1
|
Liu LL, Song CC, Abu-Elala N, Tan XY, Zhao T, Zheng H, Yang H, Luo Z. Transcriptional regulation of Znt family members znt4, znt5 and znt10 and their function in zinc transport in yellow catfish (Pelteobagrus fulvidraco). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195041. [PMID: 38740364 DOI: 10.1016/j.bbagrm.2024.195041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.
Collapse
Affiliation(s)
- Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Nermeen Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Egypt; Faculty of Veterinary Medicine, King Salman International University, South Saini, Egypt
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Yang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
2
|
Romersi RF, Nicklisch SCT. Interactions of Environmental Chemicals and Natural Products With ABC and SLC Transporters in the Digestive System of Aquatic Organisms. Front Physiol 2022; 12:767766. [PMID: 35095552 PMCID: PMC8793745 DOI: 10.3389/fphys.2021.767766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.
Collapse
|
3
|
Zhu Y, Shan S, Zhao H, Liu R, Wang H, Chen X, Yang G, Li H. Identification of an IRF10 gene in common carp (Cyprinus carpio L.) and analysis of its function in the antiviral and antibacterial immune response. BMC Vet Res 2020; 16:450. [PMID: 33213475 PMCID: PMC7678311 DOI: 10.1186/s12917-020-02674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN- stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7–89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN-stimulated genes PKR and ISG15. Conclusions These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02674-z.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
4
|
The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas. Gene 2020; 750:144759. [DOI: 10.1016/j.gene.2020.144759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
|
5
|
Chen SW, Wu K, Lv WH, Song CC, Luo Z. Molecular characterization of ten zinc (Zn) transporter genes and their regulation to Zn metabolism in freshwater teleost yellow catfish Pelteobagrus fulvidraco. J Trace Elem Med Biol 2020; 59:126433. [PMID: 31735605 DOI: 10.1016/j.jtemb.2019.126433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Zn is an essential trace element for vertebrates, and Zn uptake and transport is related with the ZIP family of Zn transporters. Meantime, Zn also influenced the expression of ZIP family members. METHODS We cloned and characterized the full-length cDNA sequences of ten Zn transport-relevant genes (ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14) from yellow catfish Pelteobagrus fulvidraco, investigated their mRNA tissue expression. These ZIP mRNA expression was also assessed in the primary hepatocytes and intestinal epithelial cells of yellow catfish in response to three Zn levels (0, 30 μM and 60 μM, respectively). RESULTS All these genes shared the similar domains with the corresponding members in mammals. The mRNA expression of the ten ZIP genes was detected in nine-tested tissues, but variable among these tissues. Flow cytometry analysis and confocal microscopy observation indicated that intracellular free Zn2+ concentration in hepatocytes and intestinal epithelial cells increased with increasing Zn incubation concentration at both 24 h and 48 h. Zn incubation differentially influenced mRNA levels of ZIP transporters in the hepatocytes and intestinal epithelial cells, in a time- and cells-dependent manners. In the hepatocytes, at 24 h, compared to the control, Zn addition down-regulated mRNA levels of ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP11 and ZIP14; however, ZIP10 mRNA levels were lower in 60 μM Zn group than those in the control and 30 μM Zn group. At 48 h, mRNA levels of ZIP1, ZIP6, ZIP7, ZIP9, ZIP10 and ZIP14 declined with increasing Zn incubation concentrations; ZIP3 mRNA levels were the lowest in 60 μM Zn group and showed no significant differences between the control and 30 μM Zn group. In the intestinal epithelial cells, at 24 h, Zn addition down-regulated mRNA levels of ZIP1, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14; ZIP3 mRNA levels were lower in 60 μM Zn group than those in the control and 30 μM Zn group. At 48 h, Zn addition up-regulated mRNA levels of ZIP6 and ZIP9, but down-regulated mRNA levels of ZIP8, ZIP10 and ZIP13. ZIP7, ZIP11 and ZIP14 mRNA abundances were the lowest in 60 μM Zn group and showed no significant differences between the control and 30 μM Zn group. CONCLUSION For the first time, our study characterized ten ZIP family members in yellow catfish, explored their mRNA tissue expression. Their regulation to Zn addition were also investigated in the hepatocytes and intestinal epithelial cells of yellow catfish. Our study revealed the mechanism of cells exposed to Zn addition and provided novel insights for the regulatory mechanism of Zn homeostasis.
Collapse
Affiliation(s)
- Shu-Wei Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
6
|
Lv H, Zhou T, Dong C, Kong S, Chen L, Pu F, Li X, Xu P. Genome-wide identification, evolution, and mRNA expression of complement genes in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2020; 96:190-200. [PMID: 31765792 DOI: 10.1016/j.fsi.2019.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Complement is a complex component of innate immune system, playing an important role in defense against pathogens and host homeostasis. The complement system has been comprehensively studied in mammals, however less is known about complement in teleost, especially in tetraploid common carp (Cyprinus carpio). In this study, a total of 110 complement genes were identified and characterized in common carp, which include almost all the homologs of mammalian complement genes. These genes were classified into three pathways (alternative pathways, lectin pathways and classical pathways), similar to those in mammals. Phylogenetic and selection pressure analysis showed that the complement genes were evolving-constrained and the function was conserved. Most of the complement genes were highly expressed in spleen, liver, brain and skin among the tested 12 health tissues of common carp. After Aeromonas hydrophila infection in the common carp, many members of complement genes were activated to bring about an immune response and expressed to against any pathogenic encroachment. Gene expression divergences which were found between two homoeologous genes suggested the functional divergences of the homoeologous genes after the 4R WGD event, revealing the evolutionary fate of the tetraploid common carp after the recent WGD.
Collapse
Affiliation(s)
- Hongzao Lv
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shengnan Kong
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuejun Li
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Peng Xu
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
| |
Collapse
|
7
|
Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Kolařík J, Panáček A, Zusková E. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:110-116. [PMID: 28841525 DOI: 10.1016/j.ecoenv.2017.08.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Concerns regarding the potential toxic effects of zinc oxide nanoparticles (ZnO NPs) on aquatic organisms are growing due to the fact that NPs may be released into aquatic ecosystems. This study aimed to investigate the effects of dietary exposure to ZnO NPs on juvenile common carp (Cyprinus carpio). Fish were fed a spiked diets at doses 50 and 500mg of ZnO NPs per kg of feed for 6 weeks followed by a 2-week recovery period. Fish were sampled every 2 weeks for haematology trends, blood biochemistry measures, histology analyses, and determination of the accumulation of zinc in tissues. At the end of the exposure and post-exposure periods, fish were sampled for an assessment of lipid peroxidation levels. Dietborne ZnO NPs had no effects on haematology, blood biochemistry, and lipid peroxidation levels during the exposure period. After the recovery period, aspartate aminotransferase activity significantly (p < 0.05) increased and alanine transferase activity significantly (p < 0.05) decreased in the higher exposure group. The level of lipid peroxidation significantly (p < 0.05) decreased in liver of treated fish after 2 weeks post-exposure period. A histological examination revealed mild histopathological changes in kidneys during exposure. Our results did not show a significant increase of zinc content at the end of experiment in any of tested organs. However, chronic dietary exposure to ZnO NPs might affect kidney and liver function.
Collapse
Affiliation(s)
- Latifeh Chupani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic.
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Josef Velíšek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Alžběta Stará
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Šárka Hradilová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jan Kolařík
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Eliška Zusková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| |
Collapse
|
8
|
Gong Y, Feng S, Li S, Zhang Y, Zhao Z, Hu M, Xu P, Jiang Y. Genome-wide characterization of Toll-like receptor gene family in common carp ( Cyprinus carpio ) and their involvement in host immune response to Aeromonas hydrophila infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:89-98. [DOI: 10.1016/j.cbd.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
|
9
|
Meng J, Wang WX, Li L, Zhang G. Respiration disruption and detoxification at the protein expression levels in the Pacific oyster (Crassostrea gigas) under zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:34-41. [PMID: 28780297 DOI: 10.1016/j.aquatox.2017.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The Pacific oyster (Crassostrea gigas) can accumulate high levels of zinc (Zn) without obvious toxicity, but the related molecular mechanisms are largely unknown. In the present study, C. gigas were exposed to excess Zn for 9days and the differentially expressed proteins (DEPs) were examined using the isobaric tags for relative and absolute quantitation (iTRAQ) method. In total, 2667 proteins containing at least two peptides and detected in both replicates were used for proteomic analysis. Among these DEPs, 332 were up-regulated and 282 were down-regulated. KEGG enrichment analysis of DEPs revealed that Zn exposure mainly distrubed 'tricarboxylic acid (TCA) cycle', 'electron transport chain (ETC)' and 'glutathione (GSH) metabolism' processes in oysters. Further key protein expressions enriched in these metabolism pathways were analyzed. In TCA cycle, Zn inhibited the Fe-containing protein expressions, which may lead to the accumulation of succinate and induce anaerobiosis. In ETC metabolism process, Zn inhibited ETC complex protein expressions, including complex I-IV, which may affect the electron transport process. Furthermore, Zn induced phytochelatin (PC) and glutathione peroxidase (GPX) expression in GSH catabolism. The proteins play important roles in Zn detoxification and ROS elimination process. The transcriptional expressions of genes encoding these proteins were observed using real-time PCR analysis, and there was good consistency between these two datasets. Overall, we provide direct evidence for Zn toxicity and detoxification mechanisms at protein level.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China.
| |
Collapse
|
10
|
Dietary zinc addition influenced zinc and lipid deposition in the fore- and mid-intestine of juvenile yellow catfishPelteobagrus fulvidraco. Br J Nutr 2017; 118:570-579. [DOI: 10.1017/s0007114517002446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe present study explored the mechanisms of dietary Zn influencing Zn and lipid deposition in the fore- and mid- intestine in yellow catfishPelteobagrus fulvidraco, and investigated whether the mechanism was intestinal-region dependent. For this purpose, yellow catfish were fed three diets containing Zn levels of 8·83, 19·20 and 146·65 mg Zn/kg, respectively. Growth performance, intestinal TAG and Zn contents as well as activities and mRNA expression of enzymes and genes involved in Zn transport and lipid metabolism in the fore- and mid-intestine were analysed. Dietary Zn increased Zn accumulation as well as activities of Cu-, Zn-superoxide dismutase and ATPase in the fore- and mid-intestine. In the fore-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, metallothionein (MT) and metal response element-binding transcription factor-1 (MTF-1), but down-regulated mRNA levels of ZIP4 and ZIP5. In the mid-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, MT and MTF-1, but down-regulated mRNA levels of ZIP4 and ZIP5. Dietary Zn reduced TAG content, down-regulated activities of 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS) activities, and reduced mRNA levels of 6PGD, G6PD, FAS, PPARγand sterol-regulator element-binding protein (SREBP-1), but up-regulated mRNA levels of carnitine palmitoyltransferase IA, hormone-sensitive lipase (HSLa), adipose TAG lipase (ATGL) and PPARαin the fore-intestine. In the mid-intestine, dietary Zn reduced TAG content, activities of G6PD, ME, isocitrate dehydrogenase and FAS, down-regulated mRNA levels of 6PGD, G6PD, FAS, acetyl-CoA carboxylase a, PPARγand SREBP-1, but up-regulated mRNA expression of HSLa, ATGL and PPARγ. The reduction in TAG content following Zn addition was attributable to reduced lipogenesis and increased lipolysis, and similar regulatory mechanisms were observed between the fore- and mid-intestine.
Collapse
|
11
|
Feng S, Jiang Y, Zhang S, Dong C, Jiang L, Peng W, Mu X, Sun X, Xu P. Genome wide identification of scavenger receptors class A in common carp (Cyprinus carpio) and their expression following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2016; 54:60-67. [PMID: 27041666 DOI: 10.1016/j.fsi.2016.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Scavenger receptors class A (SCARAs) is a subgroup of diverse families of pattern recognition receptors that bind a range of ligands, and play important roles in innate immune processes through pathogens detection, adhesion, endocytosis, and phagocytosis. However, most studies of SCARAs have focused on mammals, and much less is known of SCARAs in fish species. In this study, we identified 7 SCARAs across the common carp genome, which were classified into four subclasses according to comparative genomic analysis including sequence similarities analysis, gene structure and functional domain prediction. Further phylogenetic and syntenic analysis supported their annotation and orthologies. Through examining gene copy number of SCARA genes across several vertebrates, SCARA2, SCARA3 and SCARA4 were found have undergone gene duplication. The expression patterns of SCARAs in common carp were examined during early developmental stages, in healthy tissues, and after Aeromonas hydrophila infection. Most SCARA genes were ubiquitously expressed during common carp early developmental stages, and presented diverse patterns in various healthy tissues, with relatively high expression levels in spleen, liver, intestine, gill and brain, indicating their critical roles likely in maintaining homeostasis and host immune response activities. After A. hydrophila infection, most SCARA genes were up-regulated at 4 h post infection in mucosal tissue intestine, while generally up-regulated at 12 h post infection in spleen, suggesting a tissue-specific pattern of regulation. Taken together, all these results suggested that SCARA genes played important roles in host immune response to A. hydrophila infection in common carp, and provided important genomic resources for future studies on fish disease management.
Collapse
Affiliation(s)
- Shuaisheng Feng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanliang Jiang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Songhao Zhang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Chuanju Dong
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Likun Jiang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenzhu Peng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xidong Mu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Xiaowen Sun
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
12
|
Chen X, Chen Y, Yu M, Sha Z, Shan X. The complete mitochondrial genome of the Azuma emmnion. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:77-78. [PMID: 26681479 DOI: 10.3109/19401736.2015.1110806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of the Azuma emmnion has been determined. The total length of a complete nucleotide sequence of the mitochondria is 16 522 bp, which contained 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and one D-loop region. Its nucleotide sequence and composition of A. emmnion mitochondrion was similar to most other vertebrates. Nucleotide base composition of mitochondrial genome was the following: 25.58% for A, 18.22% for G, 27.67% for C, 28.53% for T. The phylogenetic analysis result, which based on the complete mitogenomes of of A. emmnion and other 11 fish species, indicated that A. emmnion and Pholis crassispina clustered into one branch.
Collapse
Affiliation(s)
- Xuejie Chen
- a Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao , China.,b Function Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Yadong Chen
- a Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao , China.,b Function Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Mengjun Yu
- a Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao , China.,b Function Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Zhenxia Sha
- a Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao , China.,b Function Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Xiujuan Shan
- a Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao , China.,b Function Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| |
Collapse
|
13
|
Fiaz Khan M, Nasir Khan Khattak M, He D, Liang Y, Li C, Ullah Dawar F, Chen Y. The mitochondrial genome of Schizothorax esocinus (Cypriniformes: Cyprinidae) from Northern Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3772-3. [PMID: 26369993 DOI: 10.3109/19401736.2015.1079899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial DNA sequence represents a mainstay of phylogenetics. It allows biologists to elucidate the evolutionary relationships among species. It also permits an examination of the relatedness of populations, hence got importance in the field of biology. The current study was designed to know the mitochondrial sequence of Schizothorax esocinus, a delicious fish belonging to family Cyprinidae. In this study, the complete mitochondrial genome of S. esocinus from Northern Pakistan was determined. The mitogenome of S. esocinus was found to be 16 591 bp in length and consisted of 13 protein coding genes, 22 tRNA genes, two rRNA genes, and one control region. All genes were encoded on heavy strain except ND6 and few tRNA genes. The overall base composition was T 25.5%, C 27.0%, A 29.8% and G 17.7%, A + T content 55.3% and G + C content 47.7%. The length of control region (CR) was 938 bp and contained putative termination-associated sequence (TAS) and several conserved sequence blocks (CSB) and control region also contained a microsatellite region (TA). This is the very first study reported from a reservoir of large cold water bodies in Pakistan which have a great potential for conservation of cold water fish species. This mitogenome sequence would be useful to know the phylogenetic status of the fish.
Collapse
Affiliation(s)
- Muhammad Fiaz Khan
- a Department of Zoology , Hazara University , Mansehra , Pakistan and.,b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | | | - Dekui He
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Yangyang Liang
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | - Chunhua Li
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| | | | - Yifeng Chen
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , PR China
| |
Collapse
|
14
|
Fiaz Khan M, Nasir Khan Khattak M, He D, Liang Y, Li C, Ullah Dawar F, Chen Y. The complete mitochondrial genome organization of Schizothorax Plagiostomus (Teleostei: Cyprinidae) from Northern Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3630-2. [PMID: 26369352 DOI: 10.3109/19401736.2015.1079829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizothorax plagiostomus, a fresh water fish, is an economically important fish of Pakistan. In this study, the complete mitochondrial DNA (mtDNA) sequence of S. plagiostomus was explored. The mitogenome length was found to be 16 563bp with 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 2 non-coding regions: origin of light-strand replication (OL) and control region (D-loop). All genes were encoded on the heavy strand except ND6 and few tRNA genes. The overall base composition of S. plagiostomus of the heavy strand was T 25.5%, C 27.0%, A 29.8% and G 17.8%, A + T content 55.3% and G + C content 44.7%. The phylogenetic tree suggests that S. esocinus, S. progastus, S. richardsonii and S. plagiostomus may have closer affinities than other fish of the genus Schizothorax. This mitogenome sequence would be useful for phylogenetic analysis and conservation of this species in Pakistan.
Collapse
Affiliation(s)
- Muhammad Fiaz Khan
- a Department of Zoology , Hazara University , Mansehra , Pakistan and.,b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , P.R. China
| | | | - Dekui He
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , P.R. China
| | - Yangyang Liang
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , P.R. China
| | - Chunhua Li
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , P.R. China
| | | | - Yifeng Chen
- b Laboratory of Biological Invasion and Adaptive Evolution , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , Hubei , P.R. China
| |
Collapse
|
15
|
Jiang L, Chen B, Feng J, Mahboob S, Al-Ghanim KA. Intraspecific mitochondrial variations between Rhinogobio typus from the Yellow River and Yangtze River. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3536-7. [PMID: 26260174 DOI: 10.3109/19401736.2015.1074206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of the first individual Rhinogobio typus collected from the Yellow River were sequenced and compared with the previously reported complete mitochondrial sequence of Rhinogobio typus from the Yangtze River. The length of their circular mitochondrial genome was determined to be 16 599 and 16 608 bp respectively. The comparison of two mitochondrial genomes revealed 237 base pair substitutions and 17 insertions or deletions (indels), including 182 base pair substitutions and 2 indels in protein-coding region. Phylogenetic tree was constructed based on complete mitogenomes of the two populations and closely related 13 teleost species to assess their phylogenic relationship and evolution.
Collapse
Affiliation(s)
- Likun Jiang
- a College of Life Sciences, Shanghai Ocean University , Shanghai , China
| | - Baohua Chen
- a College of Life Sciences, Shanghai Ocean University , Shanghai , China
| | - Jianxin Feng
- b Henan Academy of Fishery Sciences , Zhengzhou , China
| | - Shahid Mahboob
- c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia , and.,d Department of Zoology , GC University , Faisalabad , Pakistan
| | - Khalid A Al-Ghanim
- c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia , and
| |
Collapse
|
16
|
Jiang L, Zhang S, Chen B, Mahboob S, Al-Ghanim KA, Feng J. Complete mitochondrial genomes of two ornamental fishes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2531-2. [PMID: 26061340 DOI: 10.3109/19401736.2015.1038790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genomes of two ornamental fishes, black molly (Poecilia sphenops) and blue gourami (Trichogaster trichopterus), were obtained by the traditional polymerase chain reaction (PCR)-based sequencing approach. The mitogenomes of P. sphenops and T. trichopterus are determined as 16,533 bp and 16,456 bp in length, respectively. Both the genomes include 22 transfer RNA genes, 13 protein-coding genes and 2 ribosomal RNA genes. Phylogenetic tree was constructed based on the complete mitogenomes of these two species and closely related 20 teleost species to assess their phylogenic relationship and evolution.
Collapse
Affiliation(s)
- Likun Jiang
- a College of Life Sciences, Shanghai Ocean University , Shanghai , China
| | - Songhao Zhang
- b College of Life Sciences, Tianjin Normal University , Tianjin , China
| | - Baohua Chen
- a College of Life Sciences, Shanghai Ocean University , Shanghai , China
| | - Shahid Mahboob
- c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia .,d Department of Zoology , GC University , Faisalabad , Pakistan , and
| | - Khalid A Al-Ghanim
- c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Jianxin Feng
- e Henan Academy of Fishery Sciences , Zhengzhou , China
| |
Collapse
|