closely related to CRC carcinogenesis were extracted including six genes in model 1 (CXCL1, CXCL3, CXCL8, CXCL11, NMU, and PPBP) and two genes and Metallothioneins (MTs) in model 2 (SLC26A3 and SLC30A10). Among them, CXCL8 was also related to prognosis. An eight-gene signature was proposed comprising AMH, WBSCR28, SFTA2, MYH2, POU4F1, SIX4, PGPEP1L, and PAX5. The study identified hub genes in CRC carcinogenesis and proposed an eight-gene signature with good reproducibility and robustness at the molecular level for CRC, which might provide directive significance for treatment selection and survival prediction.
Collapse
|
5
|
Yan P, Tang L, Liu L, Tu G. Identification of candidate RNA signatures in triple-negative breast cancer by the construction of a competing endogenous RNA network with integrative analyses of Gene Expression Omnibus and The Cancer Genome Atlas data. Oncol Lett 2020; 19:1915-1927. [PMID: 32194687 PMCID: PMC7039180 DOI: 10.3892/ol.2020.11292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is characterized by aggressive and metastatic clinical characteristics and generally leads to earlier distant recurrence and poorer prognosis than other molecular subtypes. Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) serve a crucial role in a wide variety of biological processes by interacting with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) and, thus, affect the expression of target genes in multiple types of cancer. Seven datasets from the Gene Expression Omnibus (GEO) database, including 444 tumor and 88 healthy tissue samples, were utilized to investigate the underlying mechanisms of TNBC and identify prognostic biomarkers. Differentially expressed genes (DEGs) were further validated in The Cancer Genome Atlas database and the associations between their expression levels and clinical information were analyzed to identify prognostic values. A potential lncRNA-miRNA-mRNA ceRNA network was also constructed. Finally, 69 mRNAs from the integrated Gene Expression Omnibus datasets were identified as DEGs using the robust rank aggregation method with |log2FC|>1 and adjusted P<0.01 set as the significance cut-off levels. In addition, 29 lncRNAs, 21 miRNAs and 27 mRNAs were included in the construction of the ceRNA network. The present study elucidated the mechanisms underlying the progression of TNBC and identified novel prognostic biomarkers for TNBC.
Collapse
Affiliation(s)
- Ping Yan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lingfeng Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
6
|
Liu X, Bing Z, Wu J, Zhang J, Zhou W, Ni M, Meng Z, Liu S, Tian J, Zhang X, Li Y, Jia S, Guo S. Integrative Gene Expression Profiling Analysis to Investigate Potential Prognostic Biomarkers for Colorectal Cancer. Med Sci Monit 2020; 26:e918906. [PMID: 31893510 PMCID: PMC6977628 DOI: 10.12659/msm.918906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite noteworthy advancements in the multidisciplinary treatment of colorectal cancer (CRC) and deeper understanding in the molecular mechanisms of CRC, many of CRC patients with histologically identical tumors present different treatment response and prognosis. Thus, more evidence on novel predictive and prognostic biomarkers for CRC remains urgently needed. This study aims to identify potential prognostic biomarkers for CRC with integrative gene expression profiling analysis. MATERIAL AND METHODS Differential expression analysis of paired CRC and adjacent normal tissue samples in 6 microarray datasets was independently performed, and the 6 datasets were integrated by the robust rank aggregation method to detect consistent differentially expressed genes (DEGs). Aberrant expression patterns of these genes were further validated in RNA sequencing data. Then, gene set enrichment analysis (GSEA) was performed to investigate significantly dysregulated biological functions in CRC. Finally, univariate, LASSO and multivariate Cox regression models were built to identify key prognostic genes in CRC patients. RESULTS A total of 990 DEGs (495 downregulated and 495 upregulated genes) were acquired after integratedly analyzing the 6 microarray datasets, and 4131 DEGs (2050 downregulated and 2081 upregulated genes) were obtained from the RNA sequencing dataset. Subsequently, these DEGs were intersected and 885 consistent DEGs were finally identified, including 458 downregulated and 427 upregulated genes. Two risky prognostic genes (TIMP1 and LZTS3) and 5 protective prognostic genes (AXIN2, CXCL1, ITLN1, CPT2 and CLDN23) were identified, which were significantly associated with the prognosis of CRC. CONCLUSIONS The 7 genes that we identified would provide more evidence for further applying novel diagnostic and prognostic biomarkers in clinical practice to facilitate personalized treatment of CRC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China (mainland).,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu, China (mainland).,Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China (mainland).,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yingfei Li
- Center for Drug Metabolism and Pharmacokinetics (DMPK) Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
7
|
Mjelle R, Dima SO, Bacalbasa N, Chawla K, Sorop A, Cucu D, Herlea V, Sætrom P, Popescu I. Comprehensive transcriptomic analyses of tissue, serum, and serum exosomes from hepatocellular carcinoma patients. BMC Cancer 2019; 19:1007. [PMID: 31660891 PMCID: PMC6816220 DOI: 10.1186/s12885-019-6249-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The expression of microRNAs (miRNAs) is a promising prognostic and diagnostic tool in hepatocellular carcinoma (HCC). Here we performed small RNA sequencing (sRNA-seq) of tissue, serum and serum exosomes to investigate changes in miRNA expression between the different sample types and correlated the expression with clinical parameters. We also performed gene expression arrays on tumor and normal tissue. RESULTS Paired tissue, serum and serum exosomes sequencing revealed consistent positive correlation of miR-21 between serum exosomes and tumor tissue, indicating that miR-21 could be exported from tissue to circulation via exosomes. We found that let-7 miRNAs are generally upregulated in serum exosomes compared to whole serum, indicating that these miRNAs could be preferentially loaded into exosomes. Comparing serum from HCC patients with serum from healthy individuals revealed a global increase of miRNAs in serum from HCC patients, including an almost 4-fold increase of several miRNAs, including the liver-specific miR-122. When correlating miRNA expression with clinical parameters we detected significant association between hepatitis B virus (HBV) infection and miR-122 in serum as well as several serum and tissue-miRNAs that correlated with surgery type. We found that miR-141 and miR-146 correlated with cirrhosis in tumor tissue and normal tissue, respectively. Finally, high expression of miR-21 in tumors were associated with poor survival. Focusing on gene expression we found several significant messenger RNAs (mRNAs) between tumor and normal tissue and a Gene Ontology (GO) analysis revealed that these changes were mainly related to cell cycle and metabolism. Further, we detected mRNAs that correlated with cirrhosis and HBV infection in tissue. Finally, GO analysis of predicted targets for miRNAs down-regulated in tumor found that these were enriched for functions related to collagen synthesis. CONCLUSIONS Our combined data point to altered miRNA and mRNA expression contributing to both generally impaired lipid metabolism and increased cell proliferation and a miRNA-driven increase in collagen synthesis in HCC. Our results further indicate a correlation in miRNA expression between exosomes, serum, and tissue samples suggesting export from tumors via exosomes. This correlation could provide a basis for a more tumor-specific miRNA profile in serum.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway. .,Department of Computer Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.
| | - Simona O Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Dana Cucu
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, Bucharest, Romania
| |
Collapse
|
8
|
Zhang B, Wu Q, Xu R, Hu X, Sun Y, Wang Q, Ju F, Ren S, Zhang C, Qi F, Ma Q, Wang Z, Zhou YL. The promising novel biomarkers and candidate small molecule drugs in lower-grade glioma: Evidence from bioinformatics analysis of high-throughput data. J Cell Biochem 2019; 120:15106-15118. [PMID: 31020692 DOI: 10.1002/jcb.28773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Abstract
Overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past 30 years, with survival averaging approximately 7 years. This study aimed to identify novel promising biomarkers of LGG and reveal its potential molecular mechanisms by integrated bioinformatics analysis. The microarray datasets of GSE68848 and GSE4290 were selected from GEO database for integrated analysis. In total, 293 overlapping differentially expressed genes (DEGs) were detected using the limma package. One hundred and eighty-eight nodes with 603 interactions were obtained from the establishment of protein-protein interaction (PPI) network. Functional and signaling pathway enriched were significantly correlated with the synapse and calcium signaling pathway, respectively. Module analysis revealed eight hub genes with high connectivity, which included CHRM1, DLG2, GABRD, GRIN1, HTR2A, KCNJ3, KCNJ9, and NUSAP1, and they were markedly correlated with patients' prognosis. The mining of the Gene Expression Profiling Interactive Analysis database and qPCR further confirmed the abnormal expression of these key genes with their prognostic value in LGG. We eventually predicted the 20 most vital small molecule drugs, which potentially reverse the carcinogenic state of LGG, as per the CMap (connectivity map) database and these DEGs, and MS-275 (enrichment score = -0.939) was considered as the most promising small molecule to treat LGG. In conclusion, our study provided eight reliable novel molecular biomarkers for diagnosis, prognosis prediction, and treatment targets for LGG. These conclusions will contribute to a better comprehension of molecular mechanisms fundamental to LGG occurrence and progression, and providing new insights for future development of genomic individualized treatment in LGG.
Collapse
Affiliation(s)
- Bo Zhang
- Medical School, Nantong University, Nantong, P.R. China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Qiong Wu
- Medical School, Nantong University, Nantong, P.R. China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Ran Xu
- Medical School, Nantong University, Nantong, P.R. China
| | - Xinyi Hu
- Department of Medicine, Nantong University Xinling college, Nantong, Jiangsu, P.R. China
| | - Yidan Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qiuhong Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Fei Ju
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Shiqi Ren
- Department of Medicine, Nantong University Xinling college, Nantong, Jiangsu, P.R. China
| | - Chenlin Zhang
- Department of Spine, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Fuwei Qi
- Department of Anesthesiology, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Qianqian Ma
- Emergency office, Wuxi Center for Disease Control and Prevention, Wuxi, P.R. China
| | - Ziheng Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - You Lang Zhou
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
9
|
micro-RNAs dependent regulation of DNMT and HIF1α gene expression in thrombotic disorders. Sci Rep 2019; 9:4815. [PMID: 30894555 PMCID: PMC6426883 DOI: 10.1038/s41598-018-38057-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in a wide variety of cellular processes and post-transcriptionally regulate several mechanism and diseases. However, contribution of miRNAs functioning during hypoxia and DNA methylation together is less understood. The current study was aimed to find a shared miRNAs signature upstream to hypoxia (via HIF gene family members) and methylation (via DNMT gene family members). This was followed by the global validation of the hypoxia related miRNA signature using miRNA microarray meta-analysis of the hypoxia induced human samples. We further concluded the study by looking into thrombosis related terms and pathways enriched during protein-protein interaction (PPI) network analysis of these two sets of gene family. Network prioritization of these shared miRNAs reveals miR-129, miR-19band miR-23b as top regulatory miRNAs. A comprehensive meta-analysis of microarray datasets of hypoxia samples revealed 29 differentially expressed miRNAs. GSEA of the interacting genes in the DNMT-HIF PPI network indicated thrombosis associated pathways including “Hemostasis”, “TPO signaling pathway” and “angiogenesis”. Interestingly, the study has generated a novel database of candidate miRNA signatures shared between hypoxia and methylation, and their relation to thrombotic pathways, which might aid in the development of potential therapeutic biomarkers.
Collapse
|
10
|
Sabarimurugan S, Madurantakam Royam M, Das A, Das S, K M G, Jayaraj R. Systematic Review and Meta-analysis of the Prognostic Significance of miRNAs in Melanoma Patients. Mol Diagn Ther 2019; 22:653-669. [PMID: 30259393 DOI: 10.1007/s40291-018-0357-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is the most aggressive and deadly form of skin cancer. The molecular variability involving microRNA (miRNA) expression plays a significant role in melanogenesis, which leads to poor prognostic effects in melanoma. Since there is a scarcity of comprehensive data on the prognostic role of miRNAs in melanoma patients, this study focuses on filling this knowledge gap through a systematic review and meta-analysis. METHODS The included studies were extracted from several bibliographic databases between 2012 and 2018 using multiple keywords according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The hazard ratios (HRs) and 95% confidence intervals (CIs) for different survival endpoints were compared to the high and low expression levels of miRNAs. The mean effect size of HR values was estimated using a random-effects model of meta-analysis. Inverted funnel plot symmetry was used to assess publication bias. Subgroup analysis was carried out individually for multiple miRNAs across different studies. RESULTS A total of 24 studies across eight countries were included, of which 16 studies were eligible for meta-analysis. Twenty-five miRNA expression levels were studied from 2669 melanoma patients to estimate the association between the prognostic role of miRNAs and survival outcome in these 16 studies. The overall pooled effect size (HR) for up- and downregulated miRNAs was 1.043 (95% CI 0.921-1.181; p = 0.506), indicating that the miRNA expression increased the likelihood of death in melanoma patients by 4.3%. Subgroup analysis for miRNA10b, miRNA16 and miRNA21 showed a poor prognosis. The quality assessment revealed that 16 studies were good quality and eight studies were of fair quality. CONCLUSION This is one of the first pooled meta-analysis studies on the role of miRNAs in the prognosis of melanoma. Our findings are inconclusive but suggest that miRNA expression could predict poor survival in melanoma patients. Therefore, miRNA expression could act as promising prognostic marker for melanoma.
Collapse
Affiliation(s)
- Shanthi Sabarimurugan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Ankita Das
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shrestha Das
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gothandam K M
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rama Jayaraj
- College of Health and Human Sciences, Charles Darwin University, Ellengowan Drive, Darwin, NT, 0909, Australia.
| |
Collapse
|
11
|
Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool? Crit Rev Oncol Hematol 2018; 132:1-8. [PMID: 30447913 DOI: 10.1016/j.critrevonc.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The discovery that microRNAs (miRNAs) - short, non-coding RNA molecules which regulate gene expression - are implicated in many types of cancer has revolutionised cancer research, giving hope for a new perspective in diagnostics and treatment. Dysregulation of miRNAs occurs in various malignancies, including colorectal cancer (CRC). CRC is one of the leading causes of cancer-related death and in most countries its incidence is still rising. Among several miRNAs which have been linked to CRC, miR-34 has attracted particular attention. This miRNA is involved in the regulation of cell cycle and apoptosis through multiple signaling pathways such as p53, Ra and Wnt signaling. Understanding its role in CRC may facilitate its future use as a diagnostic tool and therapeutic target.
Collapse
Affiliation(s)
- Julia B Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland.
| |
Collapse
|
12
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases. Oncotarget 2018; 8:35681-35699. [PMID: 28415685 PMCID: PMC5482608 DOI: 10.18632/oncotarget.16051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies worldwide, and its pathogenesis is complex. In this study, we identified differentially expressed miRNAs (DEMs) and genes (DEGs) of ESCA from The Cancer Genome Atlas (TCGA) database. The diagnostic values of DEMs were determined by receiver operating characteristic (ROC) analyses and validated based on data from Gene Expression Omnibus (GEO). The top five DEMs with the best diagnostic values were selected, and their potential targets were predicted by various in silico methods. These target genes were then identified among the DEGs from TCGA. Furthermore, the overlapping genes were subjected to protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The miRNA-transcription factor (TF) regulatory relations were determined using CircuitsDB and TransmiR. Finally, the regulatory networks of miRNA-TF and miRNA-gene were constructed and analyzed. A total of 136 DEMs and 3541 DEGs were identified in ESCA. The top five DEMs with the highest area under the receiver operating characteristic curve (AUC) values were miRNA-93 (0.953), miRNA-21 (0.928), miRNA-4746 (0.915), miRNA-196a-1 (0.906) and miRNA-196a-2 (0.906). The combined AUC of these five DEMs was 0.985. The KEGG analysis with 349 overlapping genes showed that the calcium signaling pathway and the neuroactive ligand-receptor interaction were the most relevant pathways. The regulatory networks of miRNA-TF and miRNA-gene, including 38 miRNA-TF and 560 miRNA-gene pairs, were successfully established. Our findings may provide new insights into the molecular mechanisms of ESCA pathogenesis. Future research will aim to explore the role of novel miRNAs in the pathogenesis and improve the early diagnosis of ESCA.
Collapse
|
14
|
Kalinina TS, Kononchuk VV, Gulyaeva LF. Expression of hormonal carcinogenesis genes and related regulatory microRNAs in uterus and ovaries of DDT-treated female rats. BIOCHEMISTRY (MOSCOW) 2017; 82:1118-1128. [DOI: 10.1134/s0006297917100042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Peng Z, Pan L, Niu Z, Li W, Dang X, Wan L, Zhang R, Yang S. Identification of microRNAs as potential biomarkers for lung adenocarcinoma using integrating genomics analysis. Oncotarget 2017; 8:64143-64156. [PMID: 28969058 PMCID: PMC5609990 DOI: 10.18632/oncotarget.19358] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer, but novel biomarkers for early diagnosis are lacking. Extensive effort has been exerted to identify miRNA biomarkers in LUAD. Unfortunately, high inter-lab variability and small sample sizes have produced inconsistent conclusions in this field. To resolve the above-mentioned limitations, we performed a comprehensive analysis based on LUAD miRNome profiling studies using the robust rank aggregation (RRA) method. Moreover, miRNA-gene interaction network, pathway enrichment analysis and Kaplan-Meier survival curves were used to investigate the clinical values and biological functions of the identified miRNAs. A total of six common differentially expressed miRNAs (DEMs) were identified in LUAD. An independent cohort further confirmed that four miRNAs (miR-21-5p, miR-210-3p, miR-182-5p and miR-183-5p) were up-regulated and two miRNAs (miR-126-3p and miR-218-5p) were down-regulated in LUAD tissues. Pathway enrichment analysis also suggested that the above-listed six DEMs may affect LUAD progression via the estrogen signaling pathway. Survival analysis based on the TCGA dataset revealed the potential prognostic values of six DEMs in patients with LUAD (P-value<0.01). In conclusion, we identified a panel of six miRNAs from LUAD using miRNome profiling studies. Our results provide evidence for the use of these six DEMs as novel diagnostic and prognostic biomarkers for LUAD patients.
Collapse
Affiliation(s)
- Zhuo Peng
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Zequn Niu
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Wei Li
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiaoyan Dang
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Lin Wan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Rui Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuanying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
16
|
Hu S, Ran Y, Chen W, Zhang Y, Xu Y. MicroRNA-326 inhibits cell proliferation and invasion, activating apoptosis in hepatocellular carcinoma by directly targeting LIM and SH3 protein 1. Oncol Rep 2017; 38:1569-1578. [PMID: 28713953 DOI: 10.3892/or.2017.5810] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth-most common cancer and third leading cause of cancer-related deaths worldwide. Increasing evidence indicates that dysregulation of microRNAs is often observed in HCC, and has been extensively investigated in terms of cancer formation, progression, diagnosis, therapy, and prognosis. Recently, microRNA-326 (miR-326) has been demonstrated to play important roles in multiple types of human cancer. However, the expression pattern, clinical significance, roles and regulatory mechanisms of miR-326 in HCC have yet to be elucidated. In this study, miR-326 was frequently downregulated in HCC tissues and cell lines. Low miR-326 expression was significantly associated with the TNM stage, differentiation and lymph node metastasis of HCC patients. Further functional assays demonstrated that the recovered miR-326 expression inhibited HCC cell proliferation and invasion and activated cell apoptosis in vitro. In addition, LIM and SH3 protein 1 (LASP1) was identified as a direct target gene of miR-326 in HCC. Furthermore, LASP1 was upregulated in HCC tissues and cell lines. The expression level of LASP1 mRNA was inversely correlated with that of miR-326 in HCC tissues. Moreover, LASP1 silencing elicited effects similar to miR-326 overexpression on HCC cells, and LASP1 upregulation markedly reversed the effects of miR-326 overexpression on HCC cells. These results revealed that miR-326 suppressed the progression of HCC by directly targeting LASP1. Therefore, miR-326 may be used as a potential therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yun Ran
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Wenlin Chen
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yuncheng Zhang
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yongjian Xu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
17
|
Li Q, Li H, Zhao X, Wang B, Zhang L, Zhang C, Zhang F. DNA Methylation Mediated Downregulation of miR-449c Controls Osteosarcoma Cell Cycle Progression by Directly Targeting Oncogene c-Myc. Int J Biol Sci 2017; 13:1038-1050. [PMID: 28924385 PMCID: PMC5599909 DOI: 10.7150/ijbs.19476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Qing Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hua Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xueling Zhao
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
18
|
Qu K, Zhang X, Lin T, Liu T, Wang Z, Liu S, Zhou L, Wei J, Chang H, Li K, Wang Z, Liu C, Wu Z. Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation. Sci Rep 2017; 7:1692. [PMID: 28490741 PMCID: PMC5431820 DOI: 10.1038/s41598-017-01904-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/03/2017] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer (PC) is a highly fatal disease worldwide and is often misdiagnosed in its early stages. The exploration of novel non-invasive biomarkers will definitely benefit PC patients. Recently, circulating miRNAs in body fluids are emerging as non-invasive biomarkers for PC diagnosis. In this study, we first conducted comprehensive robust rank aggregation (RRA) analysis based on 21 published miRome profiling studies. We statistically identified and clinically validated a miRNA expression pattern in PC patients. These miRNAs consisted of four up-regulated (hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-210-3p and hsa-miR-155-5p) and three down-regulated miRNAs (hsa-miR-217, hsa-miR-148a-3p and hsa-miR-375). Among them, hsa-miR-21-5p was one of the most highly expressed miRNAs in the serum of PC patients. Our validation test further suggested a relatively high accuracy of serum hsa-miR-21-5p levels in the diagnosis of PC, with a sensitivity of 0.77 and a specificity of 0.80. Finally, a diagnostic meta-analysis based on 9 studies also revealed favorable sensitivity and specificity of circulating hsa-miR-21-5p for the diagnosis of PC (pooled sensitivity and specificity were 0.76 and 0.74, respectively), which was consistent with our findings. Taken together, as one of the most aberrantly expressed miRNAs in PC, circulating hsa-miR-21-5p might be a promising serum biomarker in patients with PC.
Collapse
Affiliation(s)
- Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Sushun Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Jichao Wei
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
19
|
Epigallocatechin-3-Gallate Upregulates miR-221 to Inhibit Osteopontin-Dependent Hepatic Fibrosis. PLoS One 2016; 11:e0167435. [PMID: 27935974 PMCID: PMC5147893 DOI: 10.1371/journal.pone.0167435] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Osteopontin (OPN) promotes hepatic fibrosis, and developing therapies targeting OPN expression in settings of hepatic injury holds promise. The polyphenol epigallocatechin-3-gallate (EGCG), found in high concentrations in green tea, downregulates OPN expression through OPN mRNA degradation, but the mechanism is unknown. Previous work has shown that microRNAs can decrease OPN mRNA levels, and other studies have shown that EGCG modulates the expression of multiple microRNAs. In our study, we first demonstrated that OPN induces hepatic stellate cells to transform into an activated state. We then identified three microRNAs which target OPN mRNA: miR-181a, miR-10b, and miR-221. In vitro results show that EGCG upregulates all three microRNAs, and all three microRNAs are capable of down regulating OPN mRNA when administered alone. Interestingly, only miR-221 is necessary for EGCG-mediated OPN mRNA degradation and miR-221 inhibition reduces the effects of EGCG on cell function. In vivo experiments show that thioacetamide (TAA)-induced cell cytotoxicity upregulates OPN expression; treatment with EGCG blocks the effects of TAA. Furthermore, chronic treatment of EGCG in vivo upregulates all three microRNAs equally, suggesting that in more chronic treatment all three microRNAs are involved in modulating OPN expression. We conclude that in in vitro and in vivo models of TAA-induced hepatic fibrosis, EGCG inhibits OPN-dependent injury and fibrosis. EGCG works primarily by upregulating miR-221 to accelerate OPN degradation. EGCG may therefore have utility as a protective agent in settings of liver injury.
Collapse
|
20
|
Yu M, Lin Y, Zhou Y, Jin H, Hou B, Wu Z, Li Z, Jian Z, Sun J. MiR-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SMAD4. Onco Targets Ther 2016; 9:4705-14. [PMID: 27536132 PMCID: PMC4973778 DOI: 10.2147/ott.s88233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background/aim Increasing evidence show microRNAs (miRNAs) are engaged in hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of miR-144 in HCC, as well as to identify its underlying mechanism. Methods The expression levels of miR-144 were assessed in multiple HCC cell lines, as well as in liver tissues from patients with HCC. We further examined the effects of miR-144 on HCC. The molecular target of miR-144 was identified using a computer algorithm and confirmed experimentally. Results We found that the levels of miR-144 were frequently downregulated in human HCC tissues and cell lines, and overexpression of miR-144 dramatically inhibited HCC metastasis, invasion, cell cycle, epithelial–mesenchymal transition, and chemoresistance. We further verified the SMAD4 as a novel and direct target of miR-144 in HCCs. Conclusion Taken together, overexpression of miR-144 or downregulation of SMAD4 may prove beneficial as therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ye Lin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zhou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Haosheng Jin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhongshi Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhide Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jian Sun
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
21
|
Hilly O, Pillar N, Stern S, Strenov Y, Bachar G, Shomron N, Shpitzer T. Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol Lett 2016; 12:1729-1736. [PMID: 27602107 PMCID: PMC4998201 DOI: 10.3892/ol.2016.4892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Oral cavity squamous cell carcinoma may be more aggressive at presentation and recurrence in young patients compared with older patients. Dysregulation of microRNAs (miRNAs or miRs) has been associated with the development and prognosis of oral cavity cancer. The present study investigated miRNA expression in carcinoma of the oral tongue in young patients. miRNA expression profiles were evaluated in formalin-fixed, paraffin-embedded samples of tumor and normal mucosa from 12 patients aged <30 years old with squamous cell carcinoma of the tongue. The levels of let-7f-5p, miR-30b-5p and let-7e-5p were upregulated in tumors (P<0.05). The expression of let-7f-5p was upregulated in non-aggressive tumors, while the expression of let-7e-5p was upregulated in aggressive tumors, compared with the corresponding normal tissue. Aggressive tumors had higher levels of let-7c, miR-130a-3p, miR-361-5p, miR-99a-5p, miR-29c-3p and let-7d-5p than non-aggressive tumors (P<0.05). The findings remained significant for let-7c upon false-discovery rate correction. An excellent correlation was noticed on validation of NanoString counts by quantitative polymerase chain reaction. The comparison with published findings in adults demonstrated a unique miRNA signature in young patients with aggressive disease. Aggressive oral cavity cancer in patients <30 years old is associated with a distinctive expression pattern of the let-7 family. Larger studies including direct comparison with older patients are warranted.
Collapse
Affiliation(s)
- Ohad Hilly
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Pillar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sagit Stern
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yulia Strenov
- Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Gideon Bachar
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Thomas Shpitzer
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Jin H, Yu M, Lin Y, Hou B, Wu Z, Li Z, Sun J. MiR-502-3P suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SET. Onco Targets Ther 2016; 9:3281-9. [PMID: 27330307 PMCID: PMC4898420 DOI: 10.2147/ott.s87183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background/aim Increasing evidences show that microRNAs are engaged in hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of miR-502-3P in HCC and to identify its underlying mechanism. Methods The expression levels of miR-502-3P were assessed in multiple HCC cell lines and in liver tissues of patients with HCC. We further examined the effects of miR-502-3P on malignant behavior of HCC. The molecular target of miR-502-3P was identified using a computer algorithm and confirmed experimentally. Results Downregulation of miR-502-3P was found in both HCC cell lines and human samples. Overexpression of miR-502-3P dramatically inhibits HCC proliferation, metastasis, invasion, and cell adhesion. We further verify the SET as a novel and direct target of miR-502-3P in HCCs. Conclusion Taken together, overexpression of miR-502-3P or downregulation of SET may prove beneficial as a therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Haosheng Jin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ye Lin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhongshi Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhide Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jian Sun
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
23
|
Chen J, Yan D, Wu W, Zhu J, Ye W, Shu Q. MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol Rep 2016; 35:3285-92. [PMID: 27035216 DOI: 10.3892/or.2016.4719] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs, which serve as post-transcriptional modulators of numerous genes, have been found to be important regulators during the pathogenesis of osteosarcoma. This study demonstrates for the first time that microRNA-130a (miR-130a) is significantly upregulated in osteosarcoma, and associated with the metastasis of osteosarcoma. Elevated level of miR-130a was closely correlated with poor clinical features and prognosis of osteosarcoma patients. In vitro assays revealed that miR-130a could potentiate the migration, invasion and the epithelial-mesenchymal transtion (EMT) of osteosarcoma cells. Moreover, phosphatase and tensin homolog (PTEN) was confirmed as not only a direct downstream target but also a functional mediator of miR-130a. MiR-130a exerted promoting effects on metastatic behavior and EMT of osteosarcoma cells through suppressing PTEN expression. Based on these findings, we conclude that miR-130a is a promising prognostic biomarker for osteosarcoma patients, and targeting miR-130a may be a potential treatment option for osteosarcoma patients with metastasis.
Collapse
Affiliation(s)
- Jiansong Chen
- Department of Orthopaedics, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Dingding Yan
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Weiliang Wu
- Department of Orthopaedics, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jian Zhu
- Department of Orthopaedics, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wensong Ye
- Department of Orthopaedics, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qiang Shu
- Department of Tumor Surgery, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
24
|
Van Keuren‐Jensen KR, Malenica I, Courtright AL, Ghaffari LT, Starr AP, Metpally RP, Beecroft TA, Carlson EW, Kiefer JA, Pockros PJ, Rakela J. microRNA changes in liver tissue associated with fibrosis progression in patients with hepatitis C. Liver Int 2016; 36:334-43. [PMID: 26189820 PMCID: PMC5049661 DOI: 10.1111/liv.12919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Accumulating evidence indicates that microRNAs play a role in a number of disease processes including the pathogenesis of liver fibrosis in hepatitis C infection. Our goal is to add to the accruing information regarding microRNA deregulation in liver fibrosis to increase our understanding of the underlying mechanisms of pathology and progression. METHODS We used next generation sequencing to profile all detectable microRNAs in liver tissue and serum from patients with hepatitis C, stages F1-F4 of fibrosis. RESULTS We found altered expression of several microRNAs, in particular, miR-182, miR199a-5p, miR-200a-5p and miR-183 were found to be significantly upregulated in tissue from liver biopsies of hepatitis C patients with advanced fibrosis, stage F3 and F4, when compared with liver biopsies from patients with early fibrosis, stages F1 and F2. We also found miR-148-5p, miR-1260b, miR-122-3p and miR-378i among the microRNAs most significantly down-regulated from early to advanced fibrosis of the liver. We also sequenced the serum microRNAs; however, we were not able to detect significant changes in circulating microRNAs associated with fibrosis stage after adjusting for multiple tests. CONCLUSIONS Adding measurements of tissue microRNAs acquired during routine biopsies will continue to increase our knowledge of underlying mechanisms of fibrosis. Our goal is that these data, in combination with studies from other researchers and future long-term studies, could be used to enhance the staging accuracy of liver biopsies and expand the surveillance of patients at increased risk for cancer and progression to advanced fibrosis.
Collapse
Affiliation(s)
| | - Ivana Malenica
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | - Alex P. Starr
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | | | | | | | - Jorge Rakela
- Gastroenterology and HepatologyMayo ClinicScottsdaleAZUSA
| |
Collapse
|
25
|
Zheng QF, Zhang JY, Wu JS, Zhang Y, Liu M, Bai L, Zhang JY, Zhao J, Chen Y, Duan ZP, Zheng SJ. Upregulation of miRNA-130a Represents Good Prognosis in Patients With HBV-Related Acute-on-Chronic Liver Failure: A Prospective Study. Medicine (Baltimore) 2016; 95:e2639. [PMID: 26871786 PMCID: PMC4753881 DOI: 10.1097/md.0000000000002639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/01/2016] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Prompt and accurate prediction of the outcome is the key to make correct medical decision and to reduce the mortality in patients with HBV-related acute-on-chronic liver failure (ACLF). Increasing evidence have certified that small, noncoding microRNAs (miRNAs) play critically regulatory roles in the pathogenesis of liver diseases. However, it remains unclear whether and how miRNAs involve in the prognosis of ACLF.Microarray analysis was performed to characterize the miRNA expression profiles in liver tissues from 1 HBV-related ACLF patient and 1 matched healthy control. Nine miRNAs with at least 5 folds difference between these 2 persons were picked out. The present prospective study involving 39 HBV-related ACLF patients including 20 recovered and 19 nonrecovered patients, which include death (n = 9) and liver transplantation (n = 10). The serum expression of these miRNAs detected by quantitative real-time Polymerase Chain Reaction (qRT-RCR) was then compared between the 2 groups. Moreover, the correlation between the serum miRNAs and the prognostic indexes for ACLF was analyzed.The result of microarray analysis showed 9 miRNAs had different expression in liver tissues of ACLF patient compared with healthy control (upregulated: miRNA-130a, -21, -143, and -200a; downregulated: miRNA-486-5p, -192, -148a, -122, and -194). Unlike the expression profiles in liver tissue, 8 serum miRNAs except miRNA-194 were markedly upregulated in ACLF patients (P < 0.05). Remarkably, the serum expression of miRNA-130a and miRNA-486-5p was higher in recovered than nonrecovered ACLF patients (P < 0.05). Especially, the serum miRNA-130a was negatively correlated with international normalized ratio, prothrombin time, Model for End-Stage Liver Disease score, and positively correlated with prothrombin time activity. The AUC for recovered versus nonrecovered patients of miRNA-130a was 0.741 (P = 0.02).miRNA-130a might be a useful prognosis biomarker in patients with HBV-related ACLF.
Collapse
Affiliation(s)
- Qing-Fen Zheng
- From the Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China (Q-F Z, J-Y Z, M L, L B, J-Y Z, J Z, Y C, Z-P D, S-J Z); Department of hepatobiliary surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, China (J-S W); Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q-F Z); Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, China (Q-F Z); and Intensive Care Unit of Liver Disease, The 302 hospital of Chinese PLA, Beijing, China (Y Z)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yao SX, Zhang GS, Cao HX, Song G, Li ZT, Zhang WT. Correlation between microRNA-21 and expression of Th17 and Treg cells in microenvironment of rats with hepatocellular carcinoma. ASIAN PAC J TROP MED 2015; 8:762-5. [PMID: 26433664 DOI: 10.1016/j.apjtm.2015.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To study the correlation between miR-21 and Treg/Th17 ratio in the microenvironment of rats with hepatocellular carcinoma. METHODS Diethylnitrosamine was used to build the hepatocellular carcinoma model of rats; the content of Treg cells and Th17 cells and the expression of miR-21 in the peripheral blood of rats with hepatocellular carcinoma were detected. The statistical analysis was performed on the correlation between miR-21 expression and Treg/Th17 ratio. RESULTS Hepatocellular carcinoma model of rats was successfully constructed. The proportion of Th17 cells among all CD4(+)T cells in the peripheral blood of rats with hepatocellular carcinoma was 5.319%, which was higher than the control group; while the proportion of Treg cells was 9.472%, which was higher than the control group. Treg/Th17 ratio in the model group was 1.781, compared with 1.478 in the control group. The expression of miR-21 was increased in the peripheral blood of rats with hepatocellular carcinoma and it showed a positive correlation with the ratio of Treg/Th17. CONCLUSIONS There is a positive correlation between the expression level of miR-21 and the ratio of Treg/Th17.
Collapse
Affiliation(s)
- Shao-Xin Yao
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan, Hebei, 063000, China
| | - Gui-Song Zhang
- Department of Interventional Therapy, Luanxian People's Hospital, Tangshan, Hebei, 063700, China
| | - Hong-Xia Cao
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan, Hebei, 063000, China
| | - Guang Song
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan, Hebei, 063000, China.
| | - Zang-Tuo Li
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan, Hebei, 063000, China
| | - Wei-Tao Zhang
- Department of Interventional Therapy, Affiliated Tangshan Workers Hospital of Hebei Medical University, Tangshan, Hebei, 063000, China
| |
Collapse
|