1
|
Bourne N, Keith CA, Miller AL, Pyles RB, Milligan GN. Impact of CD4 + T lymphocytes on the cellular and molecular milieu of the vaginal mucosa following HSV-2 challenge of immune guinea pigs. Virology 2023; 588:109907. [PMID: 39492229 DOI: 10.1016/j.virol.2023.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
CD4+ and CD8+ tissue resident memory cells (TRM) express many shared anti-viral activities upon re-exposure to virus. CD4+ T cells were depleted from HSV-immune guinea pigs to identify CD4-dependent functions in the vaginal mucosa following HSV-2 challenge. The incidence of animals shedding HSV-2 fell rapidly after challenge in control animals but remained significantly higher through day four post infection in CD4-depleted animals. Genes encoding CD14, IFN-γ, CCL2, and CCL5 were up-regulated in the vaginal mucosa of both groups following challenge. However, significantly higher expression of CD107b, IL-15, and TLR9 but lower expression of CD20, IL-21, and CCL5 was detected in CD4-depleted- compared to control-treated animals. Further, antigen stimulation of CD4+ TRM increased the expression of IFN-γ, IL-2, IL-21, IL-17A, and CCL5. The impact of these gene expression patterns on the recruitment and maintenance of the cellular milieu of the vaginal mucosa upon virus challenge is discussed.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| | - Celeste A Keith
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| |
Collapse
|
2
|
Bourne N, Keith CA, Miller AL, Pyles RB, Cohen G, Milligan GN. Boosting of vaginal HSV-2-specific B and T cell responses by intravaginal therapeutic immunization results in diminished recurrent HSV-2 disease. J Virol 2023; 97:e0066923. [PMID: 37655939 PMCID: PMC10537585 DOI: 10.1128/jvi.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 09/02/2023] Open
Abstract
Boosting herpes simplex virus (HSV)-specific immunity in the genital tissues of HSV-positive individuals to increase control of HSV-2 recurrent disease and virus shedding is an important goal of therapeutic immunization and would impact HSV-2 transmission. Experimental therapeutic HSV-2 vaccines delivered by a parenteral route have resulted in decreased recurrent disease in experimental animals. We used a guinea pig model of HSV-2 infection to test if HSV-specific antibody and cell-mediated responses in the vaginal mucosa would be more effectively increased by intravaginal (Ivag) therapeutic immunization compared to parenteral immunization. Therapeutic immunization with HSV glycoproteins and CpG adjuvant increased glycoprotein-specific IgG titers in vaginal secretions and serum to comparable levels in Ivag- and intramuscular (IM)-immunized animals. However, the mean numbers of HSV glycoprotein-specific antibody secreting cells (ASCs) and IFN-γ SCs were greater in Ivag-immunized animals demonstrating superior boosting of immunity in the vaginal mucosa compared to parenteral immunization. Therapeutic Ivag immunization also resulted in a significant decrease in the cumulative mean lesion days compared to IM immunization. There was no difference in the incidence or magnitude of HSV-2 shedding in either therapeutic immunization group compared to control-treated animals. Collectively, these data demonstrated that Ivag therapeutic immunization was superior compared to parenteral immunization to boost HSV-2 antigen-specific ASC and IFN-γ SC responses in the vagina and control recurrent HSV-2 disease. These results suggest that novel antigen delivery methods providing controlled release of optimized antigen/adjuvant combinations in the vaginal mucosa would be an effective approach for therapeutic HSV vaccines. IMPORTANCE HSV-2 replicates in skin cells before it infects sensory nerve cells where it establishes a lifelong but mostly silent infection. HSV-2 occasionally reactivates, producing new virus which is released back at the skin surface and may be transmitted to new individuals. Some HSV-specific immune cells reside at the skin site of the HSV-2 infection that can quickly activate and clear new virus. Immunizing people already infected with HSV-2 to boost their skin-resident immune cells and rapidly control the new HSV-2 infection is logical, but we do not know the best way to administer the vaccine to achieve this goal. In this study, a therapeutic vaccine given intravaginally resulted in significantly better protection against HSV-2 disease than immunization with the same vaccine by a conventional route. Immunization by the intravaginal route resulted in greater stimulation of vaginal-resident, virus-specific cells that produced antibody and produced immune molecules to rapidly clear virus.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Celeste A. Keith
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard B. Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gary Cohen
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Cabrera JR, Rodríguez-Izquierdo I, Jiménez JL, Muñoz-Fernández MÁ. Analysis of ALS-related proteins during herpes simplex virus-2 latent infection. J Neuroinflammation 2020; 17:371. [PMID: 33287823 PMCID: PMC7722435 DOI: 10.1186/s12974-020-02044-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genetics have provided hints on potential molecular pathways involved in neurodegenerative diseases (NDD). However, the number of cases caused exclusively by genetic alterations is low, suggesting an important contribution of environmental factors to NDDs. Among these factors, viruses like herpes simplex viruses (HSV-2), capable of establishing lifelong infections within the nervous system (NS), are being proposed to have a role in NDDs. Despite promising data, there is a significant lack of knowledge on this and an urgent need for more research. METHODS We have set up a mouse model to study HSV latency and its associated neuroinflammation in the spinal cord. The goal of this model was to observe neuroinflammatory changes caused by HSV latent infections, and if those changes were similar to alterations observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients. RESULTS In infected spinal cords, we have observed a strong leukocyte infiltration and a severe alteration of microglia close to motor neurons. We have also analyzed ALS-related proteins: we have not found changes in TDP-43 and Fus in neurons, but interestingly, we have found decreased protein levels of C9orf72, of which coding gene is severely altered in some familial forms of ALS and is critical for microglia homeostasis. CONCLUSIONS Latent infection of HSV in the spinal cord showed altered microglia and leukocyte infiltration. These inflammatory features resembled to those observed in the spinal cord of ALS patients. No changes mimicking ALS neuropathology, such as TDP-43 cytoplasmic inclusions, were found in infected spinal cords, but a decrease in protein levels of C9orf72 was observed. Then, further studies should be required to determine whether HSV-2 has a role in ALS.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, España
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ignacio Rodríguez-Izquierdo
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, España
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, España.
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Spain HIV HGM BioBanco, Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007, Madrid, Spain.
| | - María Ángeles Muñoz-Fernández
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, España.
- Spain HIV HGM BioBanco, Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007, Madrid, Spain.
| |
Collapse
|
4
|
Marshak JO, Dong L, Koelle DM. The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines. Methods Mol Biol 2020; 2060:429-454. [PMID: 31617196 DOI: 10.1007/978-1-4939-9814-2_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field.
Collapse
Affiliation(s)
- Joshua O Marshak
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA. .,Department of Global Health, University of Washington, Seattle, WA, USA. .,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
5
|
Increased Frequency of Virus Shedding by Herpes Simplex Virus 2-Infected Guinea Pigs in the Absence of CD4 + T Lymphocytes. J Virol 2019; 93:JVI.01721-18. [PMID: 30463981 DOI: 10.1128/jvi.01721-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Reactivation of herpes simplex virus 2 (HSV-2) results in infection of epithelial cells at the neuro-epithelial junction and shedding of virus at the epithelial surface. Virus shedding can occur in either the presence or absence of clinical disease and is usually of short duration, although the shedding frequency varies among individuals. The basis for host control of virus shedding is not well understood, although adaptive immune mechanisms are thought to play a central role. To determine the importance of CD4+ T cells in control of HSV-2 shedding, this subset of immune cells was depleted from HSV-2-infected guinea pigs by injection of an anti-CD4 monoclonal antibody (MAb). Guinea pigs were treated with the depleting MAb after establishment of a latent infection, and vaginal swabs were taken daily to monitor shedding by quantitative PCR. The cumulative number of HSV-2 shedding days and the mean number of days virus was shed were significantly increased in CD4-depleted compared to control-treated animals. However, there was no difference in the incidence of recurrent disease between the two treatment groups. Serum antibody levels and the number of HSV-specific antibody-secreting cells in secondary lymphoid tissues were unaffected by depletion of CD4+ T cells; however, the frequency of functional HSV-specific, CD8+ gamma interferon-secreting cells was significantly decreased. Together, these results demonstrate an important role for CD4+ T lymphocytes in control of virus shedding that may be mediated in part by maintenance of HSV-specific CD8+ T cell populations. These results have important implications for development of therapeutic vaccines designed to control HSV-2 shedding.IMPORTANCE Sexual transmission of HSV-2 results from viral shedding following reactivation from latency. The immune cell populations and mechanisms that control HSV-2 shedding are not well understood. This study examined the role of CD4+ T cells in control of virus shedding using a guinea pig model of genital HSV-2 infection that recapitulates the shedding of virus experienced by humans. We found that the frequency of virus-shedding episodes, but not the incidence of clinical disease, was increased by depletion of CD4+ T cells. The HSV-specific antibody response was not diminished, but frequency of functional HSV-reactive CD8+ T cells was significantly diminished by CD4 depletion. These results confirm the role of cell-mediated immunity and highlight the importance of CD4+ T cells in controlling HSV shedding, suggesting that therapeutic vaccines designed to reduce transmission by controlling HSV shedding should include specific enhancement of HSV-specific CD4+ T cell responses.
Collapse
|
6
|
Development of disease and immunity at the genital epithelium following intrarectal inoculation of male guinea pigs with herpes simplex virus type 2. Virology 2018; 526:180-188. [PMID: 30412859 DOI: 10.1016/j.virol.2018.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/15/2023]
Abstract
Most analyses of genital immunity to herpes simplex virus type 2 (HSV-2) have been performed in females, consequently immune protection of the male genital epithelium is incompletely understood. We developed a model of male genital HSV-2 infection resulting from intrarectal inoculation of guinea pigs. Vesicular lesions developed transiently on the perineum and foreskin concurrent with acute virus shedding. Virus shedding and recurrent genital lesions were also detected after establishment of a latent infection. Analysis of perineum and foreskin RNA detected transcripts for IFNγ, proinflammatory and regulatory cytokines, and for genes involved in migration and regulation of leukocytes. HSV-specific T cells were detected in lymphoid and genital tissues after resolution of the primary infection whereas virus-specific antibody secreting cells were detected only in lymphoid tissue. Taken together, the ability to quantify pathogenesis and local immunity in this guinea pig model represent an important advance towards understanding immunity to HSV-2 in males.
Collapse
|
7
|
Chattopadhyay D, Mukhopadhyay A, Ojha D, Sadhukhan P, Dutta S. Immuno-metabolic changes in herpes virus infection. Cytokine 2018; 112:52-62. [PMID: 29960669 DOI: 10.1016/j.cyto.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Recent evidences indicate that change in cellular metabolic pathways can alter immune response and function of the host; emphasizing the role of metabolome in health and diseases. Human Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) causes diseases from asymptomatic to highly prevalent oral and genital herpes, recurrent blisters or neurological complications. Immune responses against HSV are complex with delicate interplay between innate signaling pathways and adaptive immune responses. The innate response involves the induction of protective IFN-1; while Natural Killer (NK) cells and plasmacytoid Dendritic Cells (pDC) confer in vivo adaptive anti-HSV response along with humoral and cellular components in controlling infection and latency. Metabolic changes lead to up-/down-regulation of several cytokines and chemokines like IFN-γ, IL-2, IL-4, IL-10 and MIP1β in HSV infection and recurrences. Recently, the viral protein ICP0 has been identified as an attenuator of TLR signaling, that inhibit innate responses to HSV. This review will summarize the role of metabolome in innate and adaptive effectors in infection, pathogenesis and immune control of HSV, highlighting the delicate interplay between the metabolic changes and immunity.
Collapse
Affiliation(s)
- Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; ICMR-Virus Unit, Infectious Diseases and Beliaghata General Hospital, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata, West Bengal 700010, India.
| | - Aparna Mukhopadhyay
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Durbadal Ojha
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Provash Sadhukhan
- ICMR-Virus Unit, Infectious Diseases and Beliaghata General Hospital, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata, West Bengal 700010, India
| | - Shanta Dutta
- ICMR-National Institute of Cholera & Enteric Diseases, P- C.I.T. Scheme XM, 33 CIT Road, Beliaghata, Kolkata, West Bengal 700010, India
| |
Collapse
|
8
|
Veselenak RL, Milligan GN, Miller AL, Pyles RB, Bourne N. Transcriptional Analysis of the Guinea Pig Mucosal Immune Response to Intravaginal Infection with Herpes Simplex Virus Type 2. Virology 2018; 518:349-357. [PMID: 29604476 DOI: 10.1016/j.virol.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Genital herpes infection in guinea pigs closely models human infection but tools for immune characterization are limited. Immunity to HSV infection at the vaginal epithelial surface was characterized in guinea pigs using PCR-based array analysis of vaginal swab samples. IFNγ was one of the most significantly upregulated genes throughout the infection and over 40% of genes with significantly altered expression were linked to IFNγ based on INTERFEROME analysis. IFNγ transcripts and biologically active IFNγ at the genital mucosa were confirmed by RTPCR and IFNγ reporter cells. Gene ontology analysis revealed activation of many biological processes related to genital immunity shared by humans and mice demonstrating the similarities of the local immune response to primary genital HSV-2 infection in guinea pigs and other established models. This transcription-based array will be useful for dissection of immunity during reactivation from latency, an infection outcome that is not well recapitulated by other animal models.
Collapse
Affiliation(s)
- Ronald L Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA 77555.
| |
Collapse
|
9
|
A combined carrier-adjuvant system of peptide nanofibers and toll-like receptor agonists potentiates robust CD8+ T cell responses. Vaccine 2017; 36:438-441. [PMID: 29248267 DOI: 10.1016/j.vaccine.2017.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
Improving CD8+ T cell responses activated by subunit vaccination is crucial for improving vaccine efficacy and safety. Here we report a carrier-adjuvant system composed of self-assembling peptide nanofibers presenting an immunodominant antigen from herpes simplex virus (HSV) and toll-like receptor (TLR) agonists that induces robust effector and memory CD8+ T cell responses in mice. The effector function of vaccine-induced CD8+ T cells was influenced by the type of TLR agonist. The use of CpG (TLR9 agonist) resulted in significantly greater specific in vivo cytotoxicity and trended towards more cells producing both IFN-γ and TNF-α compared to gardiquimod (TLR7 agonist). Prime-boost immunization with peptide nanofibers combined with either adjuvant resulted in development of HSV-specific CD8+ memory T cells further demonstrating the capability of the carrier-adjuvant system to induce strong HSV-specific CD8+ T cell responses. Inclusion of peptide epitope-nanofibers in protein-based subunit vaccines should increase the functional spectrum of the vaccine-elicited immune response and protection.
Collapse
|
10
|
Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir. J Virol 2017; 91:JVI.02257-16. [PMID: 28228587 DOI: 10.1128/jvi.02257-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.
Collapse
|
11
|
Persson J, Zhang Y, Olafsdottir TA, Thörn K, Cairns TM, Wegmann F, Sattentau QJ, Eisenberg RJ, Cohen GH, Harandi AM. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs. Front Immunol 2016; 7:640. [PMID: 28082979 PMCID: PMC5183738 DOI: 10.3389/fimmu.2016.00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.
Collapse
Affiliation(s)
- Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yuan Zhang
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Karolina Thörn
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | | | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
12
|
Perry CL, Banasik BN, Gorder SR, Xia J, Auclair S, Bourne N, Milligan GN. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection. J Immunol Methods 2016; 439:1-7. [PMID: 27659010 DOI: 10.1016/j.jim.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 11/17/2022]
Abstract
Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency.
Collapse
Affiliation(s)
- Clarice L Perry
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Brianne N Banasik
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Summer R Gorder
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Jingya Xia
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sarah Auclair
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nigel Bourne
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
| | - Gregg N Milligan
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|