1
|
Mirlohi MS, Pishbin E, Dezhkam R, Kiani MJ, Shamloo A, Salami S. Innovative PNA-LB mediated allele-specific LAMP for KRAS mutation profiling on a compact lab-on-a-disc device. Talanta 2024; 276:126224. [PMID: 38772176 DOI: 10.1016/j.talanta.2024.126224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Tailored healthcare, an approach focused on individual patients, requires integrating emerging interdisciplinary technologies to develop accurate and user-friendly diagnostic tools. KRAS mutations, prevalent in various common cancers, are crucial determinants in selecting patients for novel KRAS inhibitor therapies. This study presents a novel state-of-the-art Lab-on-a-Disc system utilizing peptide nucleic acids-loop backward (PNA-LB) mediated allele-specific loop-mediated isothermal amplification (LAMP) for detecting the frequent G12D KRAS mutation, signifying its superiority over alternative mutation detection approaches. The designed Lab-on-a-Disc system demonstrated exceptional preclinical and technical precision, accuracy, and versatility. By applying varying cutoff values to PNA- LB LAMP reactions, the assay's sensitivity and specificity were increased by 80 % and 90 %, respectively. The device's key advantages include a robust microfluidic Lab-on-a-Disc design, precise rotary control, and a cutting-edge induction heating module. These features enable multiplexing of LAMP reactions with high reproducibility and repeatability, with CV% values less than 3.5 % and 5.5 %, respectively. The device offers several methods for accurate endpoint result detection, including naked-eye observation, RGB image analysis using Python code, and time of fluorescence (Tf) values. Preclinical specificity and sensitivity, assessed using different cutoffs for Eva-Green fluorescence Tf values and pH-sensitive dyes, demonstrated comparable performance to the best standard methods. Overall, this study represents a significant step towards tailoring treatment strategies for cancer patients through precise and efficient mutation detection technologies.
Collapse
Affiliation(s)
- Maryam Sadat Mirlohi
- Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| | - Rasool Dezhkam
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Siamak Salami
- Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Malapelle U, Angerilli V, Pepe F, Fontanini G, Lonardi S, Scartozzi M, Memeo L, Pruneri G, Marchetti A, Perrone G, Fassan M. The ideal reporting of RAS testing in colorectal adenocarcinoma: a pathologists' perspective. Pathologica 2023; 115:1-11. [PMID: 37314870 PMCID: PMC10462993 DOI: 10.32074/1591-951x-895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
RAS gene mutational status represents an imperative predictive biomarker to be tested in the clinical management of metastatic colorectal adenocarcinoma. Even if it is one of the most studied biomarkers in the era of precision medicine, several pre-analytical and analytical factors may still impasse an adequate reporting of RAS status in clinical practice, with significant therapeutic consequences. Thus, pathologists should be aware on the main topics related to this molecular evaluation: (i) adopt diagnostic limit of detections adequate to avoid the interference of sub-clonal cancer cell populations; (ii) choose the most adequate diagnostic strategy according to the available sample and its qualification for molecular testing; (iii) provide all the information regarding the mutation detected, since many RAS mutation-specific targeted therapeutic approaches are in development and will enter into routine clinical practice. In this review, we give a comprehensive description of the current scenario about RAS gene mutational testing in the clinic focusing on the pathologist's role in patient selection for targeted therapies.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | | | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa (PI), Italy
| | - Sara Lonardi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Padua (PD), Italy
| | - Mario Scartozzi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari (CA), Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania (CT), Italy
| | - Gianfranco Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori and University of Milan, Milan (MI), Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST), University Chieti-Pescara, Chieti (CH), Italy
- Diagnostic Molecular Pathology, Unit of Anatomic Pathology, SS Annunziata Hospital, Chieti (CH), Italy and Department of Medical, Oral, and Biotechnological Sciences University “G. D’Annunzio” of Chieti-Pescara, Chieti (CH), Italy
| | - Giuseppe Perrone
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua (PD), Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua (PD), Italy
| |
Collapse
|
3
|
Xue C, Wang L, Huang H, Wang R, Yuan P, Wu ZS. Stimuli-Induced Upgrade of Nuclease-Resistant DNA Nanostructure Composed of a Single Molecular Beacon for Detecting Mutant Genes. ACS Sens 2021; 6:4029-4037. [PMID: 34731570 DOI: 10.1021/acssensors.1c01423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a kind of cell-free DNA in the bloodstream liberated from tumor cells, circulating tumor DNAs (ctDNAs) have been recognized as promising biomarkers in the field of early cancer diagnosis. However, robust, sensitive, and accurate detection of ctDNA in serum remains extremely challenging, especially toward the mutant KRAS gene, one of the most frequently mutated genes. Although DNA oligonucleotides as emerging practical signaling materials have been developed as sensitive and accurate tools, some intrinsic defects need to be overcome, such as fragility in complex biological environments. In this work, on the basis of the hydrophilicity-promoted assembly, a core/shell DNA nanostructure (DNS-MB) probe is constructed from only one hairpin-shaped probe (cholesterol-modified palindromic molecular beacon, Chol-PMB) for the amplification detection of KRAS mutation in serum without the need for any auxiliary probe. Chol-PMB is designed to recognize target DNA and serve as a polymerization primer and template, and thus target species can initiate polymerization-based strand displacement amplification (SDA). Moreover, target DNA is able to induce further aggregation of DNS-MB particles due to the enzymatic cross-linking effect, leading to a structural upgrade. The DNS-MB probe exhibits a detection limit of 50 fM and a wide quantitative range (from 50 fM to 160 nM). In addition, single nucleotide polymorphisms can be discriminated, such as mutant KRAS G12D (KRAS-M), providing a desirable platform for screening ctDNAs. More excitingly, because the termini of DNA components are hidden inward from nuclease attack, DNS-MB circumvents a false-positive signal even in freshly sampled serum and is suitable for application in the complex biological milieu. As a proof of concept, the DNS-MB probe is expected to provide useful insight into the development of simple and degradation-resistant DNA probes for substantially amplified detection of ctDNAs in complex serum, showing potential applications in the field of early tumor diagnosis.
Collapse
Affiliation(s)
- Chang Xue
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lei Wang
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hong Huang
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Pei Yuan
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Xiong Y, Tang H. A Sensitive PCR-Based Method for Somatic Mutations Enrichment and Screening. Cancer Manag Res 2021; 13:8099-8107. [PMID: 34737638 PMCID: PMC8558320 DOI: 10.2147/cmar.s335679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background EGFR and KRAS are the most frequently mutated genes in lung cancers, occurring in about 60% of all cases. Mutation genes assay has emerged as a promising blood-based biomarker for monitoring cancer dynamics noninvasively. However, detection can be challenging in patients where plasma often contains low levels of tumor-derived DNA fragments. Methods We have developed a nuclease-based enrichment assay for detecting mutant alleles. The procedure is based on Surveyor endonuclease cleaves mismatched DNA molecules, and these DNA fragments were enriched for mutation screening. We screened lung cancer specimens for mutations in exons 18 and 21 of EGFR, and the majority of activating mutations in lung cancer occur in codons 12 (G12X) and 13 (G13X) of exon 2 of the KRAS gene. The method screened all mutant genes with the same pair primers and three relevant TaqMan probes. Results The method can effectively remove wild-type sequences and enrich mutation DNA, and the sensitivity detectable mutant allele frequencies (MAF) achieved 0.001%. The method increases the sensitivity and efficiency of mutation DNA for cancers screening. This highlights the importance of complex DNA variation like mutations in exon 21 of EGFR and exon 2 of the KRAS gene detected by the same probe. Conclusion We developed a simple and sensitive methodology for mutation gene screening. The method is a cost-effective and sensitive method for mutation DNA enrichment and detection.
Collapse
Affiliation(s)
- Yaming Xiong
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Hailing Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
5
|
Robles-Remacho A, Luque-González MA, González-Casín RA, Cano-Cortés MV, Lopez-Delgado FJ, Guardia-Monteagudo JJ, Antonio Fara M, Sánchez-Martín RM, Díaz-Mochón JJ. Development of a nanotechnology-based approach for capturing and detecting nucleic acids by using flow cytometry. Talanta 2021; 226:122092. [PMID: 33676649 PMCID: PMC7794053 DOI: 10.1016/j.talanta.2021.122092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Nucleic acid-based molecular diagnosis has gained special importance for the detection and early diagnosis of genetic diseases as well as for the control of infectious disease outbreaks. The development of systems that allow for the detection and analysis of nucleic acids in a low-cost and easy-to-use way is of great importance. In this context, we present a combination of a nanotechnology-based approach with the already validated dynamic chemical labeling (DCL) technology, capable of reading nucleic acids with single-base resolution. This system allows for the detection of biotinylated molecular products followed by simple detection using a standard flow cytometer, a widely used platform in clinical and molecular laboratories, and therefore, is easy to implement. This proof-of-concept assay has been developed to detect mutations in KRAS codon 12, as these mutations are highly important in cancer development and cancer treatments.
Collapse
Affiliation(s)
- Agustín Robles-Remacho
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain
| | - M. Angélica Luque-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain
| | - Roberto A. González-Casín
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain
| | - M. Victoria Cano-Cortés
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain
| | - F. Javier Lopez-Delgado
- DestiNA Genomica S.L, PTS Granada, Avenida de La Innovación 1, Edificio BIC, 18100, Armilla, Granada, Spain
| | - Juan J. Guardia-Monteagudo
- DestiNA Genomica S.L, PTS Granada, Avenida de La Innovación 1, Edificio BIC, 18100, Armilla, Granada, Spain
| | - Mario Antonio Fara
- DestiNA Genomica S.L, PTS Granada, Avenida de La Innovación 1, Edificio BIC, 18100, Armilla, Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain,Corresponding author. GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion, 114, 18016, Granada, Spain
| | - Juan José Díaz-Mochón
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de La Ilustracion, 114, 18016, Granada, Spain,Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja S/n, 18071, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida Del Conocimiento, S/n, 18016, Granada, Spain,Corresponding author. GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Avenida de la Ilustracion, 114, 18016, Granada, Spain
| |
Collapse
|
6
|
Olarte I, García A, Ramos C, Arratia B, Centeno F, Paredes J, Rozen E, Kassack J, Collazo J, Martínez A. Detection Of Mutations In The Isocitrate Dehydrogenase Genes (IDH1/IDH2) Using castPCR TM In Patients With AML And Their Clinical Impact In Mexico City. Onco Targets Ther 2019; 12:8023-8031. [PMID: 31632056 PMCID: PMC6781602 DOI: 10.2147/ott.s219703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Approximately 40–50% of patients with acute myeloid leukaemia (AML) have been reported to present with a normal karyotype and a variable disease-free period, most likely due to the molecular heterogeneity presented by these patients. A variety of mutations have been identified at the molecular level, such as those in the IDH1/2 gene, which causes a gain of function of the isocitrate dehydrogenase enzyme, generating high levels of the (R)-2-hydroxyglutarate oncometabolite, which competitively inhibits dioxygenase enzymes. Therefore, the objective of this study was to evaluate the incidence of IDH1/2 gene mutations in AML patients and their impact on survival. Materials and methods A total of 101 patients with a diagnosis of AML were included; mononuclear cells were obtained for DNA extraction and purification. Mutations were detected using TaqMan™ competitive allele-specific probes (castPCR™). Overall survival curves were plotted using IBM SPSS Statistics 23 software. Results The frequency of IDH gene mutations was 19.8%. For the IDH1 gene, 13.8% of the mutations identified included R132H, V178I, G105G and R132C. The frequency of mutations of the IDH2 gene was 5.9%; the variants included R172K and R140Q. The mean survival time in patients without IDH1 gene mutations was 173.15 days (120.20–226.10), while the mean survival time for patients with mutations was 54.95 days (9.7–100.18), p = 0.001. Conclusion The frequency of IDH1 and IDH2 gene mutations in the sample was similar to that reported in other studies. The analysis of these mutations in AML patients is of great importance as a prognostic factor due to their impact on survival and their use as potential therapeutic targets or as targets of inhibitors of IDH1(Ivosidenib, Tibsovo) and IDH2 (Enasidenib, Idhifa).
Collapse
Affiliation(s)
- Irma Olarte
- Department of Molecular Biology, Hematology Service, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Anel García
- Department of Molecular Biology, Hematology Service, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Christian Ramos
- Department of Medical Hematology, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Brenda Arratia
- Department of Molecular Biology, Hematology Service, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Federico Centeno
- Department Immunogenomics and Metabolic Disease, Instituto Nacional de Medicina Genómic, SS, Mexico City, Mexico
| | - Johanna Paredes
- Department of Molecular Biology, Hematology Service, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Etta Rozen
- Department of Medical Hematology, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Juan Kassack
- Department of Medical Hematology, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Juan Collazo
- Department of Medical Hematology, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Adolfo Martínez
- Department of Molecular Biology, Hematology Service, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
7
|
T-blocker: a simple and robust probe-free quantitative PCR assay to detect somatic mutations down to 0.1% frequency. Biotechniques 2019; 65:205-210. [PMID: 30284934 DOI: 10.2144/btn-2018-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a simple and robust probe-free quantitative PCR (qPCR) assay method that can detect minor mutant alleles with a frequency as low as 0.1% in a heterogeneous sample by introducing a novel T-blocker concept to the allele-specific PCR method. Four new KRAS and BRAF mutation detection assays were developed and their performance was demonstrated by testing a large number of replicates, utilizing a customized PCR protocol. Highly efficient and specific mutant amplification in conjunction with selective wild-type suppression by the T-blocker concept enabled 0.1% detection sensitivity using the intercalating dye-based qPCR chemistry instead of more complex target-specific dye-labeled probes. Excellent consistency in sensitivity and specificity of the T-blocker assay concept was demonstrated.
Collapse
|
8
|
Yang Y, Meng Y, Zhang H, Shen X, Li R, Yu L, Liu B, Wang L. Detection of EGFR and BRAF mutations by competitive allele-specific TaqMan polymerase chain reaction in lung adenocarcinoma. Oncol Lett 2017; 15:3295-3304. [PMID: 29467863 DOI: 10.3892/ol.2017.7652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2017] [Indexed: 11/05/2022] Open
Abstract
Epithelial growth factor receptor (EGFR)-tyrosine kinase inhibitors are the standard first-line treatment for patients with metastatic non-small cell lung cancer (NSCLC) expressing sensitive EGFR-mutants. Other drugs target different driver mutants, including the serine/threonine-protein kinase B-raf (BRAF) inhibitor dabrafenib, which has exhibited promising efficacy for treating patients with metastatic BRAF-mutated NSCLC. Therefore, identifying patients carrying mutations that may be treated using targeted therapies is important. However, the methods of molecular detection presently applied in clinical practice, particularly detection of BRAF in NSCLC patients, require further investigation. Therefore, more sensitive and economic methods are required. The present study applied the competitive allele-specific TaqMan polymerase chain reaction (CastPCR) technology to the molecular detection of EGFR (del2235-2249, del2236-2250, T790M, L858R) and BRAF (V600E, G469A, D594G) mutations in 144 treatment-naive patients with lung adenocarcinoma, and analyzed the association between the mutation rates and patients' clinicopathological features. 51.4% (74/144) cases were identified harboring EGFR mutations. A total of 40.3% (58/144) patients carried sensitizing mutations (exon 19 deletion or L858R) and 14.6% (21/144) carried T790M mutations. 6.9% (10/144) mutation-positive patients were double-mutated. Total EGFR mutation rate was significantly increased in female compared with that of males (60.9 vs. 43.8%, P<0.05), in non-smokers compared with that of smokers (62.8 vs. 34.5%, P<0.05). In total, 8.3% (12/144) patients were identified with BRAF mutations. 16.7% were V600E (2/12) and 83.3% (10/12) were non-V600E mutants. Among the 10 non-V600E mutations, D594G accounted for 90.0% (9/10) and G469A accounted for 10.0% (1/10). Statistical analysis demonstrated that the BRAF mutation rate was not associated with any of the following clinicopathological features: Sex, age, smoking history, clinical stages, distant metastasis, differentiation degree, tumor size and regional lymph node metastasis (P≥0.05). CastPCR technology is a robust method with high sensitivity for the molecular detection of EGFR and BRAF mutations in clinical formalin-fixed paraffin-embedded samples.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology, The Affiliated Taikang Xianlin Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Yi Meng
- Department of Oncology, The Affiliated Taikang Xianlin Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Hang Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyan Shen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
9
|
Sherwood JL, Brown H, Rettino A, Schreieck A, Clark G, Claes B, Agrawal B, Chaston R, Kong BSG, Choppa P, Nygren AOH, Deras IL, Kohlmann A. Key differences between 13 KRAS mutation detection technologies and their relevance for clinical practice. ESMO Open 2017; 2:e000235. [PMID: 29018576 PMCID: PMC5623342 DOI: 10.1136/esmoopen-2017-000235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction This study assessed KRAS mutation detection and functional characteristics across 13 distinct technologies and assays available in clinical practice, in a blinded manner. Methods Five distinct KRAS-mutant cell lines were used to study five clinically relevant KRAS mutations: p.G12C, p.G12D, p.G12V, p.G13D and p.Q61H. 50 cell line admixtures with low (50 and 100) mutant KRAS allele copies at 20%, 10%, 5%, 1% and 0.5% frequency were processed using quantitative PCR (qPCR) (n=3), matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) (n=2), next-generation sequencing (NGS) (n=6), digital PCR (n=1) and Sanger capillary sequencing (n=1) assays. Important performance differences were revealed, particularly assay sensitivity and turnaround time. Results Overall 406/728 data points across all 13 technologies were identified correctly. Successful genotyping of admixtures ranged from 0% (Sanger sequencing) to 100% (NGS). 5/6 NGS platforms reported similar allelic frequency for each sample. One NGS assay detected mutations down to a frequency of 0.5% and correctly identified all 56 samples (Oncomine Focus Assay, Thermo Fisher Scientific). One qPCR (Idylla, Biocartis) and MALDI-TOF (UltraSEEK, Agena Bioscience) assay identified 96% (all 100 copies and 23/25 at 50 copies input) and 92% (23/25 at 100 copies and 23/25 at 50 copies input) of samples, respectively. The digital PCR assay (KRAS PrimePCR ddPCR, Bio-Rad Laboratories) identified 60% (100 copies) and 52% (50 copies) of samples correctly. Turnaround time from sample to results ranged from ~2 hours (Idylla CE-IVD) to 2 days (TruSight Tumor 15 and Sentosa CE-IVD), to 2 weeks for certain NGS assays; the level of required expertise ranged from minimal (Idylla CE-IVD) to high for some technologies. Discussion This comprehensive parallel assessment used high molecular weight cell line DNA as a model system to address key questions for a laboratory when implementing routine KRAS testing. As most of the technologies are available for additional molecular biomarkers, this study may be informative for other applications.
Collapse
Affiliation(s)
- James L Sherwood
- Precision Medicine and Genomics, Innovative Medicines and Early Development Biotech, AstraZeneca, Cambridge, UK
| | - Helen Brown
- Precision Medicine and Genomics, Innovative Medicines and Early Development Biotech, AstraZeneca, Cambridge, UK
| | - Alessandro Rettino
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | | | - Graeme Clark
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | | | | | | | - Benjamin S G Kong
- Thermo Fisher Scientific, Clinical Sequencing Division, West Sacramento, California, UK
| | - Paul Choppa
- Thermo Fisher Scientific, Clinical Sequencing Division, West Sacramento, California, UK
| | | | | | - Alexander Kohlmann
- Precision Medicine and Genomics, Innovative Medicines and Early Development Biotech, AstraZeneca, Cambridge, UK
| |
Collapse
|
10
|
Lupo S, Berini C, Cánepa C, Santini Araujo E, Biglione M. Undifferentiated Pleomorphic Sarcoma and the Importance of Considering the Oncogenic and Immune-Suppressant Role of the Human T-Cell Lymphotropic Virus Type 1: A Case Report. Front Oncol 2017; 7:91. [PMID: 28596939 PMCID: PMC5442215 DOI: 10.3389/fonc.2017.00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction Soft-tissue sarcomas account for 0.7% of all malignant tumors, with an incidence rate of 3 per 100,000 persons/year. The undifferentiated pleomorphic sarcoma (UPS) with giant cells, a high grade tumor of soft tissue, is very unusual, especially in young adults before the age of 40. Human T-cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus, classified as group 1 human carcinogens by The International Agency for Research on Cancer, that causes an aggressive malignancy known as adult T-cell lymphoma/leukemia and a progressive chronic inflammatory neurological disease named HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 causes accumulation of genetic mutations in the host genome that could contribute to cellular transformation, one of the oncogenic features of HTLV-1. Case report We describe a case of a young woman with UPS who suffered from HAM/TSP with 3 years of evolution. In 2013, the patient started with neurological symptoms: weakness in the legs and bladder dysfunction. One year later, the patient developed a mild paraparesis in both extremities, anti-HTLV-1 antibodies were detected in plasma and in cerebrospinal fluid, and HAM/TSP was confirmed. In November 2015, a benign ganglion cyst was first suspected without intervention and by March 2016 a sarcoma was diagnosed. Three weeks after surgical resection, the tumor aroused in deep tissue and behaved aggressively, implicating a curative wide resection of the fibula, joint reconstruction, and soft-tissue graft. Histopathological examination confirmed UPS with giant cells. Concluding remarks The unapparent subclinical immunodeficiency state due to HTLV-1 infection deserves to be considered in order to carefully monitor the possibility of developing any type of cancer. Besides, reaching an accurate and timely diagnosis of UPS can be challenging due to the difficulty in diagnosis/classification and delayed consultation. In this particular case, considering the high grade of UPS and the progressive invalidating myelopathy caused by HTLV-1, treatment should be carefully evaluated to positively impact on the patient’s life expectancy.
Collapse
Affiliation(s)
- Sergio Lupo
- School of Medical Sciences (UNR) and UAI Rosario, Centralized Institute of Integral Clinical Research (CAICI), Rosario, Argentina
| | - Carolina Berini
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Camila Cánepa
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | | | - Mirna Biglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
11
|
Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs. PLoS One 2017; 12:e0173524. [PMID: 28333951 PMCID: PMC5363800 DOI: 10.1371/journal.pone.0173524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/21/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. METHODS A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. RESULTS In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). CONCLUSIONS According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.
Collapse
|
12
|
Brait M, Izumchenko E, Kagohara LT, Long S, Wysocki PT, Faherty B, Fertig EJ, Khor TO, Bruckheimer E, Baia G, Ciznadija D, Sloma I, Ben-Zvi I, Paz K, Sidransky D. Comparative mutational landscape analysis of patient-derived tumour xenografts. Br J Cancer 2017; 116:515-523. [PMID: 28118322 PMCID: PMC5318980 DOI: 10.1038/bjc.2016.450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Screening of patients for cancer-driving mutations is now used for cancer prognosis, remission scoring and treatment selection. Although recently emerged targeted next-generation sequencing-based approaches offer promising diagnostic capabilities, there are still limitations. There is a pressing clinical need for a well-validated, rapid, cost-effective mutation profiling system in patient specimens. Given their speed and cost-effectiveness, quantitative PCR mutation detection techniques are well suited for the clinical environment. The qBiomarker mutation PCR array has high sensitivity and shorter turnaround times compared with other methods. However, a direct comparison with existing viable alternatives are required to assess its true potential and limitations. METHODS In this study, we evaluated a panel of 117 patient-derived tumour xenografts by the qBiomarker array and compared with other methods for mutation detection, including Ion AmpliSeq sequencing, whole-exome sequencing and droplet digital PCR. RESULTS Our broad analysis demonstrates that the qBiomarker's performance is on par with that of other labour-intensive and expensive methods of cancer mutation detection of frequently altered cancer-associated genes, and provides a foundation for supporting its consideration as an option for molecular diagnostics. CONCLUSIONS This large-scale direct comparison and validation of currently available mutation detection approaches is extremely relevant for the current scenario of precision medicine and will lead to informed choice of screening methodologies, especially in lower budget conditions or time frame limitations.
Collapse
Affiliation(s)
- Mariana Brait
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luciane T Kagohara
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Samuel Long
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Piotr T Wysocki
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Brian Faherty
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tin Oo Khor
- Champions Oncology, Baltimore, MD 21205, USA
| | | | - Gilson Baia
- Champions Oncology, Baltimore, MD 21205, USA
| | | | - Ido Sloma
- Champions Oncology, Baltimore, MD 21205, USA
| | - Ido Ben-Zvi
- Champions Oncology, Baltimore, MD 21205, USA
| | - Keren Paz
- Champions Oncology, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Perakis S, Auer M, Belic J, Heitzer E. Advances in Circulating Tumor DNA Analysis. Adv Clin Chem 2017; 80:73-153. [PMID: 28431643 DOI: 10.1016/bs.acc.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The analysis of cell-free circulating tumor DNA (ctDNA) is a very promising tool and might revolutionize cancer care with respect to early detection, identification of minimal residual disease, assessment of treatment response, and monitoring tumor evolution. ctDNA analysis, often referred to as "liquid biopsy" offers what tissue biopsies cannot-a continuous monitoring of tumor-specific changes during the entire course of the disease. Owing to technological improvements, efforts for the establishment of preanalytical and analytical benchmark, and the inclusion of ctDNA analyses in clinical trial, an actual clinical implementation has come within easy reach. In this chapter, recent advances of the analysis of ctDNA are summarized starting from the discovery of cell-free DNA, to methodological approaches and the clinical applicability.
Collapse
Affiliation(s)
- Samantha Perakis
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Cree IA. Progress and potential of RAS mutation detection for diagnostics and companion diagnostics. Expert Rev Mol Diagn 2016; 16:1067-1072. [PMID: 27494709 DOI: 10.1080/14737159.2016.1221345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The importance of RAS mutation in carcinogenesis is established, and knowledge of an individual cancer's mutation status is important for optimal treatment. Areas covered: This paper is restricted to RAS testing in cancer, and highlights papers relevant to current practice. Expert commentary: Multiple laboratory methods are available for RAS gene analysis. PCR is commonly used to determine RAS status, providing a robust and inexpensive technology for clinical use. Next generation sequencing (NGS) platforms are changing the way in which mutation status is determined, though they require considerable expertise. Pre-analytical issues affect both methods and should be considered. The interpretation and reporting of results is not simple, particularly for NGS. External quality assurance is a pre-requisite for success, and is mandated by most laboratory accreditation schemes. The use of RAS testing is now extending beyond biopsy material to include the detection of mutations in circulating cell-free DNA and tumour cells.
Collapse
Affiliation(s)
- Ian A Cree
- a Department of Pathology , University Hospitals Coventry and Warwickshire , Coventry , United Kingdom
| |
Collapse
|
15
|
Neueste technologische Entwicklungen für die Analyse von zirkulierender Tumor-DNA. MED GENET-BERLIN 2016. [DOI: 10.1007/s11825-016-0089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zusammenfassung
Die Analyse von zirkulierender Tumor-DNA, zusammen mit der Analyse von zirkulierenden Tumorzellen auch oft Liquid Biopsy genannt, ist ein sich rasch entwickelndes Feld in der medizinischen Forschung. Obwohl es von der Entdeckung der zellfreien DNA bis hin zur Erkenntnis, dass sie sich als Biomarker eignet, Jahrzehnte gedauert hat, wurde der klinische Nutzen der ctDNA hinsichtlich der Überwachung des Therapieansprechens, der Identifizierung von Resistenzmechanismen und neu aufkommenden Therapiezielen sowie der Detektion von minimaler Resterkrankung mittlerweile in unzähligen Studien bewiesen.
Aufgrund der hohen Variabilität, mit der ctDNA in der Zirkulation vorkommt, sowie der starken Fragmentierung, stellt die ctDNA aber einen schwierigen Analyten dar. In den letzten Jahren haben erhebliche technologische Fortschritte dazu beigetragen, dass eine Routineanwendung der ctDNA-Analysen tatsächlich realisierbar wird, sofern eine Reihe von regulatorischen Hürden überwunden wird.
Collapse
|
16
|
Mack E, Stabla K, Riera-Knorrenschild J, Moll R, Neubauer A, Brendel C. A rational two-step approach to KRAS mutation testing in colorectal cancer using high resolution melting analysis and pyrosequencing. BMC Cancer 2016; 16:585. [PMID: 27485514 PMCID: PMC4971616 DOI: 10.1186/s12885-016-2589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/03/2023] Open
Abstract
Background KRAS mutation testing is mandatory in the management of metastatic colorectal cancer prior to treatment with anti-EGFR antibodies as patients whose tumors express mutant KRAS do not benefit from these agents. Although the U.S. Food and Drug Administration has recently approved two in-vitro diagnostics kits for determination of KRAS status, there is generally no consensus on the preferred method and new tests are continuously being developed. Most of these techniques focus on the hotspot mutations at codons 12 and 13 of the KRAS gene. Methods We describe a two-step approach to KRAS codon 12/13 mutation testing involving high resolution melting analysis (HRM) followed by pyrosequencing using the Therascreen KRAS Pyro kit (Qiagen) of only those samples that are not clearly identified as KRAS wildtype or mutant by HRM. First, we determined KRAS status in a panel of 61 colorectal cancer samples using both methods to compare technical performance and concordance of results. Subsequently, we evaluated practicability and costs of our concept in an independent set of 120 colorectal cancer samples in a routine diagnostic setting. Results HRM and pyrosequencing appeared to be equally sensitive, allowing for clear detection of mutant alleles at a mutant allele frequency ≥12.5 %. Pyrosequencing yielded more exploitable results due to lower input requirements and a lower rate of analysis failures. KRAS codon 12/13 status was called concordantly for 98.2 % (56/57) of all samples that could be successfully analysed by both methods and 100 % (19/19) of samples that were identified mutant by HRM. Reviewing the actual effort and expenses for KRAS mutation testing in our laboratory revealed, that the selective use of pyrosequencing for only those samples that could not be analysed by HRM increased the fraction of valid results from 87.5 % for HRM alone to 99.2 % (119/120) while allowing for a net reduction of operational costs of >75 % compared to pyrosequencing alone. Conclusions Combination of HRM and pyrosequencing in a two-step diagnostic procedure constitutes a reliable and economic analysis platform for KRAS mutation testing in colorectal cancer in a clinical setting. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2589-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Mack
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldingerstraße, Marburg, Germany
| | - Kathleen Stabla
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldingerstraße, Marburg, Germany
| | - Jorge Riera-Knorrenschild
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldingerstraße, Marburg, Germany
| | - Roland Moll
- Institut für Pathologie, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldingerstraße, Marburg, Germany
| | - Andreas Neubauer
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldingerstraße, Marburg, Germany
| | - Cornelia Brendel
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldingerstraße, Marburg, Germany.
| |
Collapse
|
17
|
Diagnostic RAS mutation analysis by polymerase chain reaction (PCR). BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 8:29-32. [PMID: 27335808 PMCID: PMC4906127 DOI: 10.1016/j.bdq.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
RAS mutation analysis is an important companion diagnostic test. Treatment of colorectal cancer with anti-Epidermal Growth Factor Receptor (EGFR) therapy requires demonstration of RAS mutation status (both KRAS and NRAS), and it is good practice to include BRAF. In Non-Small Cell Lung Cancer (NSCLC) and melanoma, assessment of RAS mutation status can be helpful in triaging patient samples for more extensive testing. This mini-review will discuss the role of PCR methods in providing rapid diagnostic information for cancer patients.
Collapse
|
18
|
Tu M, Chia D, Wei F, Wong D. Liquid biopsy for detection of actionable oncogenic mutations in human cancers and electric field induced release and measurement liquid biopsy (eLB). Analyst 2016; 141:393-402. [PMID: 26645892 PMCID: PMC4701580 DOI: 10.1039/c5an01863c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed.
Collapse
Affiliation(s)
- Michael Tu
- School of Dentistry, University of California, Los Angeles, CA, USA.
| | - David Chia
- Department of Pathology, UCLA David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, CA, USA.
| | - David Wong
- School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Bidshahri R, Attali D, Fakhfakh K, McNeil K, Karsan A, Won JR, Wolber R, Bryan J, Hughesman C, Haynes C. Quantitative Detection and Resolution of BRAF V600 Status in Colorectal Cancer Using Droplet Digital PCR and a Novel Wild-Type Negative Assay. J Mol Diagn 2016; 18:190-204. [PMID: 26762843 DOI: 10.1016/j.jmoldx.2015.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
A need exists for robust and cost-effective assays to detect a single or small set of actionable point mutations, or a complete set of clinically informative mutant alleles. Knowledge of these mutations can be used to alert the clinician to a rare mutation that might necessitate more aggressive clinical monitoring or a personalized course of treatment. An example is BRAF, a (proto)oncogene susceptible to either common or rare mutations in codon V600 and adjacent codons. We report a diagnostic technology that leverages the unique capabilities of droplet digital PCR to achieve not only accurate and sensitive detection of BRAF(V600E) but also all known somatic point mutations within the BRAF V600 codon. The simple and inexpensive two-well droplet digital PCR assay uses a chimeric locked nucleic acid/DNA probe against wild-type BRAF and a novel wild-type-negative screening paradigm. The assay shows complete diagnostic accuracy when applied to formalin-fixed, paraffin-embedded tumor specimens from metastatic colorectal cancer patients deficient for Mut L homologue-1.
Collapse
Affiliation(s)
- Roza Bidshahri
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dean Attali
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kareem Fakhfakh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly McNeil
- Department of Genetics and Molecular Diagnostics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Department of Genetics and Molecular Diagnostics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jennifer R Won
- Canadian Immunohistochemistry Quality Control Unit, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wolber
- Department of Pathology, Lion's Gate Hospital, North Vancouver, British Columbia, Canada
| | - Jennifer Bryan
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis Hughesman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Charles Haynes
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
20
|
Li B, Li L, Li X, Wang Y, Xie Y, Liu C, Li F. Undifferentiated pleomorphic sarcoma with co-existence of KRAS/PIK3CA mutations. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8563-8567. [PMID: 26339434 PMCID: PMC4555762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Undifferentiated pleomorphic sarcoma (UPS), previously known as malignant fibrous histiocytoma, comprises a series of high-grade soft tissue sarcomas, which fail to exhibit any specific line of differentiation by using currently available ancillary techniques. Studies on gene mutation screening occurring in UPS are rarely conducted. In this study, we described a case of UPS and analyzed its mutation changes. We detected 19 hotspot oncogenes in the case. To the best of our knowledge, this study is the first to use a high-throughput OncoCarta panel 1.0 and MassARRAY system to detect 238 known mutations in 19 hotspot oncogenes in UPS. In this study, our result revealed two missense mutations, namely, KRAS mutation (35G > A, G12D) and PIK3CA mutation (1636C > A, Q546K) in the case.
Collapse
Affiliation(s)
- Bingcheng Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, China
| | - Li Li
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, Xinjiang, China
| | - Xiaoying Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, China
| | - Yuanyuan Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, China
| | - Yuwen Xie
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, China
| | - Chunxia Liu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, China
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi 832002, Xinjiang, China
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, Xinjiang, China
| |
Collapse
|