1
|
Leach M, Cox C, Wickramasinghe SR, Chwatko M, Bhattacharyya D. Role of Microfiltration Membrane Morphology on Nanoparticle Purification to Enhance Downstream Purification of Viral Vectors. ACS APPLIED BIO MATERIALS 2024; 7:3932-3941. [PMID: 38822810 DOI: 10.1021/acsabm.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
In the rapidly advancing realms of gene therapy and biotechnology, the efficient purification of viral vectors is pivotal for ensuring the safety and efficacy of gene therapies. This study focuses on optimizing membrane selection for viral vector purification by evaluating key properties, including porosity, thickness, pore structure, and hydrophilicity. Notably, we employed adeno-associated virus (AAV)-sized nanoparticles (20 nm), 200 nm particles, and bovine serum albumin (BSA) to model viral vector harvesting. Experimental data from constant pressure normal flow filtration (NFF) at 1 and 2 bar using four commercial flat sheet membranes revealed distinct fouling behaviors. Symmetric membranes predominantly showed internal and external pore blockage, while asymmetric membranes formed a cake layer on the surface. Hydrophilicity exhibited a positive correlation with recovery, demonstrating an enhanced recovery with increased hydrophilicity. Membranes with higher porosity and interpore connectivity showcased superior throughput, reduced operating time, and increased recovery. Asymmetric polyether sulfone (PES) membranes emerged as the optimal choice, achieving ∼100% recovery of AAV-sized particles, an ∼44% reduction in model cell debris (200 nm particles), an ∼35% decrease in BSA, and the fastest operating time of all membranes tested. This systematic investigation into fouling behaviors and membrane properties not only informs optimal conditions for viral vector recovery but also lays the groundwork for advancing membrane-based strategies in bioprocessing.
Collapse
Affiliation(s)
- Mara Leach
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Catherine Cox
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Malgorzata Chwatko
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Mayer V, Frank AC, Preinsperger S, Csar P, Steppert P, Jungbauer A, Pereira Aguilar P. Removal of chromatin by salt-tolerant endonucleases for production of recombinant measles virus. Biotechnol Prog 2023; 39:e3342. [PMID: 36974026 DOI: 10.1002/btpr.3342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Host cell DNA is a critical impurity in downstream processing of enveloped viruses. Especially, DNA in the form of chromatin is often neglected. Endonuclease treatment is an almost mandatory step in manufacturing of viral vaccines. In order to find the optimal performer, four different endonucleases, two of them salt tolerant, were evaluated in downstream processing of recombinant measles virus. Endonuclease treatment was performed under optimal temperature conditions after clarification and before the purification by flow-through chromatography with a core shell chromatography medium: Capto™ Core 700. Virus infectivity was measured by TCID50. DNA and histone presence in process and purified samples was determined using PicoGreen™ assay and Western blot analysis using an anti-histone antibody, respectively. All tested endonucleases allowed the reduction of DNA content improving product purity. The salt-tolerant endonucleases SAN and M-SAN were more efficient in the removal of chromatin compared with the non-salt-tolerant endonucleases Benzonase® and DENARASE®. Removal of chromatin using M-SAN was also possible without the addition of extra salt to the cell culture supernatant. The combination of the endonuclease treatment, using salt-tolerant endonucleases with flow-through chromatography, using core-shell particles, resulted in high purity and purification efficiency. This strategy has all features for a platform downstream process of recombinant measles virus and beyond.
Collapse
Affiliation(s)
- Viktoria Mayer
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Carina Frank
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shirin Preinsperger
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Csar
- Themis Bioscience GmbH (A Subsidiary of Merck & Co., Inc, Kenilworth, NJ, USA), Vienna, Austria
| | - Petra Steppert
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patricia Pereira Aguilar
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Sonugür FG, Babahan C, Abdi Abgarmi S, Akbulut H. Incubation Temperature and Period During Denarase Treatment and Microfiltration Affect the Yield of Recombinant Adenoviral Vectors During Downstream Processing. Mol Biotechnol 2022:10.1007/s12033-022-00616-8. [PMID: 36451062 PMCID: PMC9713150 DOI: 10.1007/s12033-022-00616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Adenoviral vectors (AV) are commonly used as vaccine and gene therapy vehicles because of their ease of construction, ability to grow to high titers in the large-scale production process, and safety for human applications. However, the efficiency rate of downstream processes for adenoviral vectors still varies greatly. In the current study, we aimed to investigate the effect of the downstream treatment protocol and microfiltration of the harvested upstream material on viral vector yield. We compared the performance of the repeated freeze-thaw (RFT) and the Tween-20 detergent lysis (DLT) methods. In addition, the effects of the cell lysis method, incubation temperature, and time on viral yield were investigated. The samples were incubated at either room temperature or 37 °C for 1-, 2-, and 4-h periods. Samples were filtered with PES and SFCA membrane. Virus yield and infectivity were assayed by qPCR and immuno-titration. In conclusion, our results suggest that 2-h incubation gives the best results when incubated at 37 °C for denarase activity when Tween-20 is used for virus recovery. If the room temperature is preferred, 4-h incubation could be preferred. A phase 1 clinical trial (NCT05526183, January 21, 2022) was started with the recombinant adenovirus used in the study.
Collapse
Affiliation(s)
- Fatma Gizem Sonugür
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Cansu Babahan
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Samira Abdi Abgarmi
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Hakan Akbulut
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey ,Department of Medical Oncology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Evaluation of Host Cell Impurity Effects on the Performance of Sterile Filtration Processes for Therapeutic Viruses. MEMBRANES 2022; 12:membranes12040359. [PMID: 35448330 PMCID: PMC9030567 DOI: 10.3390/membranes12040359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
Efficient downstream processing represents a significant challenge in the rapidly developing field of therapeutic viruses. While it is known that the terminal sterile filtration step can be a major cause of product loss, there is little known about the effect of host cell impurities (DNA and protein) on filtration performance. In this study, fractions of relatively pure Vero host cell protein and DNA were spiked into a highly pure preparation of vesicular stomatitis virus (VSV). Then, the resulting solutions were sterile filtered using two commercially available 0.22 µm rated microfiltration membranes. A combination of transmembrane pressure measurements, virus recovery measurements, and post-filtration microscopy images of the microfiltration membranes was used to evaluate the sterile filtration performance. It was found that increasing the amount of host cell protein from approximately 1 µg/mL (in the un-spiked VSV preparation) to 25 µg/mL resulted in a greater extent of membrane fouling, causing the VSV recovery to decrease from 89% to 65% in experiments conducted with the highly asymmetric Express PLUS PES membrane and to go as low as 48% in experiments conducted with the symmetric Durapore PVDF membrane. Similar effects were not seen when bovine serum albumin, a common model protein used in filtration studies, was spiked into the VSV preparation, which indicates that the sterile filtration performance is critically dependent on the complex composition of the mixture of host cell proteins rather than the presence of any protein. The results presented in this work provide important insights into the role of host cell impurities on the performance of sterile filtration processes for therapeutic viruses.
Collapse
|
5
|
Yoshinari T, Hayashi K, Hirose S, Ohya K, Ohnishi T, Watanabe M, Taharaguchi S, Mekata H, Taniguchi T, Maeda T, Orihara Y, Kawamura R, Arai S, Saito Y, Goda Y, Hara-Kudo Y. Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry Analysis for the Direct Detection of SARS-CoV-2 in Nasopharyngeal Swabs. Anal Chem 2022; 94:4218-4226. [PMID: 35238540 PMCID: PMC8903212 DOI: 10.1021/acs.analchem.1c04328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The most common diagnostic
method used for coronavirus disease-2019
(COVID-19) is real-time reverse transcription polymerase chain reaction
(PCR). However, it requires complex and labor-intensive procedures
and involves excessive positive results derived from viral debris.
We developed a method for the direct detection of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs, which
uses matrix-assisted laser desorption and ionization time-of-flight
mass spectrometry (MALDI-ToF MS) to identify specific peptides from
the SARS-CoV-2 nucleocapsid phosphoprotein (NP). SARS-CoV-2 viral
particles were separated from biological molecules in nasopharyngeal
swabs by an ultrafiltration cartridge. Further purification was performed
by an anion exchange resin, and purified NP was digested into peptides
using trypsin. The peptides from SARS-CoV-2 that were inoculated into
nasopharyngeal swabs were detected by MALDI-ToF MS, and the limit
of detection was 106.7 viral copies. This value equates
to 107.9 viral copies per swab and is approximately equivalent
to the viral load of contagious patients. Seven NP-derived peptides
were selected as the target molecules for the detection of SARS-CoV-2
in clinical specimens. The method detected between two and seven NP-derived
peptides in 19 nasopharyngeal swab specimens from contagious COVID-19
patients. These peptides were not detected in four specimens in which
SARS-CoV-2 RNA was not detected by PCR. Mutated NP-derived peptides
were found in some specimens, and their patterns of amino acid replacement
were estimated by accurate mass. Our results provide evidence that
the developed MALDI-ToF MS-based method in a combination of straightforward
purification steps and a rapid detection step directly detect SARS-CoV-2-specific
peptides in nasopharyngeal swabs and can be a reliable high-throughput
diagnostic method for COVID-19.
Collapse
Affiliation(s)
- Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Katsuhiko Hayashi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Kenji Ohya
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Satoshi Taharaguchi
- Laboratory of Microbiology, Department of Veterinary Medicine, Azabu University, 1-17-71 Fucihnobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takahide Taniguchi
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takuya Maeda
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yuta Orihara
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Rieko Kawamura
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Sakura Arai
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yukihiro Goda
- Director General, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| |
Collapse
|
6
|
A scalable, integrated downstream process for production of a recombinant measles virus-vectored vaccine. Vaccine 2022; 40:1323-1333. [PMID: 35094870 DOI: 10.1016/j.vaccine.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Purification of very large and complex, enveloped viruses, such as measles virus is very challenging, it must be performed in a closed system because the final product cannot be sterile filtered and often loss of virus titer and poor product purity has been observed. We developed a purification process where the clarified and endonuclease treated culture supernatant is loaded on a restricted access chromatography medium where small impurities are bound and the virus is collected in the flow-through, which is then concentrated, and buffer exchanged by ultra/diafiltration. Up to 98.5% of host cell proteins could be captured by direct loading of clarified and endonuclease treated cell culture supernatant. Reproducible process performance and scalability of the chromatography step were demonstrated from small to pilot scale, including loading volumes from 50 mL up to 9 L. A 10-fold virus concentration was achieved by the ultrafiltration using a 100 kDa flat-sheet membrane. The order of individual process steps had a large impact on the virus infectivity and total process yields. The developed process maintained virus infectivity and is twice as fast as the traditional process train, where concentration is performed before loading on the chromatography column. Capturing impurities by the restricted access medium makes it a platform purification process with a high flexibility, which can be easily and quickly adapted to other vectors based on the measles virus vector platform.
Collapse
|
7
|
A Combined Ultrafiltration/Diafiltration Process for the Purification of Oncolytic Measles Virus. MEMBRANES 2022; 12:membranes12020105. [PMID: 35207027 PMCID: PMC8880582 DOI: 10.3390/membranes12020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Measles virus (MV) is an important representative of a new class of cancer therapeutics known as oncolytic viruses. However, process intensification for the downstream purification of this fragile product is challenging. We previously found that a mid-range molecular weight cut-off (300 kDa) is optimal for the concentration of MV. Here, we tested continuous and discontinuous diafiltration for the purification of MV prepared in two different media to determine the influence of high and low protein loads. We found that a concentration step before diafiltration improved process economy and MV yield when using either serum-containing or serum-free medium. We also found that discontinuous diafiltration conferred a slight benefit in terms of the permeate flow, reflecting the repetitive dilution steps and the ability to break down parts of the fouling layer on the membrane. In summary, the combined ultrafiltration/diafiltration process is suitable for the purification of MV, resulting in the recovery of ~50% infectious virus particles with a total concentration factor of 8 when using 5 diavolumes of buffer.
Collapse
|
8
|
Evaluation of a downstream process for the recovery and concentration of a Cell-Culture-Derived rVSV-Spike COVID-19 vaccine candidate. Vaccine 2021; 39:7044-7051. [PMID: 34756612 PMCID: PMC8531466 DOI: 10.1016/j.vaccine.2021.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
rVSV-Spike (rVSV-S) is a recombinant viral vaccine candidate under development to control the COVID-19 pandemic and is currently in phase II clinical trials. rVSV-S induces neutralizing antibodies and protects against SARS-CoV-2 infection in animal models. Bringing rVSV-S to clinical trials required the development of a scalable downstream process for the production of rVSV-S that can meet regulatory guidelines. The objective of this study was the development of the first downstream unit operations for cell-culture-derived rVSV-S, namely, the removal of nucleic acid contamination, the clarification and concentration of viral harvested supernatant, and buffer exchange. Retaining the infectivity of the rVSV-S during the downstream process was challenged by the shear sensitivity of the enveloped rVSV-S and its membrane protruding spike protein. Through a series of screening experiments, we evaluated and established the required endonuclease treatment conditions, filter train composition, and hollow fiber-tangential flow filtration parameters to remove large particles, reduce the load of impurities, and concentrate and exchange the buffer while retaining rVSV-S infectivity. The combined effect of the first unit operations on viral recovery and the removal of critical impurities was examined during scale-up experiments. Overall, approximately 40% of viral recovery was obtained and the regulatory requirements of less than 10 ng host cell DNA per dose were met. However, while 86–97% of the host cell proteins were removed, the regulatory acceptable HCP levels were not achieved, requiring subsequent purification and polishing steps. The results we obtained during the scale-up experiments were similar to those obtained during the screening experiments, indicating the scalability of the process. The findings of this study set the foundation for the development of a complete downstream manufacturing process, requiring subsequent purification and polishing unit operations for clinical preparations of rVSV-S.
Collapse
|
9
|
Castro-Muñoz R, Serna-Vázquez J, García-Depraect O. Current evidence in high throughput ultrafiltration toward the purification of monoclonal antibodies (mAbs) and biotechnological protein-type molecules. Crit Rev Biotechnol 2021; 42:827-837. [PMID: 34538152 DOI: 10.1080/07388551.2021.1947182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pressure-driven membrane-based technologies, such as microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF), have been successfully implemented in recovering different types of biomolecules and high-value-added compounds from various streams. Especially, UF membranes meet the requirements for separating specific bioproducts in downstream processes, e.g. monoclonal antibodies (mAbs), which are recognized as proteins produced mainly by plasma cells. According to the importance and functionality of the mAbs, their recovery is a current challenge with these bioseparations. Nevertheless, mAbs recovery using UF-assisted processes has been smartly performed over the last decade. To the best of our knowledge, there are no reviews of the reported developments using UF technology toward mAbs separation. Therefore, the goal of this paper is to collect and elucidate ongoing research studies implemented for the featured separation of mAbs and other biotechnological protein-type molecules (e.g. adenovirus serotype, extracellular vesicles, red fluorescent protein, cyanovirin-N, among others) via ultrafiltration-aided systems. The literature evidence (e.g. research papers, patents, etc.) has been analyzed and discussed according to the purpose of the study. Importantly, the relevant findings and novel approaches are discussed in detail. To finalize this document, the advantages, drawbacks, and guidelines in applying membrane-based techniques for such a recovery are presented.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.,Tecnologico de Monterrey, Toluca de Lerdo, Mexico
| | - Julio Serna-Vázquez
- Tecnologico de Monterrey, Ciudad de México, Mexico.,Department of Human Genetics, McGill University, 3640 rue University, Montreal, Canada
| | | |
Collapse
|
10
|
Eckhardt D, Dieken H, Loewe D, Grein TA, Salzig D, Czermak P. Purification of oncolytic measles virus by cation-exchange chromatography using resin-based stationary phases. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1955267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dustin Eckhardt
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Hauke Dieken
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Daniel Loewe
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, University of Giessen, Giessen Germany
| | - Tanja A. Grein
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, University of Giessen, Giessen Germany
| |
Collapse
|
11
|
Valkama AJ, Oruetxebarria I, Lipponen EM, Leinonen HM, Käyhty P, Hynynen H, Turkki V, Malinen J, Miinalainen T, Heikura T, Parker NR, Ylä-Herttuala S, Lesch HP. Development of Large-Scale Downstream Processing for Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:717-730. [PMID: 32346549 PMCID: PMC7177191 DOI: 10.1016/j.omtm.2020.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
The interest in lentiviral vectors (LVs) has increased prominently for gene therapy applications, but few have reached the later stages of clinical trials. The main challenge has remained in scaling up the manufacturing process for the fragile vector to obtain high titers for in vivo usage. We have previously scaled up the LV production to iCELLis 500, being able to produce up to 180 L of harvest material in one run with perfusion. The following challenge considers the purification and concentration of the product to meet titer and purity requirements for clinical use. We have developed a downstream process, beginning with clarification, buffer exchange, and concentration, by tangential flow filtration. This is followed by a purification step using single membrane-based anion exchange chromatography and final formulation with tangential flow filtration. Different materials and conditions were compared to optimize the process, especially for the chromatography step that has been the bottleneck in lentiviral vector purification scale-up. The final infectious titer of the lentiviral vector product manufactured using the optimized scale-up process was determined to be 1.97 × 109 transducing units (TU)/mL, which can be considered as a high titer for lentiviral vectors.
Collapse
Affiliation(s)
- Anniina J Valkama
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Igor Oruetxebarria
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Eevi M Lipponen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Hanna M Leinonen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Piia Käyhty
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Heidi Hynynen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Vesa Turkki
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Joonas Malinen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Tuukka Miinalainen
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tommi Heikura
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Nigel R Parker
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Hanna P Lesch
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| |
Collapse
|
12
|
Loewe D, Grein TA, Dieken H, Weidner T, Salzig D, Czermak P. Tangential Flow Filtration for the Concentration of Oncolytic Measles Virus: The Influence of Filter Properties and the Cell Culture Medium. MEMBRANES 2019; 9:membranes9120160. [PMID: 31795406 PMCID: PMC6950090 DOI: 10.3390/membranes9120160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
The therapeutic use of oncolytic measles virus (MV) for cancer treatment requires >108 infectious MV particles per dose in a highly pure form. The concentration/purification of viruses is typically achieved by tangential flow filtration (TFF) but the efficiency of this process for the preparation of MV has not been tested in detail. We therefore investigated the influence of membrane material, feed composition, and pore size or molecular weight cut-off (MWCO) on the recovery of MV by TFF in concentration mode. We achieved the recovery of infectious MV particles using membranes with a MWCO ≤ 300 kDa regardless of the membrane material and whether or not serum was present in the feed. However, serum proteins in the medium affected membrane flux and promoted fouling. The severity of fouling was dependent on the membrane material, with the cellulose-based membrane showing the lowest susceptibility. We found that impurities such as proteins and host cell DNA were best depleted using membranes with a MWCO ≥ 300 kDa. We conclude that TFF in concentration mode is a robust unit operation to concentrate infectious MV particles while depleting impurities such as non-infectious MV particles, proteins, and host cell DNA.
Collapse
Affiliation(s)
- Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
- Faculty of Biology and Chemistry, University of Giessen, 35390 Giessen, Germany
| | - Tanja A. Grein
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Hauke Dieken
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany; (D.L.); (T.A.G.); (H.D.); (T.W.); (D.S.)
- Faculty of Biology and Chemistry, University of Giessen, 35390 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstr. 3, 35394 Giessen, Germany
- Correspondence: ; Tel.: +49-641-309-2551
| |
Collapse
|
13
|
Moleirinho MG, Rosa S, Carrondo MJT, Silva RJS, Hagner-McWhirter Å, Ahlén G, Lundgren M, Alves PM, Peixoto C. Clinical-Grade Oncolytic Adenovirus Purification Using Polysorbate 20 as an Alternative for Cell Lysis. Curr Gene Ther 2019; 18:366-374. [PMID: 30411681 PMCID: PMC6327138 DOI: 10.2174/1566523218666181109141257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
Introduction: Oncolytic virus therapy is currently considered as a promising therapeutic ap-proach for cancer treatment. Adenovirus is well-known and extensively characterized as an oncolytic agent. The increasing number of clinical trials using this virus generates the demand for the development of a well-established purification approach. Triton X-100 is commonly used in cell lysis buffer prepara-tions. The addition of this surfactant in the list of substances with the very high concern of the Registra-tion, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation promoted the research for effective alternatives. Methods: In this work, a purification strategy for oncolytic adenovirus compatible with phase I clinical trials, using an approved surfactant – Polysorbate 20 was developed. The proposed downstream train, composed by clarification, concentration using tangential flow filtration, intermediate purification with anion exchange chromatography, followed by a second concentration and a final polishing step was evaluated for both Triton X-100 and Polysorbate 20 processes. The impact of cell lysis with Polysorb-ate20 and Triton X-100 for each downstream step was evaluated in terms of product recovery and impu-rities removal. Overall, 61 ± 4% of infectious viral particles were recovered. Depletion of host cell pro-teins and ds-DNA was 99.9% and 97.1%, respectively. Results & Conclusion: The results indicated that Polysorbate 20 can be used as a replacement for Triton X-100 during cell lysis with no impact on product recovery, potency, and purity. Moreover, the devel-oped process is scalable and able to provide a highly purified product to be used in phase I and II clinical trials.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara Rosa
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - Ricardo J S Silva
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Gustaf Ahlén
- GE Healthcare Bio-Sciences AB, Bjorkgatan 30, 751 84 Uppsala, Sweden
| | - Mats Lundgren
- GE Healthcare Bio-Sciences AB, Bjorkgatan 30, 751 84 Uppsala, Sweden
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
14
|
Sharma A, Bracewell DG. Characterisation of porous anodic alumina membranes for ultrafiltration of protein nanoparticles as a size mimic of virus particles. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Opdensteinen P, Clodt JI, Müschen CR, Filiz V, Buyel JF. A Combined Ultrafiltration/Diafiltration Step Facilitates the Purification of Cyanovirin-N From Transgenic Tobacco Extracts. Front Bioeng Biotechnol 2019; 6:206. [PMID: 30687700 PMCID: PMC6334625 DOI: 10.3389/fbioe.2018.00206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
The production of biopharmaceutical proteins in plants offers many advantages over traditional expression platforms, including improved safety, greater scalability and lower upstream production costs. However, most products are retained within plant cells or the apoplastic space instead of being secreted into a liquid medium, so downstream processing necessarily involves tissue and cell disruption followed by the removal of abundant particles and host cell proteins (HCPs). We investigated whether ultrafiltration/diafiltration (UF/DF) can simplify the purification of the model recombinant protein cyanovirin-N (CVN), an ~ 11 kDa HIV-neutralizing lectin, from tobacco extracts prior to chromatography. We compared different membrane types and process conditions, and found that at pH 8.0 and 50 mS cm-1 an UF step using a 100 kDa regenerated cellulose membrane removed more than 80% of the ~ 0.75 mg mL-1 total soluble protein present in the clarified plant extract. We recovered ~ 70% of the CVN and the product purity increased ~ 3-fold in the permeate. The underlying effects of tobacco HCP retention during the UF/DF step were investigated by measuring the zeta potential and particle size distribution in the 2-10,000 nm range. Combined with a subsequent 10 kDa DF step, this approach simultaneously reduced the process volume, conditioned the process intermediate, and facilitated early, chromatography-free purification. Due to the generic, size-based nature of the method, it is likely to be compatible with most products smaller than ~50 kDa.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Juliana I Clodt
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Catherine R Müschen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Volkan Filiz
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Johannes F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Heldt CL, Saksule A, Joshi PU, Ghafarian M. A generalized purification step for viral particles using mannitol flocculation. Biotechnol Prog 2018; 34:1027-1035. [DOI: 10.1002/btpr.2651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Caryn L. Heldt
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Ashish Saksule
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Pratik U. Joshi
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Majid Ghafarian
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| |
Collapse
|
17
|
The Superiority of Sucrose Cushion Centrifugation to Ultrafiltration and PEGylation in Generating High-Titer Lentivirus Particles and Transducing Stem Cells with Enhanced Efficiency. Mol Biotechnol 2018; 60:185-193. [DOI: 10.1007/s12033-017-0044-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Shi H, Xagoraraki I, Parent KN, Bruening ML, Tarabara VV. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration. Appl Environ Microbiol 2016; 82:4982-93. [PMID: 27287319 PMCID: PMC4968539 DOI: 10.1128/aem.00870-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rpre (PEM) = 74.8% ± 9.7%) than with CS-blocked membranes (rpre (CS) = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpost (PEM) = 99.5% ± 6.6% and rpost (CS) = 98.8% ± 7.7%) and tap water (rpost (PEM) = 89% ± 15% and rpost (CS) = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpost (CS) = 88.6% ± 4.3% and rpost (PEM) = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery.
Collapse
Affiliation(s)
- Hang Shi
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Merlin L Bruening
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus. Arch Virol 2016; 161:1455-67. [PMID: 26935920 DOI: 10.1007/s00705-016-2801-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research.
Collapse
|
20
|
Nestola P, Peixoto C, Villain L, Alves PM, Carrondo MJT, Mota JPB. Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles. J Chromatogr A 2015; 1426:91-101. [PMID: 26643723 DOI: 10.1016/j.chroma.2015.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
We report on the rational design and implementation of flowthrough (FT) platforms for purification of virus vectors (VVs) and virus-like particles (VLPs), combining anion-exchange polyallylamine membranes (Sartobind STIC) and core-shell octylamine resins (CaptoCore 700). In one configuration, the VV bulk is concentrated and conditioned with appropriate buffer in a ultra/diafiltration (UF/DF) unit prior to injection into the STIC chromatography membrane. The FT pool and an intermediate cut of the elution pool of the STIC membrane are admixed and directed to a second UF/DF. Finally, the retentate is injected into a CC700 packed bed adsorber where the purified VVs are collected in the FT pool, whereas the residual amount of DNA and host cell protein (HCP) are discarded in the eluate. The experimental recovery achieved with this downstream processing (DSP) platform is close to 100%, the DNA clearance is roughly a 4-log reduction, and the HCP level is reduced by 5 logs. The platform developed for VLP purification is simpler than the previous one, as the STIC membrane adsorber and CC700 bed are connected in series with no UF/DF unit in between. Experimentally, the FT scheme for VLP purification gave a recovery yield of 45% in the chromatography train; the experimental log reduction of DNA and HCP were 2.0 and 3.5, respectively. These results are in line with other purification strategies in the specific field of enveloped VLPs. Both DSP platforms were successfully developed from an initial design space of the binding of the major contaminant (DNA) to the two ligands, determined by surface plasmon resonance, which was subsequently scaled up and confirmed experimentally.
Collapse
Affiliation(s)
- Piergiuseppe Nestola
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, 2780-157 Oeiras, Portugal
| | - Cristina Peixoto
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, 2780-157 Oeiras, Portugal
| | - Louis Villain
- Sartorius Stedim Biotech GmbH, Spindler-Strasse11, 37079 Gottingen, Germany
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - José P B Mota
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|