1
|
Cassidy-Seyoum SA, Chheng K, Chanpheakdey P, Meershoek A, Hsiang MS, von Seidlein L, Tripura R, Adhikari B, Ley B, Price RN, Lek D, Engel N, Thriemer K. Implementation of Glucose-6-Phosphate Dehydrogenase (G6PD) testing for Plasmodium vivax case management, a mixed method study from Cambodia. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003476. [PMID: 39028699 PMCID: PMC11259306 DOI: 10.1371/journal.pgph.0003476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
Plasmodium vivax remains a challenge for malaria elimination since it forms dormant liver stages (hypnozoites) that can reactivate after initial infection. 8-aminoquinolone drugs kill hypnozoites but can cause severe hemolysis in individuals with Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency. The STANDARD G6PD test (Biosensor) is a novel point-of-care diagnostic capable of identifying G6PD deficiency prior to treatment. In 2021, Cambodia implemented the Biosensor to facilitate radical cure treatment for vivax malaria. To assess the Biosensor's implementation after its national rollout, a mixed-methods study was conducted in eight districts across three provinces in Cambodia. Interviews, focus group discussions, and observations explored stakeholders' experiences with G6PD testing and factors influencing its implementation. Quantitative data illustrative of test implementation were gathered from routine surveillance forms and key proportions derived. Qualitative data were analyzed thematically. The main challenge to implementing G6PD testing was that only 49.2% (437/888) of eligible patients reached health centers for G6PD testing following malaria diagnosis by community health workers. Factors influencing this included road conditions and long distances to the health center, compounded by the cost of seeking further care and patients' perceptions of vivax malaria and its treatment. 93.9% (790/841) of eligible vivax malaria patients who successfully completed referral (429/434) and directly presented to the health center (360/407) were G6PD tested. Key enabling factors included the test's acceptability among health workers and their understanding of the rationale for testing. Only 36.5% (443/1213) of eligible vivax episodes appropriately received primaquine. 70.5% (165/234) of female patients and all children under 20 kilograms never received primaquine. Our findings suggest that access to radical cure requires robust infrastructure and income security, which would likely improve referral rates to health centers enabling access. Bringing treatment closer to patients, through community health workers and nuanced community engagement, would improve access to curative treatment of vivax malaria.
Collapse
Affiliation(s)
- Sarah A. Cassidy-Seyoum
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Department of Health Ethics and Society, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Keoratha Chheng
- Faculty of Tropical Medicine, Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
| | - Phal Chanpheakdey
- Faculty of Tropical Medicine, Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
| | - Agnes Meershoek
- Department of Health Ethics and Society, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Michelle S. Hsiang
- Institute for Global Health Sciences, Malaria Elimination Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Lorenz von Seidlein
- Faculty of Tropical Medicine, Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rupam Tripura
- Faculty of Tropical Medicine, Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Bipin Adhikari
- Faculty of Tropical Medicine, Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Division of Education, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Faculty of Tropical Medicine, Mahidol Oxford Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- National Institute of Public Health, School of Public Health, Phnom Penh, Cambodia
| | - Nora Engel
- Department of Health Ethics and Society, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| |
Collapse
|
2
|
Chamchoy K, Sudsumrit S, Wongwigkan J, Petmitr S, Songdej D, Adams ER, Edwards T, Leartsakulpanich U, Boonyuen U. Molecular characterization of G6PD mutations identifies new mutations and a high frequency of intronic variants in Thai females. PLoS One 2023; 18:e0294200. [PMID: 37967096 PMCID: PMC10651042 DOI: 10.1371/journal.pone.0294200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymopathy caused by mutations in the G6PD gene. A medical concern associated with G6PD deficiency is acute hemolytic anemia induced by certain foods, drugs, and infections. Although phenotypic tests can correctly identify hemizygous males, as well as homozygous and compound heterozygous females, heterozygous females with a wide range of G6PD activity may be misclassified as normal. This study aimed to develop multiplex high-resolution melting (HRM) analyses to enable the accurate detection of G6PD mutations, especially among females with heterozygous deficiency. Multiplex HRM assays were developed to detect six G6PD variants, i.e., G6PD Gaohe (c.95A>G), G6PD Chinese-4 (c.392G>T), G6PD Mahidol (c.487G>A), G6PD Viangchan (c.871G>A), G6PD Chinese-5 (c.1024C>T), and G6PD Union (c.1360C>T) in two reactions. The assays were validated and then applied to genotype G6PD mutations in 248 Thai females. The sensitivity of the HRM assays developed was 100% [95% confidence interval (CI): 94.40%-100%] with a specificity of 100% (95% CI: 88.78%-100%) for detecting these six mutations. The prevalence of G6PD deficiency was estimated as 3.63% (9/248) for G6PD deficiency and 31.05% (77/248) for intermediate deficiency by phenotypic assay. The developed HRM assays identified three participants with normal enzyme activity as heterozygous for G6PD Viangchan. Interestingly, a deletion in intron 5 nucleotide position 637/638 (c.486-34delT) was also detected by the developed HRM assays. G6PD genotyping revealed a total of 12 G6PD genotypes, with a high prevalence of intronic variants. Our results suggested that HRM analysis-based genotyping is a simple and reliable approach for detecting G6PD mutations, and could be used to prevent the misdiagnosis of heterozygous females by phenotypic assay. This study also sheds light on the possibility of overlooking intronic variants, which could affect G6PD expression and contribute to enzyme deficiency.
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sirapapha Sudsumrit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutamas Wongwigkan
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duantida Songdej
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emily R. Adams
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Thomas Edwards
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Sadhewa A, Cassidy-Seyoum S, Acharya S, Devine A, Price RN, Mwaura M, Thriemer K, Ley B. A Review of the Current Status of G6PD Deficiency Testing to Guide Radical Cure Treatment for Vivax Malaria. Pathogens 2023; 12:pathogens12050650. [PMID: 37242320 DOI: 10.3390/pathogens12050650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Plasmodium vivax malaria continues to cause a significant burden of disease in the Asia-Pacific, the Horn of Africa, and the Americas. In addition to schizontocidal treatment, the 8-aminoquinoline drugs are crucial for the complete removal of the parasite from the human host (radical cure). While well tolerated in most recipients, 8-aminoquinolines can cause severe haemolysis in glucose-6-phosphate dehydrogenase (G6PD) deficient patients. G6PD deficiency is one of the most common enzymopathies worldwide; therefore, the WHO recommends routine testing to guide 8-aminoquinoline based treatment for vivax malaria whenever possible. In practice, this is not yet implemented in most malaria endemic countries. This review provides an update of the characteristics of the most used G6PD diagnostics. We describe the current state of policy and implementation of routine point-of-care G6PD testing in malaria endemic countries and highlight key knowledge gaps that hinder broader implementation. Identified challenges include optimal training of health facility staff on point-of-care diagnostics, quality control of novel G6PD diagnostics, and culturally appropriate information and communication with affected communities around G6PD deficiency and implications for treatment.
Collapse
Affiliation(s)
- Arkasha Sadhewa
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Sarah Cassidy-Seyoum
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Sanjaya Acharya
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Angela Devine
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne 3010, Australia
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne 3010, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Muthoni Mwaura
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| |
Collapse
|
4
|
Zeng W, Liu N, Li Y, Gao A, Yuan M, Ma R, Jiang N, Sun D, Wang G, Feng X. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd) and clinical implication for safe use of primaquine in malaria-endemic areas of Hainan Province, China. Front Public Health 2022; 10:1010172. [PMID: 36339224 PMCID: PMC9634581 DOI: 10.3389/fpubh.2022.1010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 01/27/2023] Open
Abstract
Primaquine, the only licensed antimalarial drug for eradication of Plasmodium vivax and Plasmodium ovale malaria, may cause acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) during treatment. The different prevalence and distribution patterns of G6PDd in Hainan, the ancient malaria-endemic area, are unclear. This study included 5,622 suspected malaria patients between 2009 and 2011 in 11 counties of Hainan. Glucose-6-phosphate dehydrogenase deficiency prevalence was determined using the fluorescent spot test (FST) and malaria patients was confirmed by a positive light microscopy. The G6PDd prevalence for different ethnic groups, genders, and counties were calculated and compared using χ2-test. Spatial cluster and Spearman rank correlation of G6PDd prevalence and malaria incidence were analyzed. The overall G6PDd prevalence of study population was 7.45%. The G6PDd prevalence of males, Li ethnic minority, and malaria patients was significantly higher than that of females, Han ethnic majority, and non-malarial patients (p < 0.01), respectively. The spatial cluster of G6PDd and malaria located in south-western and central-southern Hainan, respectively, with no significant correlation. The study provides essential information on G6PDd prevalence in ancient malaria-endemic areas of Hainan Province. We also highlight the need for a better understanding of the mechanisms underlying the relationship between G6PDd prevalence and malaria incidence. These findings provide a reference for the safety of the primaquine-based intervention, even after malaria elimination.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Tropic Disease, Hainan Center for Disease Control and Prevention, Haikou, China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuchun Li
- Department of Tropic Disease, Hainan Center for Disease Control and Prevention, Haikou, China
| | - Ai Gao
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mengyi Yuan
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rui Ma
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Na Jiang
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dingwei Sun
- Department of Tropic Disease, Hainan Center for Disease Control and Prevention, Haikou, China,Dingwei Sun
| | - Guangze Wang
- Department of Tropic Disease, Hainan Center for Disease Control and Prevention, Haikou, China,Guangze Wang
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, Fudan University, Shanghai, China,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China,*Correspondence: Xinyu Feng
| |
Collapse
|
5
|
Kheang ST, Ridley R, Ngeth E, Ir P, Ngor P, Sovannaroth S, Lek D, Phon S, Kak N, Yeung S. G6PD testing and radical cure for Plasmodium vivax in Cambodia: A mixed methods implementation study. PLoS One 2022; 17:e0275822. [PMID: 36264996 PMCID: PMC9584508 DOI: 10.1371/journal.pone.0275822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Cambodia aims to eliminate malaria by 2025, however tackling Plasmodium vivax (P.v) presents multiple challenges. The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency has prevented the deployment of 8-aminoquinolones for “radical cure”, due to the risk of severe haemolysis. Patients with P. vivax have therefore continued to experience recurrent relapses leading to cumulative health and socioeconomic burden. The recent advent of point of care testing for G6PD deficiency has made radical cure a possibility, however at the time of the study lack of operational experience and guidance meant that they had not been introduced. This study therefore aimed to design, implement and evaluate a new care pathway for the radical cure of P.vivax. Methods This implementation study took place in Pursat province, Western Cambodia. The interventions were co-developed with key stakeholders at the national, district, and local level, through a continuous process of consultations as well as formal meetings. Mixed methods were used to evaluate the feasibility of the intervention including its uptake (G6PD testing rate and the initiation of primaquine treatment according to G6PD status); adherence (self-reported); and acceptability, using quantitative analysis of primary and secondary data as well as focus group discussions and key informant interviews. Results The co-development process resulted in the design of a new care pathway with supporting interventions, and a phased approach to their implementation. Patients diagnosed with P.v infection by Village Malaria Workers (VMWs) were referred to local health centres for point-of-care G6PD testing and initiation of radical cure treatment with 14-day or 8-week primaquine regimens depending on G6PD status. VMWs carried out follow-up in the community on days 3, 7 and 14. Supporting interventions included training, community sensitisation, and the development of a smartphone and tablet application to aid referral, follow-up and surveillance. The testing rate was low initially but increased rapidly over time, reflecting the deliberately cautious phased approach to implementation. In total 626 adults received G6PD testing, for a total of 675 episodes. Of these 555 occurred in patients with normal G6PD activity and nearly all (549/555, 98.8%) were initiated on PQ14. Of the 120 with deficient/intermediate G6PD activity 61 (50.8%) were initiated on PQ8W. Self-reported adherence was high (100% and 95.1% respectively). No severe adverse events were reported. The pathway was found to be highly acceptable by both staff and patients. The supporting interventions and gradual introduction were critical to success. Challenges included travel to remote areas and mobility of P.v patients. Conclusion The new care pathway with supporting interventions was highly feasible with high levels of uptake, adherence and acceptability in this setting where high prevalence of G6PD deficiency is high and there is a well-established network of VMWs. Scaling up of the P.v radical cure programme is currently underway in Cambodia and a decline in reduction in the burden of malaria is being seen, bringing Cambodia a step closer to elimination.
Collapse
Affiliation(s)
- Soy Ty Kheang
- The Center for Health and Social Development (HSD), Phnom Penh, Cambodia
- National Institute of Public Health (NIPH), Phnom Penh, Cambodia
| | - Rosemarie Ridley
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Eng Ngeth
- The Center for Health and Social Development (HSD), Phnom Penh, Cambodia
| | - Por Ir
- The Center for Health and Social Development (HSD), Phnom Penh, Cambodia
- National Institute of Public Health (NIPH), Phnom Penh, Cambodia
| | - Pengby Ngor
- National Malaria Control Program, The National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Siv Sovannaroth
- National Malaria Control Program, The National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Dysoley Lek
- National Malaria Control Program, The National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Somaly Phon
- The Center for Health and Social Development (HSD), Phnom Penh, Cambodia
| | - Neeraj Kak
- The Center for Health and Social Development (HSD), Phnom Penh, Cambodia
| | - Shunmay Yeung
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Pfeffer DA, Satyagraha AW, Sadhewa A, Alam MS, Bancone G, Boum Y, Brito M, Cui L, Deng Z, Domingo GJ, He Y, Khan WA, Kibria MG, Lacerda M, Menard D, Monteiro W, Pal S, Parikh S, Roca-Feltrer A, Roh M, Sirdah MM, Wang D, Huang Q, Howes RE, Price RN, Ley B. Genetic Variants of Glucose-6-Phosphate Dehydrogenase and Their Associated Enzyme Activity: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:1045. [PMID: 36145477 PMCID: PMC9502867 DOI: 10.3390/pathogens11091045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
Low glucose-6-phosphate dehydrogenase enzyme (G6PD) activity is a key determinant of drug-induced haemolysis. More than 230 clinically relevant genetic variants have been described. We investigated the variation in G6PD activity within and between different genetic variants. In this systematic review, individual patient data from studies reporting G6PD activity measured by spectrophotometry and corresponding the G6PD genotype were pooled (PROSPERO: CRD42020207448). G6PD activity was converted into percent normal activity applying study-specific definitions of 100%. In total, 4320 individuals from 17 studies across 10 countries were included, where 1738 (40.2%) had one of the 24 confirmed G6PD mutations, and 61 observations (3.5%) were identified as outliers. The median activity of the hemi-/homozygotes with A-(c.202G>A/c.376A>G) was 29.0% (range: 1.7% to 76.6%), 10.2% (range: 0.0% to 32.5%) for Mahidol, 16.9% (range 3.3% to 21.3%) for Mediterranean, 9.0% (range: 2.9% to 23.2%) for Vanua Lava, and 7.5% (range: 0.0% to 18.3%) for Viangchan. The median activity in heterozygotes was 72.1% (range: 16.4% to 127.1%) for A-(c.202G>A/c.376A>G), 54.5% (range: 0.0% to 112.8%) for Mahidol, 37.9% (range: 20.7% to 80.5%) for Mediterranean, 53.8% (range: 10.9% to 82.5%) for Vanua Lava, and 52.3% (range: 4.8% to 78.6%) for Viangchan. A total of 99.5% of hemi/homozygotes with the Mahidol mutation and 100% of those with the Mediterranean, Vanua Lava, and Viangchan mutations had <30% activity. For A-(c.202G>A/c.376A>G), 55% of hemi/homozygotes had <30% activity. The G6PD activity for each variant spanned the current classification thresholds used to define clinically relevant categories of enzymatic deficiency.
Collapse
Affiliation(s)
- Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | | | - Arkasha Sadhewa
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Yap Boum
- Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
- Mbarara University of Science and Technology, Mbarara 1956, Uganda
| | - Marcelo Brito
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming 650032, China
| | | | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming 650032, China
| | - Wasif A. Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Marcus Lacerda
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, 75015 Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, 67081 Strasbourg, France
| | - Wuelton Monteiro
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, WA 98121, USA
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Arantxa Roca-Feltrer
- Malaria Consortium, Phnom Penh Center, Street Sothearos, Tonle Basac, Chamkarmorn, Building “H”, 1st Floor, Room No. 192, Phnom Penh, Cambodia
| | - Michelle Roh
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Duoquan Wang
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200000, China
- Chinese Center for Tropical Diseases Research, School of Global Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuying Huang
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| |
Collapse
|
7
|
Tantular IS, Kawamoto F. Distribution of G6PD deficiency genotypes among Southeast Asian populations. Trop Med Health 2021; 49:97. [PMID: 34930507 PMCID: PMC8686385 DOI: 10.1186/s41182-021-00387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a group of X-linked, hereditary genetic disorders caused by mutations in the G6PD gene and results in functional variants of about 400 biochemical and clinical phenotypes. Among them, more than 215 genotypes have been identified so far. In this review, specific features of the genotype distribution in different communities and countries are discussed based on multiple reports and our molecular epidemiological studies of Southeast Asian countries. Particularly, in Indonesia, the frequency distribution of G6PD deficiency variants was distinct between western and eastern Indonesian populations, suggesting two different gene flows during Indonesian expansions.
Collapse
Affiliation(s)
- Indah S Tantular
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fumihiko Kawamoto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. .,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.
| |
Collapse
|
8
|
Pal S, Myburgh J, Bansil P, Hann A, Robertson L, Gerth-Guyette E, Ambler G, Bizilj G, Kahn M, Zobrist S, Manis MR, Styke NA, Allan V, Ansbro R, Akingbade T, Bryan A, Murphy SC, Kublin JG, Layton M, Domingo GJ. Reference and point-of-care testing for G6PD deficiency: Blood disorder interference, contrived specimens, and fingerstick equivalence and precision. PLoS One 2021; 16:e0257560. [PMID: 34543346 PMCID: PMC8452025 DOI: 10.1371/journal.pone.0257560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/05/2021] [Indexed: 11/30/2022] Open
Abstract
Certain clinical indications and treatments such as the use of rasburicase in cancer therapy and 8-aminoquinolines for Plasmodium vivax malaria treatment would benefit from a point-of-care test for glucose-6-phosphate dehydrogenase (G6PD) deficiency. Three studies were conducted to evaluate the performance of one such test: the STANDARD™ G6PD Test (SD BIOSENSOR, South Korea). First, biological interference on the test performance was evaluated in specimens with common blood disorders, including high white blood cell (WBC) counts. Second, the test precision on fingerstick specimens was evaluated against five individuals of each, deficient, intermediate, and normal G6PD activity status. Third, clinical performance of the test was evaluated at three point-of-care settings in the United States. The test performed equivalently to the reference assay in specimens with common blood disorders. High WBC count blood samples resulted in overestimation of G6PD activity in both the reference assay and the STANDARD G6PD Test. The STANDARD G6PD Test showed good precision on multiple fingerstick specimens from the same individual. The same G6PD threshold values (U/g Hb) were applied for a semiquantitative interpretation for fingerstick- and venous-derived results. The sensitivity/specificity values (95% confidence intervals) for the test for G6PD deficiency were 100 (92.3–100.0)/97 (95.2–98.2) and 100 (95.7–100.0)/97.4 (95.7–98.5) for venous and capillary specimens, respectively. The same values for females with intermediate (> 30% to ≤ 70%) G6PD activity were 94.1 (71.3–99.9)/88.2 (83.9–91.7) and 82.4 (56.6–96.2)/87.6(83.3–91.2) for venous and capillary specimens, respectively. The STANDARD G6PD Test enables point-of-care testing for G6PD deficiency.
Collapse
Affiliation(s)
- Sampa Pal
- PATH, Seattle, Washington, United States of America
| | - Jane Myburgh
- Special Haematology Laboratory, Hammersmith Hospital, London, United Kingdom
| | - Pooja Bansil
- PATH, Seattle, Washington, United States of America
| | - Amanda Hann
- Special Haematology Laboratory, Hammersmith Hospital, London, United Kingdom
| | - Lynn Robertson
- Special Haematology Laboratory, Hammersmith Hospital, London, United Kingdom
| | | | - Gwen Ambler
- PATH, Seattle, Washington, United States of America
| | - Greg Bizilj
- PATH, Seattle, Washington, United States of America
| | - Maria Kahn
- PATH, Seattle, Washington, United States of America
| | | | - Michelle R. Manis
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nickolas A. Styke
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Vajra Allan
- PATH, Seattle, Washington, United States of America
| | | | - Tobi Akingbade
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew Bryan
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark Layton
- Special Haematology Laboratory, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
9
|
Dynamics of G6PD activity in patients receiving weekly primaquine for therapy of Plasmodium vivax malaria. PLoS Negl Trop Dis 2021; 15:e0009690. [PMID: 34495956 PMCID: PMC8452019 DOI: 10.1371/journal.pntd.0009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/20/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute Plasmodium vivax malaria is associated with haemolysis, bone marrow suppression, reticulocytopenia, and post-treatment reticulocytosis leading to haemoglobin recovery. Little is known how malaria affects glucose-6-phosphate dehydrogenase (G6PD) activity and whether changes in activity when patients present may lead qualitative tests, like the fluorescent spot test (FST), to misdiagnose G6PD deficient (G6PDd) patients as G6PD normal (G6PDn). Giving primaquine or tafenoquine to such patients could result in severe haemolysis. METHODS We investigated the G6PD genotype, G6PD enzyme activity over time and the baseline FST phenotype in Cambodians with acute P. vivax malaria treated with 3-day dihydroartemisinin piperaquine and weekly primaquine, 0·75 mg/kg x8 doses. RESULTS Of 75 recruited patients (males 63), aged 5-63 years (median 24), 15 were G6PDd males (14 Viangchan, 1 Canton), 3 were G6PD Viangchan heterozygous females, and 57 were G6PDn; 6 patients had α/β-thalassaemia and 26 had HbE. Median (range) Day0 G6PD activities were 0·85 U/g Hb (0·10-1·36) and 11·4 U/g Hb (6·67-16·78) in G6PDd and G6PDn patients, respectively, rising significantly to 1·45 (0·36-5·54, p<0.01) and 12·0 (8·1-17·4, p = 0.04) U/g Hb on Day7, then falling to ~Day0 values by Day56. Day0 G6PD activity did not correlate (p = 0.28) with the Day0 reticulocyte counts but both correlated over time. The FST diagnosed correctly 17/18 G6PDd patients, misclassifying one heterozygous female as G6PDn. CONCLUSIONS In Cambodia, acute P. vivax malaria did not elevate G6PD activities in our small sample of G6PDd patients to levels that would result in a false normal qualitative test. Low G6PDd enzyme activity at disease presentation increases upon parasite clearance, parallel to reticulocytosis. More work is needed in G6PDd heterozygous females to ascertain the effect of P. vivax on their G6PD activities. TRIAL REGISTRATION The trial was registered (ACTRN12613000003774) with the Australia New Zealand Clinical trials (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363399&isReview=true).
Collapse
|
10
|
Brito-Sousa JD, Murta F, Vitor-Silva S, Sampaio VS, Mendes MO, Brito MAM, Batista TSB, Santos APC, Marques LLG, Barbosa LRA, Melo MM, Baia-da-Silva DC, Silva-Neto AV, Santos TC, Souza BKA, Figueiredo EFG, Silva EL, Rodovalho S, Nakagawa TH, Arcanjo AR, Siqueira AM, Melo GC, Recht J, Domingo GJ, Bassat Q, Bancone G, Monteiro WM, Lacerda MVG. Real-life implementation of a G6PD deficiency screening qualitative test into routine vivax malaria diagnostic units in the Brazilian Amazon (SAFEPRIM study). PLoS Negl Trop Dis 2021; 15:e0009415. [PMID: 34003840 PMCID: PMC8162658 DOI: 10.1371/journal.pntd.0009415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency greatly hinders Plasmodium vivax malaria radical cure and further elimination due to 8-aminoquinolines-associated hemolysis. Although the deleterious health effects of primaquine in G6PD deficient individuals have been known for over 50 years, G6PD testing is not routinely performed before primaquine treatment in most P. vivax endemic areas. Method/Principal findings The qualitative CareStart G6PD screening test was implemented in 12 malaria treatment units (MTUs) in the municipality of Rio Preto da Eva, Western Brazilian Amazon, a malaria endemic area, between February 2019 and early January 2020. Training materials were developed and validated; evaluations were conducted on the effectiveness of training health care professionals (HCPs) to perform the test, the interpretation and reliability of routine testing performed by HCPs, and perceptions of HCPs and patients. Most HCPs were unaware of G6PD deficiency and primaquine-related adverse effects. Most of 110 HCPs trained (86/110, 78%) were able to correctly perform the G6PD test after a single 4-hour training session. The test performed by HCPs during implementation showed 100.0% (4/4) sensitivity and 68.1% (62/91) specificity in identifying G6PD deficient patients as compared to a point-of-care quantitative test (Standard G6PD). Conclusions/Significance G6PD screening using the qualitative CareStart G6PD test performed by HCPs in MTUs of an endemic area showed high sensitivity and concerning low specificity. The amount of false G6PD deficiency detected led to substantial loss of opportunities for radical cure. Glucose 6-phosphate dehydrogenase deficiency (G6PDd) has greatly impacted the treatment of Plasmodium vivax malaria because of the red blood cell destruction in what is known as hemolysis. Primaquine, used to clear dormant liver parasites that cause relapses of the disease, is a well-known trigger that may lead to life-threatening complications in patients with this condition. Although there are several G6PDd diagnostic tests available to guide the decision of weekly or daily primaquine treatment, they are not yet routinely used: questions on how, when, where and who is going to perform the test remain unanswered. This study revealed that, although G6PDd was not previously known by most of the healthcare workers, they were able to perform the test after a single training session. The test performed well in the field, differentiating patients that cannot use daily primaquine from the others, but some expected limitations require further action to be taken into consideration. This research provides an important overall understanding that may aid policy makers in the process of recommending proven interventions, such as G6PDd screening, to implement them pragmatically.
Collapse
Affiliation(s)
- Jose Diego Brito-Sousa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Felipe Murta
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Sheila Vitor-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanderson S. Sampaio
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Vigilância em Saúde do Amazonas—FVS-AM, Manaus, Brazil
| | - Maxwell O. Mendes
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Marcelo A. M. Brito
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Talita S. B. Batista
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Alicia P. C. Santos
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Leonardo L. G. Marques
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Laila R. A. Barbosa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marly M. Melo
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Djane C. Baia-da-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Alexandre V. Silva-Neto
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Thalie C. Santos
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Brenda K. A. Souza
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Erick F. G. Figueiredo
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Emanuelle L. Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Sheila Rodovalho
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Pan American Health Organization–PAHO, World Health Organization, Brasilia, Brazil
| | - Theresa H. Nakagawa
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Ana Ruth Arcanjo
- Laboratório Central de Saúde Pública do Amazonas–LACEN/AM, Manaus, Brazil
| | - André M. Siqueira
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia–INI, Rio de Janeiro, Brazil
| | - Gisely C. Melo
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Judith Recht
- Independent consultant, North Bethesda, Maryland, United States of America
| | - Gonzalo J. Domingo
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Quique Bassat
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Wuelton M. Monteiro
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcus V. G. Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane—ILMD, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
11
|
Stratil AS, Vernaeve L, Lopes S, Bourny Y, Mannion K, Hamade P, Roca-Feltrer A, Tibenderana JK, Sovannaroth S, Debackere M. Eliminating Plasmodium falciparum malaria: results from tailoring active case detection approaches to remote populations in forested border areas in north-eastern Cambodia. Malar J 2021; 20:108. [PMID: 33618718 PMCID: PMC7898252 DOI: 10.1186/s12936-021-03622-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Remaining Plasmodium falciparum cases in Cambodia are concentrated in forested border areas and in remote populations who are hard to reach through passive case detection. A key approach to reach these populations is active case detection by mobile malaria workers (MMWs). However, this is operationally challenging because of changing movement patterns of the target population moving into less accessible areas. From January 2018 to December 2020, a tailored package of active case detection approaches was implemented in forested border areas of three provinces in north-eastern Cambodia to reach remote populations and support the elimination of falciparum malaria. METHODS Key elements of this project were to tailor approaches to local populations, use responsive monitoring systems, maintain operational flexibility, build strong relationships with local communities, and implement close supervision practices. MMWs were recruited from local communities. Proactive case detection approaches included mobile malaria posts positioned at frequented locations around and within forests, and locally informed outreach activities targeting more remote locations. Reactive case detection was conducted among co-travellers of confirmed cases. Testing for malaria was conducted independent of fever symptoms. Routine monitoring of programmatic data informed tactical adaptations, while supervision exercises ensured service quality. RESULTS Despite operational challenges, service delivery sites were able to maintain consistently high testing rates throughout the implementation period, with each of 45 sites testing a monthly average of 64 (SD 6) people in 2020. In 2020, project MMWs detected only 32 P. falciparum cases. Over the project period, the P. falciparum/P. vivax ratio steadily inversed. Including data from neighbouring health centres and village malaria workers, 45% (80,988/180,732) of all people tested and 39% (1280/3243) of P. falciparum cases detected in the area can be attributed to project MMWs. Remaining challenges of the last elimination phase include maintaining intensified elimination efforts, addressing the issue of detecting low parasitaemia cases and shifting focus to P. vivax malaria. CONCLUSIONS Reaching remote populations through active case detection should remain a key strategy to eliminate P. falciparum malaria. This case study presented a successful approach combining tailored proactive and reactive strategies that could be transferred to similar settings in other areas of the Greater Mekong Subregion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | | |
Collapse
|
12
|
Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of Glucose-6-phosphate dehydrogenase deficiency. Pharmacol Ther 2020; 222:107788. [PMID: 33326820 DOI: 10.1016/j.pharmthera.2020.107788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022]
Abstract
Glucose-6-phospate dehydrogenase (G6PD) deficiency is estimated to affect more than 400 million people world-wide. This X-linked genetic deficiency puts stress on red blood cells (RBC), which may be further augmented under certain pathophysiological conditions and drug treatments. These conditions can cause hemolytic anemia and eventually lead to multi-organ failure and mortality. G6PD is involved in the rate-limiting step of the pentose phosphate pathway, which generates reduced nicotinamide adenine dinucleotide phosphate (NADPH). In RBCs, the NADPH/G6PD pathway is the only source for recycling reduced glutathione and provides protection from oxidative stress. Susceptibility of G6PD deficient populations to certain drug treatments and potential risks of hemolysis are important public health issues. A number of clinical trials are currently in progress investigating clinical factors associated with G6PD deficiency, validation of new diagnostic kits for G6PD deficiency, and evaluating drug safety, efficacy, and pathophysiology. More than 25 clinical studies in G6PD populations are currently in progress or have just been completed that have been examined for clinical pharmacology and potential therapeutic implications of G6PD deficiency. The information on clinical conditions, interventions, purpose, outcome, and status of these clinical trials has been studied. A critical review of ongoing clinical investigations on pharmacology and therapeutics of G6PD deficiency should be highly important for researchers, clinical pharmacologists, pharmaceutical companies, and global public health agencies. The information may be useful for developing strategies for treatment and control of hemolytic crisis and potential drug toxicities in G6PD deficient patients.
Collapse
Affiliation(s)
- Kaitlyn Ryan
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| |
Collapse
|
13
|
Wojnarski B, Lon C, Sea D, Sok S, Sriwichai S, Chann S, Hom S, Boonchan T, Ly S, Sok C, Nou S, Oung P, Kong N, Pheap V, Thay K, Dao V, Kuntawunginn W, Feldman M, Gosi P, Buathong N, Ittiverakul M, Uthaimongkol N, Huy R, Spring M, Lek D, Smith P, Fukuda MM, Wojnarski M. Evaluation of the CareStart™ glucose-6-phosphate dehydrogenase (G6PD) rapid diagnostic test in the field settings and assessment of perceived risk from primaquine at the community level in Cambodia. PLoS One 2020; 15:e0228207. [PMID: 32004348 PMCID: PMC6994100 DOI: 10.1371/journal.pone.0228207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/10/2020] [Indexed: 11/19/2022] Open
Abstract
Background Primaquine is an approved radical cure treatment for Plasmodium vivax malaria but treatment can result in life-threatening hemolysis if given to a glucose-6-phosphate dehydrogenase deficient (G6PDd) patient. There is a need for reliable point-of-care G6PD diagnostic tests. Objectives To evaluate the performance of the CareStart™ rapid diagnostic test (RDT) in the hands of healthcare workers (HCWs) and village malaria workers (VMWs) in field settings, and to better understand user perceptions about the risks and benefits of PQ treatment guided by RDT results. Methods This study enrolled 105 HCWs and VMWs, herein referred to as trainees, who tested 1,543 healthy adult male volunteers from 84 villages in Cambodia. The trainees were instructed on G6PD screening, primaquine case management, and completed pre and post-training questionnaires. Each trainee tested up to 16 volunteers in the field under observation by the study staff. Results Out of 1,542 evaluable G6PD volunteers, 251 (16.28%) had quantitative enzymatic activity less than 30% of an adjusted male median (8.30 U/g Hb). There was no significant difference in test sensitivity in detecting G6PDd between trainees (97.21%), expert study staff in the field (98.01%), and in a laboratory setting (95.62%) (p = 0.229); however, test specificity was different for trainees (96.62%), expert study staff in the field (98.14%), and experts in the laboratory (98.99%) (p < 0.001). Negative predictive values were not statistically different for trainees, expert staff, and laboratory testing: 99.44%, 99.61%, and 99.15%, respectively. Knowledge scores increased significantly post-training, with 98.7% willing to prescribe primaquine for P.vivax malaria, an improvement from 40.6% pre-training (p < 0.001). Conclusion This study demonstrated ability of medical staff with different background to accurately use CareStart™ RDT to identify G6PDd in male patients, which may enable safer prescribing of primaquine; however, pharmacovigilance is required to address possible G6PDd misclassifications.
Collapse
Affiliation(s)
- Bertha Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- The George Washington University, School of Nursing, Washington, DC, United States of America
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darapiseth Sea
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somethy Sok
- Ministry of National Defense, Department of Health, Phnom Penh, Cambodia
| | | | | | - Sohei Hom
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Sokna Ly
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Chandara Sok
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Samon Nou
- Chenda Polyclinic (CPC), Phnom Penh, Cambodia
| | - Pheaktra Oung
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Vannak Pheap
- Ministry of National Defense, Department of Health, Phnom Penh, Cambodia
| | - Khengheang Thay
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Vy Dao
- Ministry of National Defense, Department of Health, Phnom Penh, Cambodia
| | | | - Mitra Feldman
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nillawan Buathong
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mali Ittiverakul
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Michele Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Philip Smith
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M. Fukuda
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
14
|
White D, Keramane M, Capretta A, Brennan JD. A paper-based biosensor for visual detection of glucose-6-phosphate dehydrogenase from whole blood. Analyst 2020; 145:1817-1824. [DOI: 10.1039/c9an02219h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paper-based, colorimetric, visual detection of G6PD from whole blood without need for equipment.
Collapse
Affiliation(s)
- Dawn White
- Biointerfaces Institute
- McMaster University
- Canada
| | | | | | | |
Collapse
|
15
|
Pengboon P, Thamwarokun A, Changsri K, Kaset C, Chomean S. Evaluation of quantitative biosensor for glucose-6-phosphate dehydrogenase activity detection. PLoS One 2019; 14:e0226927. [PMID: 31860695 PMCID: PMC6924682 DOI: 10.1371/journal.pone.0226927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Neonatal jaundice is a common and severe disease in premature infants with Glucose-6-Phosphate Dehydrogenase (G-6-PD) deficiency. The World Health Organization (WHO) has recommended screening for G-6-PD deficiency in newborns for early recognition as well as to prevent unwanted outcomes in a timely manner. The present study aimed to assess a point-of-care, careSTARTTM G6PD biosensor as a quantitative method for the diagnosis of G-6-PD deficiency. Factors influencing the evaluation of G-6-PD enzyme activity were examined in 40 adults, including ethylenediaminetetraacetic acid (EDTA) anticoagulant, hematocrit concentration, storage temperature and time. Analytic performance of the careSTARTTM G6PD biosensor was evaluated in 216 newborns and compared with fluorescent spot test (FST) and standard quantitative G-6-PD enzyme activity (SGT) assay. The results of factors affecting the G-6-PD enzyme activity showed that the activity determined from finger-prick was not statistically different from venous blood (p = 0.152). The G-6-PD value was highly dependent on the hematocrit and rose with increasing hematocrit concentration. Its activity was stable at 4°C for 3 days. Reliability analysis between the careSTARTTM G6PD biosensor and SGT assay showed a strong correlation with a Pearson's correlation coefficient of 0.82 and perfect agreement by intraclass correlation coefficient (ICC) of 0.90. Analysis of the area under the Receiver Operating Curve (AUC) illustrated that the careSTARTTM G6PD biosensor had 100% sensitivity, 96% specificity, 73% positive predictive value (PPV), 100% negative predictive value (NPV) and 97% accuracy at 30% of residual activity. While the diagnostic ability for identifying G-6-PD deficiency had 78% sensitivity, 89% specificity, 56% positive predictive value (PPV), 96% negative predictive value (NPV) and 88% accuracy when stratified by gender. The careSTARTTM G6PD biosensor is an attractive option as a point-of-care quantitative method for G-6-PD activity detection. Quantification of G-6-PD enzyme activity in newborns is the most effective approach for the management of G-6-PD deficiency to prevent severe jaundice and acute hemolysis.
Collapse
Affiliation(s)
- Pairat Pengboon
- Graduate Program in Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Areenuch Thamwarokun
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Khaimuk Changsri
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Chollanot Kaset
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Sirinart Chomean
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| |
Collapse
|
16
|
Ley B, Winasti Satyagraha A, Rahmat H, von Fricken ME, Douglas NM, Pfeffer DA, Espino F, von Seidlein L, Henriques G, Oo NN, Menard D, Parikh S, Bancone G, Karahalios A, Price RN. Performance of the Access Bio/CareStart rapid diagnostic test for the detection of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. PLoS Med 2019; 16:e1002992. [PMID: 31834890 PMCID: PMC6910667 DOI: 10.1371/journal.pmed.1002992] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND To reduce the risk of drug-induced haemolysis, all patients should be tested for glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) prior to prescribing primaquine (PQ)-based radical cure for the treatment of vivax malaria. This systematic review and individual patient meta-analysis assessed the utility of a qualitative lateral flow assay from Access Bio/CareStart (Somerset, NJ) (CareStart Screening test for G6PD deficiency) for the diagnosis of G6PDd compared to the gold standard spectrophotometry (International Prospective Register of Systematic Reviews [PROSPERO]: CRD42019110994). METHODS AND FINDINGS Articles published on PubMed between 1 January 2011 and 27 September 2019 were screened. Articles reporting performance of the standard CSG from venous or capillary blood samples collected prospectively and considering spectrophotometry as gold standard (using kits from Trinity Biotech PLC, Wicklow, Ireland) were included. Authors of articles fulfilling the inclusion criteria were contacted to contribute anonymized individual data. Minimal data requested were sex of the participant, CSG result, spectrophotometry result in U/gHb, and haemoglobin (Hb) reading. The adjusted male median (AMM) was calculated per site and defined as 100% G6PD activity. G6PDd was defined as an enzyme activity of less than 30%. Pooled estimates for sensitivity and specificity, unconditional negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were calculated comparing CSG results to spectrophotometry using a random-effects bivariate model. Of 11 eligible published articles, individual data were available from 8 studies, 6 from Southeast Asia, 1 from Africa, and 1 from the Americas. A total of 5,815 individual participant data (IPD) were available, of which 5,777 results (99.3%) were considered for analysis, including data from 3,095 (53.6%) females. Overall, the CSG had a pooled sensitivity of 0.96 (95% CI 0.90-0.99) and a specificity of 0.95 (95% CI 0.92-0.96). When the prevalence of G6PDd was varied from 5% to 30%, the unconditional NPV was 0.99 (95% CI 0.94-1.00), with an LR+ and an LR- of 18.23 (95% CI 13.04-25.48) and 0.05 (95% CI 0.02-0.12), respectively. Performance was significantly better in males compared to females (p = 0.027) but did not differ significantly between samples collected from capillary or venous blood (p = 0.547). Limitations of the study include the lack of wide geographical representation of the included data and that the CSG results were generated under research conditions, and therefore may not reflect performance in routine settings. CONCLUSIONS The CSG performed well at the 30% threshold. Its high NPV suggests that the test is suitable to guide PQ treatment, and the high LR+ and low LR- render the test suitable to confirm and exclude G6PDd. Further operational studies are needed to confirm the utility of the test in remote endemic settings.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | | | - Hisni Rahmat
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, United States of America
| | - Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Fe Espino
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Gisela Henriques
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nwe Nwe Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, Paris, France
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Val F, Costa FT, King L, Brito-Sousa JD, Bassat Q, Monteiro WM, Siqueira AM, Luzzatto L, Lacerda MV. Tafenoquine for the prophylaxis, treatment and elimination of malaria: eagerness must meet prudence. Future Microbiol 2019; 14:1261-1279. [PMID: 31596137 DOI: 10.2217/fmb-2019-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria puts more than 3 billion people at risk of infection and causes high morbidity and mortality. Plasmodium vivax forms hypnozoites, which may initiate recurrences, even in the absence of reinfection or superinfection. Until recently, the only drug available for eliminating hypnozoites was primaquine (PQ), which, given its short half-life, requires a relatively long course of treatment. Tafenoquine (TQ) is a PQ analog with a longer half-life. This enables radical cure of malaria with a single dose and overcomes adherence issues associated with PQ, thereby increasing effectiveness in real-life settings. Clinical studies have provided sound evidence for TQ's safety and efficacy against malaria, which recently led to its approval by the US FDA. Here, we review aspects of TQ, including how to avoid hemolytic anemia in G6PD deficient patients. We believe that TQ promises to be a major advance toward malaria elimination.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil
| | - Fabio Tm Costa
- Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Liam King
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose D Brito-Sousa
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, 08036, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, CP 1929, Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, 08950, Spain
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Lucio Luzzatto
- Department of Hematology & Blood Transfusion, Muhimbili University of Health & Allied Sciences, Dar-es-Salaam, Tanzania
| | - Marcus Vg Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas e Maria Deane, FIOCRUZ-AM, Manaus, Amazonas, 69057-070, Brazil
| |
Collapse
|
18
|
Rosenthal PJ. A shorter course for anti-relapse therapy against vivax malaria. Lancet 2019; 394:898-900. [PMID: 31327565 DOI: 10.1016/s0140-6736(19)31605-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Lehane A, Were M, Wade M, Hamadu M, Cahill M, Kiconco S, Kajubi R, Aweeka F, Mwebaza N, Li F, Parikh S. Comparison on simultaneous caillary and venous parasite density and genotyping results from children and adults with uncomplicated malaria: a prospective observational study in Uganda. BMC Infect Dis 2019; 19:559. [PMID: 31242863 PMCID: PMC6595677 DOI: 10.1186/s12879-019-4174-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/09/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blood smear microscopy remains the gold-standard method to diagnose and quantify malaria parasite density. In addition, parasite genotyping of select loci is the most utilized method for distinguishing recrudescent and new infections and to determine the number of strains per sample. In research settings, blood may be obtained from capillary or venous compartments, and results from these matrices have been used interchangeably. Our aim was to compare quantitative results for parasite density and strain complexity from both compartments. METHODS In a prospective observational study, children and adults presenting with uncomplicated Plasmodium falciparum malaria, simultaneous capillary and venous blood smears and dried blood spots were collected over 42-days following treatment with artemether-lumefantrine. Blood smears were read by two microscopists, any discrepancies resolved by a third reader. Parasite DNA fingerprinting was conducted using six microsatellites. Bland Altman analysis and paired t-test/McNemar's test were used to assess the difference in density readings and measurements. RESULTS Two hundred twenty-three participants were included in the analysis (177 children (35 HIV-infected/142 HIV-uninfected), 21 HIV-uninfected pregnant women, and 25 HIV-uninfected non-pregnant adults). Parasite density measurements did not statistically differ between capillary and venous blood smears at the time of presentation, nor over the course of 42-day follow-up. Characterization of merozoite surface protein-2 (MSP-2) genetic polymorphism demonstrated a higher level of strain diversity at the time of presentation in venous samples, as compared with capillary specimens (p = 0.02). There was a high degree of variability in genotype-corrected outcomes when pairs of samples from each compartment were compared using MSP-2 alone, although the variability was reduced with the use of multiple markers. CONCLUSIONS Parasite density measurements do not statistically differ between capillary and venous compartments in all studied demographic groups at the time of presentation with malaria, or over the course of follow-up. More strains were detected by MSP-2 genotyping in venous samples than in capillary samples at the time of malaria diagnosis. The use of multiple polymorphic markers reduces the impact of variability in strain detection on genotype-corrected outcomes. This study confirms that both capillary and venous compartments can be used for sampling with confidence in the clinical research setting. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov under registration no. NCT01717885 .
Collapse
Affiliation(s)
- Aine Lehane
- Yale School of Public Health, New Haven, CT USA
| | - Moses Were
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Sylvia Kiconco
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Norah Mwebaza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Fangyong Li
- Yale School of Public Health, New Haven, CT USA
| | | |
Collapse
|
20
|
Dysoley L, Kim S, Lopes S, Khim N, Bjorges S, Top S, Huch C, Rekol H, Westercamp N, Fukuda MM, Hwang J, Roca-Feltrer A, Mukaka M, Menard D, Taylor WR. The tolerability of single low dose primaquine in glucose-6-phosphate deficient and normal falciparum-infected Cambodians. BMC Infect Dis 2019; 19:250. [PMID: 30871496 PMCID: PMC6419451 DOI: 10.1186/s12879-019-3862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background The WHO recommends single low-dose primaquine (SLDPQ, 0.25 mg/kg body weight) in falciparum-infected patients to block malaria transmission and contribute to eliminating multidrug resistant Plasmodium falciparum from the Greater Mekong Sub region (GMS). However, the anxiety regarding PQ-induced acute haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency (G6PDd) has hindered its use. Therefore, we assessed the tolerability of SLDPQ in Cambodia to inform national policy. Methods This open randomised trial of dihydroartemisinin-piperaquine (DHAPP) + SLDPQ vs. DHAPP alone recruited Cambodians aged ≥1 year with acute uncomplicated P. falciparum. Randomisation was 4:1 DHAPP+SLDPQ: DHAPP for G6PDd patients and 1:1 for G6PDn patients, according to the results of the qualitative fluorescent spot test. Definitive G6PD status was determined by genotyping. Day (D) 7 haemoglobin (Hb) concentration was the primary outcome measure. Results One hundred nine patients (88 males, 21 females), aged 4–76 years (median 23) were enrolled; 12 were G6PDd Viangchan (9 hemizygous males, 3 heterozygous females). Mean nadir Hb occurred on D7 [11.6 (range 6.4 ─ 15.6) g/dL] and was significantly lower (p = 0.040) in G6PDd (n = 9) vs. G6PDn (n = 46) DHAPP+SLDPQ recipients: 10.9 vs. 12.05 g/dL, Δ = -1.15 (95% CI: -2.24 ─ -0.05) g/dL. Three G6PDn patients had D7 Hb concentrations < 8 g/dL; D7-D0 Hbs were 6.4 ─ 6.9, 7.4 ─ 7.4, and 7.5 ─ 8.2 g/dL. For all patients, mean (range) D7-D0 Hb decline was -1.45 (-4.8 ─ 2.4) g/dL, associated significantly with higher D0 Hb, higher D0 parasitaemia, and receiving DHAPP; G6PDd was not a factor. No patient required a blood transfusion. Conclusions DHAPP+SLDPQ was associated with modest Hb declines in G6PD Viangchan, a moderately severe variant. Our data augment growing evidence that SLDPQ in SE Asia is well tolerated and appears safe in G6PDd patients. Cambodia is now deploying SLDPQ and this should encourage other GMS countries to follow suit. Trial registration The clinicaltrials.gov reference number is NCT02434952. Electronic supplementary material The online version of this article (10.1186/s12879-019-3862-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lek Dysoley
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.,School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Nimol Khim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorges
- WHO Cambodia country office, Pasteur Street, Phnom Penh, Cambodia
| | | | - Chea Huch
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Huy Rekol
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nelli Westercamp
- Malaria Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Mark M Fukuda
- U.S. President's Malaria Initiative, Malaria Branch, Division Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Bangkok, Thailand
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, Division Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research unit (MORU), 420/60 Rajvithi Road, Bangkok, 10400, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Biology of Host-Parasite Interactions Unit, Malaria Genetics and Resistance Group, Institut Pasteur - INSERM U1201 - CNRS ERL9195, Paris, France
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research unit (MORU), 420/60 Rajvithi Road, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Bancone G, Menard D, Khim N, Kim S, Canier L, Nguong C, Phommasone K, Mayxay M, Dittrich S, Vongsouvath M, Fievet N, Le Hesran JY, Briand V, Keomany S, Newton PN, Gorsawun G, Tardy K, Chu CS, Rattanapalroj O, Dong LT, Quang HH, Tam-Uyen N, Thuy-Nhien N, Hien TT, Kalnoky M, Nosten F. Molecular characterization and mapping of glucose-6-phosphate dehydrogenase (G6PD) mutations in the Greater Mekong Subregion. Malar J 2019; 18:20. [PMID: 30674319 PMCID: PMC6343352 DOI: 10.1186/s12936-019-2652-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium vivax malaria elimination can only be achieved by the deployment of 8-aminoquinolines (primaquine and tafenoquine) in combination with ACT to kill both blood and liver-stage parasites. However, primaquine and the other 8-aminoquinolines cause dose-dependent haemolysis in subjects with G6PD deficiency, an X-linked disorder of red blood cells that is very common in populations living in tropical and subtropical areas. In order to inform safer use of 8-aminoquinolines in the Greater Mekong Subregion, a multi-centre study was carried out to assess the prevalence of G6PD deficiency and to identify the main G6PD variants in samples collected in Cambodia, Lao PDR, Myanmar, Thailand and Vietnam. Methods Blood samples were collected in the five countries during National Malaria Surveys or during Population Surveys. During Population Surveys samples were characterized for G6PD phenotype using the Fluorescent Spot Test. Samples were then genotyped for a panel of G6PD mutations. Results G6PD deficiency was found to be common in the region with an overall mean prevalence of deficient or mutated hemizygous males of 14.0%, ranging from a mean 7.3% in Thailand, 8.1% in Lao PDR, 8.9% in Vietnam, 15.8% in Myanmar and 18.8% in Cambodia. Mahidol and Viangchan mutations were the most common and widespread variants found among the nine investigated. Conclusions Owing to the high prevalence of G6PD deficiency in the Greater Mekong Subregion, strategies for vivax malaria elimination should include point-of-care G6PD testing (both qualitative and quantitative) to allow safe and wide treatment with 8-aminoquinolines. Electronic supplementary material The online version of this article (10.1186/s12936-019-2652-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand. .,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Genetics and Resistance Group, Institut Pasteur, Paris, France
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lydie Canier
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chea Nguong
- National Centre for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Koukeo Phommasone
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic
| | - Mayfong Mayxay
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic.,Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Sabine Dittrich
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic.,Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Malavanh Vongsouvath
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic
| | - Nadine Fievet
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Paris-5 University, Sorbonne Paris Cité, Paris, France
| | - Jean-Yves Le Hesran
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Paris-5 University, Sorbonne Paris Cité, Paris, France
| | - Valerie Briand
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Paris-5 University, Sorbonne Paris Cité, Paris, France
| | - Sommay Keomany
- Salavan Provincial Hospital, Salavan, Lao People's Democratic Republic
| | - Paul N Newton
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic
| | - Gornpan Gorsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kaelan Tardy
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Le Thanh Dong
- Institute of Malariology, Parasitology and Entomology - Ho Chi Minh City (IMPE-HCM), Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology - Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Nguyen Tam-Uyen
- Oxford University Clinical Research Unit, Wellcome Trust Asia Program, in partnership with Hospital For Tropical Diseases (HTD), Ho Chi Minh City, Vietnam
| | - Nguyen Thuy-Nhien
- Oxford University Clinical Research Unit, Wellcome Trust Asia Program, in partnership with Hospital For Tropical Diseases (HTD), Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Wellcome Trust Asia Program, in partnership with Hospital For Tropical Diseases (HTD), Ho Chi Minh City, Vietnam
| | | | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Avalos S, Mejia RE, Banegas E, Salinas C, Gutierrez L, Fajardo M, Galo S, Pinto A, Mejia A, Fontecha G. G6PD deficiency, primaquine treatment, and risk of haemolysis in malaria-infected patients. Malar J 2018; 17:415. [PMID: 30409136 PMCID: PMC6225638 DOI: 10.1186/s12936-018-2564-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/01/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The incidence of malaria in the Americas has decreased markedly in recent years. Honduras and the other countries of Mesoamerica and the island of Hispaniola have set the goal of eliminating native malaria by the year 2020. To achieve this goal, Honduras has recently approved national regulations to expand the possibilities of a shortened double dose primaquine (PQ) treatment for vivax malaria. Considering this new shortened anti-malarial treatment, the high frequency of G6PDd genotypes in Honduras, and the lack of routinely assessment of the G6PD deficiency status, this study aimed at investigating the potential association between the intake of PQ and haemolysis in malaria-infected G6PDd subjects. METHODS This was a prospective cohort and open-label study. Participants with malaria were recruited. Plasmodium vivax infection was treated with 0.25 mg/kg of PQ daily for 14 days. Safety and signs of haemolysis were evaluated by clinical criteria and laboratory values before and during the 3rd and 7th day of PQ treatment. G6PD status was assessed by a rapid test (CareStart™) and two molecular approaches. RESULTS Overall 55 participants were enrolled. The frequency of G6PD deficient genotypes was 7/55 (12.7%), where 5/7 (71.4%) were hemizygous A- males and 2/7 (28.6%) heterozygous A- females. Haemoglobin concentrations were compared between G6PD wild type (B) and G6PDd A- subjects, showing a significant difference between the means of both groups in the 3rd and 7th days. Furthermore, a statistically significant difference was evident in the change in haemoglobin concentration between the 3rd day and the 1st day for both genotypes, but there was no statistical difference for the change in haemoglobin concentration between the 7th day and the 1st day. Besides these changes in the haemoglobin concentrations, none of the patients showed signs or symptoms associated with severe haemolysis, and none needed to be admitted to a hospital for further medical attention. CONCLUSIONS The findings support that the intake of PQ during 14 days of treatment against vivax malaria is safe in patients with a class III variant of G6PDd. In view of the new national regulations in the shortened treatment of vivax malaria for 7 days, it is advisable to be alert of potential cases of severe haemolysis that could occur among G6PD deficient hemizygous males with a class II mutation such as the Santamaria variant, previously reported in the country.
Collapse
Affiliation(s)
- Sara Avalos
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Rosa E Mejia
- Pan American Health Organization, Tegucigalpa, Honduras
| | - Engels Banegas
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Cesar Salinas
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Lester Gutierrez
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Marcela Fajardo
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Suzeth Galo
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Alejandra Pinto
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Angel Mejia
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Gustavo Fontecha
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras.
| |
Collapse
|
23
|
Low and heterogeneous prevalence of glucose-6-phosphate dehydrogenase deficiency in different settings in Ethiopia using phenotyping and genotyping approaches. Malar J 2018; 17:281. [PMID: 30071859 PMCID: PMC6071387 DOI: 10.1186/s12936-018-2437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND 8-Aminoquinolines such as primaquine clear mature Plasmodium falciparum gametocytes that are responsible for transmission from human to mosquitoes and bring radical cure in Plasmodium vivax by clearing dormant liver stages. Deployment of primaquine is thus of relevance for malaria elimination efforts but challenged by the widespread prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd) in endemic countries since primaquine in G6PDd individuals may lead to acute haemolysis. In this study, the prevalence of G6PDd was investigated in different settings in Ethiopia using phenotyping and genotyping approaches. METHODS Community and school based cross-sectional surveys were conducted from October to December 2016 in four administrative regions (Gambela, Benishangul Gumuz, Oromia, and Amhara) in Ethiopia. Finger prick blood samples were collected for G6PD enzyme activity using the CareStart™ G6PD screening test and genotyping of 36 selected single nucleotide polymorphisms (SNPs) located in the G6PD gene and its flanking regions. RESULTS Overall, the prevalence of phenotypic G6PDd was 1.4% (22/1609). For the first time in the Ethiopian population, the African variant (A-) was detected in 3.5% (7/199) of the limited set of genotyped samples, which were all phenotypically normal. Interestingly, all of these individuals had a variation at the rs2515904 locus. Strong geographical variation was observed for both phenotypic and genotypic G6PDd; three-quarters of the phenotypically G6PDd individuals were detected in Gambela. CONCLUSION A very low prevalence of G6PDd was detected in the present study populations. The presence of the A- variant alongside other G6PD mutants and the patchy distribution of G6PDd indicate that larger studies specifically designed to unravel the distribution of G6PDd at small geographical scale may be needed to tailor malaria elimination efforts in Ethiopia to the local context.
Collapse
|
24
|
Henriques G, Phommasone K, Tripura R, Peto TJ, Raut S, Snethlage C, Sambo I, Sanann N, Nguon C, Adhikari B, Pongvongsa T, Imwong M, von Seidlein L, Day NP, White NJ, Dondorp AM, Newton P, Ley B, Mayxay M. Comparison of glucose-6 phosphate dehydrogenase status by fluorescent spot test and rapid diagnostic test in Lao PDR and Cambodia. Malar J 2018; 17:243. [PMID: 29929514 PMCID: PMC6013858 DOI: 10.1186/s12936-018-2390-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy worldwide. Primaquine is the only licensed drug that effectively removes Plasmodium vivax hypnozoites from the human host and prevents relapse. While well tolerated by most recipients, primaquine can cause haemolysis in G6PD deficient individuals and is, therefore, underused. Rapid diagnostic tests (RDTs) could permit ascertainment of G6PD status outside of laboratory settings and hence safe treatment in remote areas. The performance of the fluorescent spot test (Trinity, Ireland; FST) and a G6PD RDT (Carestart, USA) against spectrophotometry were assessed. METHODS Participants were enrolled during cross-sectional surveys in Laos and by purposive sampling in Cambodia. FST and RDT were performed during village surveys and 3 mL of venous blood was collected for subsequent G6PD measurement by spectrophotometry. RESULTS A total of 757 participants were enrolled in Laos and 505 in Cambodia. FST and RDT performed best at 30% cut-off activity and performed significantly better in Laos than in Cambodia. When defining intermediate results as G6PD deficient, the FST had a sensitivity of 100% (95%CI 90-100) and specificity of 90% (95%CI 87.7-92.2) in Laos and sensitivity of 98% (94.1-99.6) and specificity of 71% (95%CI 66-76) in Cambodia (p < 0.001). The RDT had sensitivity and specificity of 100% (95%CI 90-100) and 99% (95%CI 97-99) in Laos and sensitivity and specificity of 91% (86-96) and 93% (90-95) in Cambodia (p < 0.001). The RDT performed significantly better (all p < 0.05) than the FST when intermediate FST results were defined as G6PD deficient. CONCLUSION The interpretation of RDT results requires some training but is a good alternative to the FST. Trial registration clinicaltrials.gov; NCT01872702; 06/27/2013; https://clinicaltrials.gov/ct2/show/NCT01872702.
Collapse
Affiliation(s)
- Gisela Henriques
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Life Science, Imperial College London, London, UK
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Shristi Raut
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Coco Snethlage
- School of Medicine, Amsterdam University, Amsterdam, The Netherlands
| | - Im Sambo
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nou Sanann
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chea Nguon
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Bipin Adhikari
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Station of Malariology, Parasitology and Entomology, Savannakhet, Savannakhet Province, Lao PDR
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Benedikt Ley
- Menzies School of Health Research, Darwin, Australia
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| |
Collapse
|
25
|
Bancone G, Gornsawun G, Chu CS, Porn P, Pal S, Bansil P, Domingo GJ, Nosten F. Validation of the quantitative point-of-care CareStart biosensor for assessment of G6PD activity in venous blood. PLoS One 2018; 13:e0196716. [PMID: 29738562 PMCID: PMC5940185 DOI: 10.1371/journal.pone.0196716] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the human population affecting an estimated 8% of the world population, especially those living in areas of past and present malaria endemicity. Decreased G6PD enzymatic activity is associated with drug-induced hemolysis and increased risk of severe neonatal hyperbilirubinemia leading to brain damage. The G6PD gene is on the X chromosome therefore mutations cause enzymatic deficiency in hemizygote males and homozygote females while the majority of heterozygous females have an intermediate activity (between 30-80% of normal) with a large distribution into the range of deficiency and normality. Current G6PD qualitative tests are unable to diagnose G6PD intermediate activities which could hinder wide use of 8-aminoquinolines for Plasmodium vivax elimination. The aim of the study was to assess the diagnostic performances of the new Carestart G6PD quantitative biosensor. METHODS A total of 150 samples of venous blood with G6PD deficient, intermediate and normal phenotypes were collected among healthy volunteers living along the north-western Thailand-Myanmar border. Samples were analyzed by complete blood count, by gold standard spectrophotometric assay using Trinity kits and by the latest model of Carestart G6PD biosensor which analyzes both G6PD and hemoglobin. RESULTS Bland-Altman comparison of the CareStart normalized G6PD values to that of the gold standard assay showed a strong bias in values resulting in poor area under-the-curve values for both 30% and 80% thresholds. Performing a receiver operator curve identified threshold values for the CareStart product equivalent to the 30% and 80% gold standard values with good sensitivity and specificity values, 100% and 92% (for 30% G6PD activity) and 92% and 94% (for 80% activity) respectively. CONCLUSION The Carestart G6PD biosensor represents a significant improvement for quantitative diagnosis of G6PD deficiency over previous versions. Further improvements and validation studies are required to assess its utility for informing radical cure decisions in malaria endemic settings.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pen Porn
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Pooja Bansil
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Gonzalo J. Domingo
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis 2018; 12:e0006440. [PMID: 29677199 PMCID: PMC5931686 DOI: 10.1371/journal.pntd.0006440] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background The 8-aminoquinoline antimalarials, the only drugs which prevent relapse of vivax and ovale malaria (radical cure), cause dose-dependent oxidant haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Patients with <30% and <70% of normal G6PD activity are not given standard regimens of primaquine and tafenoquine, respectively. Both drugs are currently considered contraindicated in pregnant and lactating women. Methods Quantitative G6PD enzyme activity data from 5198 individuals were used to estimate the proportions of heterozygous females who would be ineligible for treatment at the 30% and 70% activity thresholds, and the relationship with the severity of the deficiency. This was used to construct a simple model relating allele frequency in males to the potential population coverage of tafenoquine and primaquine under current prescribing restrictions. Findings Independent of G6PD deficiency, the current pregnancy and lactation restrictions will exclude ~13% of females from radical cure treatment. This could be reduced to ~4% if 8-aminoquinolines can be prescribed to women breast-feeding infants older than 1 month. At a 30% activity threshold, approximately 8–19% of G6PD heterozygous women are ineligible for primaquine treatment; at a 70% threshold, 50–70% of heterozygous women and approximately 5% of G6PD wild type individuals are ineligible for tafenoquine treatment. Thus, overall in areas where the G6PDd allele frequency is >10% more than 15% of men and more than 25% of women would be unable to receive tafenoquine. In vivax malaria infected patients these proportions will be lowered by any protective effect against P. vivax conferred by G6PD deficiency. Conclusion If tafenoquine is deployed for radical cure, primaquine will still be needed to obtain high population coverage. Better radical cure antimalarial regimens are needed. More than half of the malaria outside of Sub-Saharan Africa is caused by the parasite Plasmodium vivax which is characterised by multiple relapses of malaria from parasites which persist in the liver. The only drugs which prevent these relapses (radical cure) are the 8-aminoquinolines primaquine and tafenoquine, and they both cause haemolytic anaemia in G6PD deficiency, the most common enzymopathy of man. Neither can currently be prescribed in pregnancy or lactation. Tafenoquine is given as a single dose regimen and is a significant advance over primaquine (recommended as a 14 day regimen). However, a greater number of individuals, mostly females, will be ineligible for tafenoquine treatment due to a tighter restriction on the minimum G6PD enzyme activity considered safe for use of the drug. Using enzyme activity data from over 5000 individuals, we estimate the proportions ineligible due to G6PD deficiency as a function of the deficient allele prevalence. Adding this to simple estimates of pregnancy and lactation, we estimate the proportions of populations who cannot receive either tafenoquine or primaquine radical cure. For the elimination of vivax malaria in areas with a high prevalence of G6PD deficiency, then if tafenoquine is deployed primaquine will still be needed, so better regimens should be developed.
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- * E-mail:
| | - Walter R. J. Taylor
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Podjanee Jittamala
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| |
Collapse
|
27
|
Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis 2018; 12:e0006230. [PMID: 29672516 PMCID: PMC5908060 DOI: 10.1371/journal.pntd.0006230] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Primaquine is the only available antimalarial drug that kills dormant liver stages of Plasmodium vivax and Plasmodium ovale malarias and therefore prevents their relapse (‘radical cure’). It is also the only generally available antimalarial that rapidly sterilises mature P. falciparum gametocytes. Radical cure requires extended courses of primaquine (usually 14 days; total dose 3.5–7 mg/kg), whereas transmissibility reduction in falciparum malaria requires a single dose (formerly 0.75 mg/kg, now a single low dose [SLD] of 0.25 mg/kg is recommended). The main adverse effect of primaquine is dose-dependent haemolysis in glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common human enzymopathy. X-linked mutations conferring varying degrees of G6PD deficiency are prevalent throughout malaria-endemic regions. Phenotypic screening tests usually detect <30% of normal G6PD activity, identifying nearly all male hemizygotes and female homozygotes and some heterozygotes. Unfortunately, G6PD deficiency screening is usually unavailable at point of care, and, as a consequence, radical cure is greatly underused. Both haemolytic risk (determined by the prevalence and severity of G6PD deficiency polymorphisms) and relapse rates vary, so there has been considerable uncertainty in both policies and practices related to G6PD deficiency testing and use of primaquine for radical cure. Review of available information on the prevalence and severity of G6PD variants together with countries’ policies for the use of primaquine and G6PD deficiency testing confirms a wide range of practices. There remains lack of consensus on the requirement for G6PD deficiency testing before prescribing primaquine radical cure regimens. Despite substantially lower haemolytic risks, implementation of SLD primaquine as a P. falciparum gametocytocide also varies. In Africa, a few countries have recently adopted SLD primaquine, yet many with areas of low seasonal transmission do not use primaquine as an antimalarial at all. Most countries that recommended the higher 0.75 mg/kg single primaquine dose for falciparum malaria (e.g., most countries in the Americas) have not changed their recommendation. Some vivax malaria–endemic countries where G6PD deficiency testing is generally unavailable have adopted the once-weekly radical cure regimen (0.75 mg/kg/week for 8 weeks), known to be safer in less severe G6PD deficiency variants. There is substantial room for improvement in radical cure policies and practices.
Collapse
Affiliation(s)
- Judith Recht
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Lee J, Kim TI, Kang JM, Jun H, Lê HG, Thái TL, Sohn WM, Myint MK, Lin K, Kim TS, Na BK. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among malaria patients in Upper Myanmar. BMC Infect Dis 2018; 18:131. [PMID: 29548282 PMCID: PMC5857094 DOI: 10.1186/s12879-018-3031-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is one of the most common X-linked recessive hereditary disorders in the world. Primaquine (PQ) has been used for radical cure of P. vivax to prevent relapse. Recently, it is also used to reduce P. falciparum gametocyte carriage to block transmission. However, PQ metabolites oxidize hemoglobin and generate excessive reactive oxygen species which can trigger acute hemolytic anemia in malaria patients with inherited G6PD deficiency. Methods A total of 252 blood samples collected from malaria patients in Myanmar were used in this study. G6PD variant was analysed by a multiplex allele specific PCR kit, DiaPlexC™ G6PD Genotyping Kit [Asian type]. The accuracy of the multiplex allele specific PCR was confirmed by sequencing analysis. Results Prevalence and distribution of G6PD variants in 252 malaria patients in Myanmar were analysed. Six different types of G6PD allelic variants were identified in 50 (7 females and 43 males) malaria patients. The predominant variant was Mahidol (68%, 34/50), of which 91.2% (31/34) and 8.8% (3/34) were males and females, respectively. Other G6PD variants including Kaiping (18%, 9/50), Viangchan (6%, 3/50), Mediterranean (4%, 2/50), Union (2%, 1/50) and Canton (2%, 1/50) were also observed. Conclusions Results of this study suggest that more concern for proper and safe use of PQ as a radical cure of malaria in Myanmar is needed by combining G6PD deficiency test before PQ prescription. Establishment of a follow-up system to monitor potential PQ toxicity in malaria patients who are given PQ is also required.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Present address: Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Tae Im Kim
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Present address: Planning and Management Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
29
|
Chu CS, Bancone G, Nosten F, White NJ, Luzzatto L. Primaquine-induced haemolysis in females heterozygous for G6PD deficiency. Malar J 2018; 17:101. [PMID: 29499733 PMCID: PMC5833093 DOI: 10.1186/s12936-018-2248-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/24/2018] [Indexed: 01/15/2023] Open
Abstract
Oxidative agents can cause acute haemolytic anaemia in persons with G6PD deficiency. Understanding the relationship between G6PD genotype and the phenotypic expression of the enzyme deficiency is necessary so that severe haemolysis can be avoided. The patterns of oxidative haemolysis have been well described in G6PD deficient hemizygous males and homozygous females; and haemolysis in the proportionally more numerous heterozygous females has been documented mainly following consumption of fava beans and more recently dapsone. It has long been known that 8-aminoquinolines, notably primaquine and tafenoquine, cause acute haemolysis in G6PD deficiency. To support wider use of primaquine in Plasmodium vivax elimination, more data are needed on the haemolytic consequences of 8-aminoquinolines in G6PD heterozygous females. Two recent studies (in 2017) have provided precisely such data; and the need has emerged for the development of point of care quantitative testing of G6PD activity. Another priority is exploring alternative 8-aminoquinoline dosing regimens that are practical and improve safety in G6PD deficient individuals.
Collapse
Affiliation(s)
- Cindy S Chu
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Germana Bancone
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucio Luzzatto
- Department of Haematology, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| |
Collapse
|
30
|
Thielemans L, Gornsawun G, Hanboonkunupakarn B, Paw MK, Porn P, Moo PK, Van Overmeire B, Proux S, Nosten F, McGready R, Carrara VI, Bancone G. Diagnostic performances of the fluorescent spot test for G6PD deficiency in newborns along the Thailand-Myanmar border: A cohort study. Wellcome Open Res 2018; 3:1. [PMID: 29552643 PMCID: PMC5829521 DOI: 10.12688/wellcomeopenres.13373.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an inherited enzymatic disorder associated with severe neonatal hyperbilirubinemia and acute haemolysis after exposure to certain drugs or infections. The disorder can be diagnosed phenotypically with a fluorescent spot test (FST), which is a simple test that requires training and basic laboratory equipment. This study aimed to assess the diagnostic performances of the FST used on umbilical cord blood by locally-trained staff and to compare test results of the neonates at birth with the results after one month of age. Methods: We conducted a cohort study on newborns at the Shoklo Malaria Research Unit, along the Thai-Myanmar border between January 2015 and May 2016. The FST was performed at birth on the umbilical cord blood by locally-trained staff and quality controlled by specialised technicians at the central laboratory. The FST was repeated after one month of age. Genotyping for common local G6PD mutations was carried out for all discrepant results. Results: FST was performed on 1521 umbilical cord blood samples. Quality control and genotyping revealed 10 misdiagnoses. After quality control, 10.7% of the males (84/786) and 1.2% of the females (9/735) were phenotypically G6PD deficient at birth. The FST repeated at one month of age or later diagnosed 8 additional G6PD deficient infants who were phenotypically normal at birth. Conclusions: This study shows the short-comings of the G6PD FST in neonatal routine screening and highlights the importance of training and quality control. A more conservative interpretation of the FST in male newborns could increase the diagnostic performances. Quantitative point-of-care tests might show higher sensitivity and specificity for diagnosis of G6PD deficiency on umbilical cord blood and should be investigated.
Collapse
Affiliation(s)
- Laurence Thielemans
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Neonatology-Pediatrics, Cliniques Universitaires de Bruxelles - Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, 1070, Belgium
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Pen Porn
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Paw Khu Moo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Bart Van Overmeire
- Neonatology-Pediatrics, Cliniques Universitaires de Bruxelles - Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, 1070, Belgium
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
31
|
Point-of-Care Testing for G6PD Deficiency: Opportunities for Screening. Int J Neonatal Screen 2018; 4:34. [PMID: 31709308 PMCID: PMC6832607 DOI: 10.3390/ijns4040034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked genetic disorder, is associated with increased risk of jaundice and kernicterus at birth. G6PD deficiency can manifest later in life as severe hemolysis, when the individual is exposed to oxidative agents that range from foods such as fava beans, to diseases such as typhoid, to medications such as dapsone, to the curative drugs for Plasmodium (P.) vivax malaria, primaquine and tafenoquine. While routine testing at birth for G6PD deficiency is recommended by the World Health Organization for populations with greater than 5% prevalence of G6PD deficiency and to inform P. vivax case management using primaquine, testing coverage is extremely low. Test coverage is low due to the need to prioritize newborn interventions and the complexity of currently available G6PD tests, especially those used to inform malaria case management. More affordable, accurate, point-of-care (POC) tests for G6PD deficiency are emerging that create an opportunity to extend testing to populations that do not have access to high throughput screening services. Some of these tests are quantitative, which provides an opportunity to address the gender disparity created by the currently available POC qualitative tests that misclassify females with intermediate G6PD activity as normal. In populations where the epidemiology for G6PD deficiency and P. vivax overlap, screening for G6PD deficiency at birth to inform care of the newborn can also be used to inform malaria case management over their lifetime.
Collapse
|
32
|
Baird JK. Tafenoquine for travelers' malaria: evidence, rationale and recommendations. J Travel Med 2018; 25:5150129. [PMID: 30380095 PMCID: PMC6243017 DOI: 10.1093/jtm/tay110] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Background Endemic malaria occurring across much of the globe threatens millions of exposed travelers. While unknown numbers of them suffer acute attacks while traveling, each year thousands return from travel and become stricken in the weeks and months following exposure. This represents perhaps the most serious, prevalent and complex problem faced by providers of travel medicine services. Since before World War II, travel medicine practice has relied on synthetic suppressive blood schizontocidal drugs to prevent malaria during exposure, and has applied primaquine for presumptive anti-relapse therapy (post-travel or post-diagnosis of Plasmodium vivax) since 1952. In 2018, the US Food and Drug Administration approved the uses of a new hepatic schizontocidal and hypnozoitocidal 8-aminoquinoline called tafenoquine for the respective prevention of all malarias and for the treatment of those that relapse (P. vivax and Plasmodium ovale). Methods The evidence and rationale for tafenoquine for the prevention and treatment of malaria was gathered by means of a standard search of the medical literature along with the package inserts for the tafenoquine products Arakoda™ and Krintafel™ for the prevention of all malarias and the treatment of relapsing malarias, respectively. Results The development of tafenoquine-an endeavor of 40 years-at last brings two powerful advantages to travel medicine practice against the malaria threat: (i) a weekly regimen of causal prophylaxis; and (ii) a single-dose radical cure for patients infected by vivax or ovale malarias. Conclusions Although broad clinical experience remains to be gathered, tafenoquine appears to promise more practical and effective prevention and treatment of malaria. Tafenoquine thus applied includes important biological and clinical complexities explained in this review, with particular regard to the problem of hemolytic toxicity in G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia; and Nuffield Department of Medicine, the Centre for Tropical Medicine and Global Health, University of Oxford, UK
| |
Collapse
|
33
|
Monteiro WM, Brito MAM, Lacerda MVG. Accuracy of CareStart™ G6PD rapid diagnostic test: variation in results from different commercial versions. Rev Soc Bras Med Trop 2017; 50:282-283. [PMID: 28562773 DOI: 10.1590/0037-8682-0003-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Marcelo Augusto Mota Brito
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Marcus Vinícius Guimarães Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brasil
| |
Collapse
|
34
|
Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, Price RN. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J 2017; 16:361. [PMID: 28893237 PMCID: PMC5594530 DOI: 10.1186/s12936-017-2017-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk of severe haemolysis following the administration of 8-aminoquinoline compounds. Primaquine is the only widely available 8-aminoquinoline for the radical cure of Plasmodium vivax. Tafenoquine is under development with the potential to simplify treatment regimens, but point-of-care (PoC) tests will be needed to provide quantitative measurement of G6PD activity prior to its administration. There is currently a lack of appropriate G6PD PoC tests, but a number of new tests are in development and are likely to enter the market in the coming years. As these are implemented, they will need to be validated in field studies. This article outlines the technical details for the field evaluation of novel quantitative G6PD diagnostics such as sample handling, reference testing and statistical analysis. Field evaluation is based on the comparison of paired samples, including one sample tested by the new assay at point of care and one sample tested by the gold-standard reference method, UV spectrophotometry in an established laboratory. Samples can be collected as capillary or venous blood; the existing literature suggests that potential differences in capillary or venous blood are unlikely to affect results substantially. The collection and storage of samples is critical to ensure preservation of enzyme activity, it is recommended that samples are stored at 4 °C and testing occurs within 4 days of collection. Test results can be visually presented as scatter plot, Bland-Altman plot, and a histogram of the G6PD activity distribution of the study population. Calculating the adjusted male median allows categorizing results according to G6PD activity to calculate standard performance indicators and to perform receiver operating characteristic (ROC) analysis.
Collapse
Affiliation(s)
- Benedikt Ley
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Germana Bancone
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Kamala Thriemer
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jack S. Richards
- 0000 0001 2224 8486grid.1056.2Malaria Elimination Program, Burnet Institute, Melbourne, VIC Australia ,0000 0001 2179 088Xgrid.1008.9Department of Medicine, University of Melbourne, Parkville, VIC Australia ,Victorian Infectious Diseases Service, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| | - Gonzalo J. Domingo
- 0000 0000 8940 7771grid.415269.dDiagnostics Global Program, PATH, Seattle, WA USA
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Brito MAM, Peixoto HM, Almeida ACGD, Oliveira MRFD, Romero GAS, Moura-Neto JP, Singh N, Monteiro WM, Lacerda MVGD. Validation of the rapid test Carestart(tm) G6PD among malaria vivax-infected subjects in the Brazilian Amazon. Rev Soc Bras Med Trop 2017; 49:446-55. [PMID: 27598631 DOI: 10.1590/0037-8682-0134-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/21/2016] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION In the Brazilian Amazon, malaria infections are primarily caused by Plasmodium vivax. The only drug that kills the hypnozoite form of P. vivax is primaquine, thereby preventing relapse. However, treating glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals with primaquine can lead to severe hemolysis. G6PD deficiency (G6PDd) affects approximately 400 million people worldwide, most of whom live in malaria-endemic areas. Therefore, clinicians need tools that can easily and reliably identify individuals with G6PDd. This study estimated the accuracy of the Carestart(tm) G6PD rapid test (Access Bio) in the diagnosis of G6PDd in male participants with and without P. vivax acute malaria. METHODS Male participants were recruited in Manaus. Malaria diagnosis was determined by thick blood smear. G6PD quantitative analysis was performed spectro photometrically at a wave length of 340nm. The Carestart(tm) G6PD test was performed using venous blood. Genotyping was performed for individuals whose samples had an enzyme activity less than 70% of the normal value. RESULTS Six hundred and seventy-four male participants were included in this study, of whom 320 had a diagnosis of P. vivax malaria. In individuals with enzyme activity lower than 30% (n=13), the sensitivity, specificity, positive predictive value, and negative predictive value of the Carestart(tm) G6PD test were as follows: 61.5% (95%CI: 35.5%-82.3%), 98.3% (95%CI: 97.0%-99.1%), 42.1% (95%CI: 23.1%-63.7%), and 99.2% (95%CI: 98.2%-82.3%), 98.3% (95%CI: 97.0%-99.1%), 42.1% (95%CI: 23.1%-63.7%), and 99.2% (95%CI: 98.2%-99.7%), respectively. Increases in sensitivity were observed when increasing the cut-off value. CONCLUSIONS Despite low sensitivity, Carestart(tm) G6PD remains a good alternative for rapid diagnosis of G6PDd in malaria-endemic regions.
Collapse
Affiliation(s)
- Marcelo Augusto Mota Brito
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Henry Maia Peixoto
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Anne Cristine Gomes de Almeida
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Maria Regina Fernandes de Oliveira
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasília, Distrito Federal, Brazil.,Instituto Nacional de Avaliação de Tecnologias em Saúde, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo Adolfo Sierra Romero
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasília, Distrito Federal, Brazil.,Instituto Nacional de Avaliação de Tecnologias em Saúde, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Pereira Moura-Neto
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Nakul Singh
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinícius Guimarães de Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| |
Collapse
|
36
|
Siv S, Roca-Feltrer A, Vinjamuri SB, Bouth DM, Lek D, Rashid MA, By NP, Popovici J, Huy R, Menard D. Plasmodium vivax Malaria in Cambodia. Am J Trop Med Hyg 2016; 95:97-107. [PMID: 27708187 PMCID: PMC5201228 DOI: 10.4269/ajtmh.16-0208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed.
Collapse
Affiliation(s)
- Sovannaroth Siv
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | | | - Seshu Babu Vinjamuri
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Denis Mey Bouth
- World Health Organization, Country Office, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | | | - Ngau Peng By
- Malaria Consortium Cambodia, Phnom Penh, Cambodia
| | - Jean Popovici
- Institute Pasteur in Cambodia (IPC), Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Didier Menard
- Institute Pasteur in Cambodia (IPC), Phnom Penh, Cambodia
| |
Collapse
|
37
|
Roh ME, Oyet C, Orikiriza P, Wade M, Mwanga-Amumpaire J, Boum Y, Kiwanuka GN, Parikh S. Screening for Glucose-6-Phosphate Dehydrogenase Deficiency Using Three Detection Methods: A Cross-Sectional Survey in Southwestern Uganda. Am J Trop Med Hyg 2016; 95:1094-1099. [PMID: 27672207 DOI: 10.4269/ajtmh.16-0552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/12/2016] [Indexed: 11/07/2022] Open
Abstract
Despite the potential benefit of primaquine in reducing Plasmodium falciparum transmission and radical cure of Plasmodium vivax and Plasmodium ovale infections, concerns over risk of hemolytic toxicity in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) have hampered its deployment. A cross-sectional survey was conducted in 2014 to assess the G6PDd prevalence among 631 children between 6 and 59 months of age in southwestern Uganda, an area where primaquine may be a promising control measure. G6PDd prevalence was determined using three detection methods: a quantitative G6PD enzyme activity assay (Trinity Biotech® G-6-PDH kit), a qualitative point-of-care test (CareStart™ G6PD rapid diagnostic test [RDT]), and molecular detection of the G6PD A- G202A allele. Qualitative tests were compared with the gold standard quantitative assay. G6PDd prevalence was higher by RDT (8.6%) than by quantitative assay (6.8%), using a < 60% activity threshold. The RDT performed optimally at a < 60% threshold and demonstrated high sensitivity (≥ 90%) and negative predictive values (100%) across three activity thresholds (below 60%, 30%, and 40%). G202A allele frequency was 6.4%, 7.9%, and 6.8% among females, males, and overall, respectively. Notably, over half of the G202A homo-/hemizygous children expressed ≥ 60% enzyme activity. Overall, the CareStart™ G6PD RDT appears to be a viable screening test to accurately identify individuals with enzyme activities below 60%. The low prevalence of G6PDd across all three diagnostic modalities and absence of severe deficiency in our study suggests that there is little barrier to the use of single-dose primaquine in this region.
Collapse
Affiliation(s)
- Michelle E Roh
- Yale School of Public Health, New Haven, Connecticut.,University of California, San Francisco, California
| | - Caesar Oyet
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Orikiriza
- Mbarara University of Science and Technology, Mbarara, Uganda.,Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
| | - Martina Wade
- Yale School of Public Health, New Haven, Connecticut
| | - Juliet Mwanga-Amumpaire
- Mbarara University of Science and Technology, Mbarara, Uganda.,Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
| | - Yap Boum
- Mbarara University of Science and Technology, Mbarara, Uganda.,Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
| | | | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut.
| |
Collapse
|
38
|
Abdul-Ghani R, Mahdy MAK, Saif-Ali R, Alkubati SA, Alqubaty AR, Al-Mikhlafy AA, Al-Eryani SM, Al-Mekhlafi AM, Alhaj A. Glucose-6-phosphate dehydrogenase deficiency among Yemeni children residing in malaria-endemic areas of Hodeidah governorate and evaluation of a rapid diagnostic test for its detection. Malar J 2016; 15:327. [PMID: 27329471 PMCID: PMC4915072 DOI: 10.1186/s12936-016-1372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common genetic enzymopathy worldwide, is associated with an acute haemolytic anaemia in individuals exposed to primaquine. The present study aimed to determine G6PD deficiency among Yemeni children in malaria-endemic areas as well as to assess the performance of the CareStart™ G6PD rapid diagnostic test (RDT) for its detection. METHODS A cross-sectional study recruiting 400 children from two rural districts in Hodeidah governorate was conducted. Socio-demographic data and blood samples were collected and G6PD deficiency was qualitatively detected in fresh blood in the field using the CareStart™ G6PD RDT, while the enzymatic assay was used to quantitatively measure enzyme activity. Performance of the CareStart™ G6PD RDT was assessed by calculating its sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) against the reference enzymatic assay. RESULTS The ranges of enzyme activity were 0.14-18.45 and 0.21-15.94 units/g haemoglobin (U/gHb) for males and females, respectively. However, adjusted male median G6PD activity was 5.0 U/gHb. Considering the adjusted male median as representing 100 % normal enzyme activity, the prevalence rates of G6PD deficiency were 12.0 and 2.3 % at the cut-off activities of ≤60 and ≤10 %, respectively. Multivariable analysis showed that gender, district of residence and consanguinity between parents were independent risk factors for G6PD deficiency at the cut-off activity of ≤30 % of normal. The CareStart™ G6PD RDT showed 100 % sensitivity and NPV for detecting G6PD deficiency at the cut-off activities of ≤10 and ≤20 % of normal activity compared to the reference enzymatic method. However, it showed specificity levels of 90.0 and 95.4 % as well as positive/deficient predictive values (PPVs) of 18.0 and 66.0 % at the cut-off activities of ≤10 and ≤20 %, respectively, compared to the reference method. CONCLUSIONS G6PD deficiency with enzyme activity of ≤60 % of normal is prevalent among 12.0 % of children residing in malaria-endemic areas of Hodeidah governorate, with 2.3 % having severe G6PD deficiency. Gender, district of residence and consanguinity between parents are significant independent predictors of G6PD deficiency at the cut-off activity of ≤30 % of normal among children in malaria-endemic areas of Hodeidah. The CareStart™ G6PD RDT proved reliable as a point-of-care test to screen for severely G6PD-deficient patients, with 100 % sensitivity and NPV, and it can be used for making clinical decisions prior to the administration of primaquine in malaria elimination strategies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- />Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Mohammed A. K. Mahdy
- />Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Reyadh Saif-Ali
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Sameer A. Alkubati
- />Department of Critical Care Nursing, Faculty of Medicine and Health Sciences, Hodeidah University, Hodeidah, Yemen
| | - Abdulhabib R. Alqubaty
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Abdullah A. Al-Mikhlafy
- />Department of Community Medicine, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Samira M. Al-Eryani
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Abdusalam M. Al-Mekhlafi
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Ali Alhaj
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| |
Collapse
|
39
|
Oo NN, Bancone G, Maw LZ, Chowwiwat N, Bansil P, Domingo GJ, Htun MM, Thant KZ, Htut Y, Nosten F. Validation of G6PD Point-of-Care Tests among Healthy Volunteers in Yangon, Myanmar. PLoS One 2016; 11:e0152304. [PMID: 27035821 PMCID: PMC4818080 DOI: 10.1371/journal.pone.0152304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/12/2016] [Indexed: 12/20/2022] Open
Abstract
Primaquine and other 8-amnoquinoline based anti-malarials can cause haemolysis in subjects with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Correct diagnosis of G6PD status in patients is crucial for safe treatment of both relapsing stages of Plasmodium vivax and transmitting forms of Plasmodium falciparum. Lack of suitable point-of-care tests has hampered a much needed wide use of primaquine for malaria elimination. In this study we have assessed the performances of two qualitative tests, the fluorescent spot test (FST) and the G6PD CareStart test (CST), against the gold standard quantitative spectrophotometric assay in a population of 1000 random adult healthy volunteers living in Yangon, Myanmar. The prevalence of G6PD deficiency in the Bamar, Karen and in the whole sample set was 6.6% (10.1% in males), 9.2% (21.0% in males) and 6.8% (11.1% in males) respectively. The FST and CST showed comparable performances with sensitivity over 95% and specificity over 90%, however for cases with severe G6PD activity the FTS had improved performance. If used with a conservative interpretation of the signal, the CareStart test has the potential to be used in the field and, by allowing a wider use of primaquine, to help malaria elimination.
Collapse
Affiliation(s)
- Nwe Nwe Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
- * E-mail: (NNO); (GB)
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- * E-mail: (NNO); (GB)
| | - Lwin Zar Maw
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Nongnud Chowwiwat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pooja Bansil
- Diagnostics Program, PATH, Seattle, WA, United States of America
| | | | - Moh Moh Htun
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Ye Htut
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Peixoto HM, Brito MAM, Romero GAS, Monteiro WM, de Lacerda MVG, de Oliveira MRF. Cost-effectiveness analysis of rapid diagnostic tests for G6PD deficiency in patients with Plasmodium vivax malaria in the Brazilian Amazon. Malar J 2016; 15:82. [PMID: 26864333 PMCID: PMC4750282 DOI: 10.1186/s12936-016-1140-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/02/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The use of primaquine (PQ) for radical treatment of Plasmodium vivax in carriers of G6PD deficiency (G6PDd) constitutes the main factor associated with severe haemolysis in G6PDd. The current study aimed to estimate the incremental cost-effectiveness ratio of using a rapid diagnostic test (RDT) to detect G6PDd in male patients with P. vivax malaria in the Brazilian Amazon, in comparison with the routine indicated by the Programme for Malaria Control, which does not include this evaluation. METHODS A cost-effectiveness analysis of estimated RDT use was carried out for the Brazilian Amazon for the year 2013, considering the perspective of the Brazilian Public Health System. Using decision trees, estimates were compared for two different RDT strategies for G6PDd in male individuals infected with P. vivax before being prescribed PQ, with the routine indicated in Brazil, which does not include prior diagnosis of G6PDd. The first strategy considered the combined use of RDT BinaxNOW(®) G6PD (BX-G6PD) in municipalities with more than 100,000 inhabitants and the routine programme (RP) for the other municipalities. Operational limitations related to the required temperature control and venous blood collection currently restrict the use of RDT BX-G6PD in small municipalities. The second strategy considered the use of the RDT CareStart™ G6PD (CS-G6PD) in 100 % of the municipalities. The analysis was carried out for the outcomes: "adequately diagnosed case" and "hospitalization avoided". RESULTS For the outcome "adequately diagnosed case", comparing the RDT strategies based on RDT with the routine control programme (RP), the CS-G6PD strategy was the most cost-effective, with BX-G6PD extendedly dominating (the ICER of BX-G6PD compared with RP was higher than the ICER of CS-G6PD compared with RP). CS-G6PD dominated the other strategies for the "hospitalization avoided" outcome. CONCLUSION The CS-G6PD strategy is cost-effective for adequately diagnosing cases and avoiding hospitalization. This information can help in decision-making, both in incorporating prior diagnosis in the use of PQ and to promote greater safety among G6PD deficient individuals in the Brazilian Amazon P. vivax endemic areas.
Collapse
Affiliation(s)
- Henry M Peixoto
- Center for Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil. .,University Centre of Brasília, Brasília, Federal District, Brazil. .,National Institute for Science and Technology for Health Technology Assessment (IATS/CNPq), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marcelo A M Brito
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,University of the State of Amazonas, Manaus, Amazonas, Brazil.
| | - Gustavo A S Romero
- Center for Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil. .,National Institute for Science and Technology for Health Technology Assessment (IATS/CNPq), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Wuelton M Monteiro
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,University of the State of Amazonas, Manaus, Amazonas, Brazil.
| | - Marcus V G de Lacerda
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Amazonas, Brazil.
| | - Maria R F de Oliveira
- Center for Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil. .,National Institute for Science and Technology for Health Technology Assessment (IATS/CNPq), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
41
|
Comparison of Three Screening Test Kits for G6PD Enzyme Deficiency: Implications for Its Use in the Radical Cure of Vivax Malaria in Remote and Resource-Poor Areas in the Philippines. PLoS One 2016; 11:e0148172. [PMID: 26849445 PMCID: PMC4743845 DOI: 10.1371/journal.pone.0148172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/13/2016] [Indexed: 01/19/2023] Open
Abstract
Objective We evaluated a battery of Glucose-6-Phosphate Dehydrogenase diagnostic point-of-care tests (PoC) to assess the most suitable product in terms of performance and operational characteristics for remote areas. Methods Samples were collected in Puerto Princesa City, Palawan, Philippines and tested for G6PD deficiency with a fluorescent spot test (FST; Procedure 203, Trinity Biotech, Ireland), the semiquantitative WST8/1-methoxy PMS (WST; Dojindo, Japan) and the Carestart G6PD Rapid Diagnostic Test (CSG; AccessBio, USA). Results were compared to spectrophotometry (Procedure 345, Trinity Biotech, Ireland). Sensitivity and specificity were calculated for each test with cut-off activities of 10%, 20%, 30% and 60% of the adjusted male median. Results The adjusted male median was 270.5 IU/1012 RBC. FST and WST were tested on 621 capillary blood samples, the CSG was tested on venous and capillary blood on 302 samples. At 30% G6PD activity, sensitivity for the FST was between 87.7% (95%CI: 76.8% to 93.9%) and 96.5% (95%CI: 87.9% to 99.5%) depending on definition of intermediate results; the WST was 84.2% (95%CI: 72.1% to 92.5%); and the CSG was between 68.8% (95%CI: 41.3% to 89.0%) and 93.8% (95%CI: 69.8% to 99.8%) when the test was performed on capillary or venous blood respectively. Sensitivity of FST and CSG (tested with venous blood) were comparable (p>0.05). The analysis of venous blood samples by the CSG yielded significantly higher results than FST and CSG performed on capillary blood (p<0.05). Sensitivity of the CSG varied depending on source of blood used (p<0.05). Conclusion The operational characteristics of the CSG were superior to all other test formats. Performance and operational characteristics of the CSG performed on venous blood suggest the test to be a good alternative to the FST.
Collapse
|
42
|
Satyagraha AW, Sadhewa A, Elvira R, Elyazar I, Feriandika D, Antonjaya U, Oyong D, Subekti D, Rozi IE, Domingo GJ, Harahap AR, Baird JK. Assessment of Point-of-Care Diagnostics for G6PD Deficiency in Malaria Endemic Rural Eastern Indonesia. PLoS Negl Trop Dis 2016; 10:e0004457. [PMID: 26894297 PMCID: PMC4760930 DOI: 10.1371/journal.pntd.0004457] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Patients infected by Plasmodium vivax or Plasmodium ovale suffer repeated clinical attacks without primaquine therapy against latent stages in liver. Primaquine causes seriously threatening acute hemolytic anemia in patients having inherited glucose-6-phosphate dehydrogenase (G6PD) deficiency. Access to safe primaquine therapy hinges upon the ability to confirm G6PD normal status. CareStart G6PD, a qualitative G6PD rapid diagnostic test (G6PD RDT) intended for use at point-of-care in impoverished rural settings where most malaria patients live, was evaluated. METHODOLOGY/PRINCIPAL FINDINGS This device and the standard qualitative fluorescent spot test (FST) were each compared against the quantitative spectrophotometric assay for G6PD activity as the diagnostic gold standard. The assessment occurred at meso-endemic Panenggo Ede in western Sumba Island in eastern Indonesia, where 610 residents provided venous blood. The G6PD RDT and FST qualitative assessments were performed in the field, whereas the quantitative assay was performed in a research laboratory at Jakarta. The median G6PD activity ≥ 5 U/gHb was 9.7 U/gHb and was considered 100% of normal activity. The prevalence of G6PD deficiency by quantitative assessment (<5 U/gHb) was 7.2%. Applying 30% of normal G6PD activity as the cut-off for qualitative testing, the sensitivity, specificity, positive predictive value, and negative predictive value for G6PD RDT versus FST among males were as follows: 100%, 98.7%, 89%, and 100% versus 91.7%, 92%, 55%, and 99%; P = 0.49, 0.001, 0.004, and 0.24, respectively. These values among females were: 83%, 92.7%, 17%, and 99.7% versus 100%, 92%, 18%, and 100%; P = 1.0, 0.89, 1.0 and 1.0, respectively. CONCLUSIONS/SIGNIFICANCE The overall performance of G6PD RDT, especially 100% negative predictive value, demonstrates suitable safety for G6PD screening prior to administering hemolytic drugs like primaquine and many others. Relatively poor diagnostic performance among females due to mosaic G6PD phenotype is an inherent limitation of any current practical screening methodology.
Collapse
Affiliation(s)
| | | | - Rosalie Elvira
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | | | - Damian Oyong
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Decy Subekti
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Ismail E. Rozi
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Baird JK. Point-of-care G6PD diagnostics for Plasmodium vivax malaria is a clinical and public health urgency. BMC Med 2015; 13:296. [PMID: 26652887 PMCID: PMC4677444 DOI: 10.1186/s12916-015-0531-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022] Open
Abstract
Malaria caused by Plasmodium vivax threatens over 2 billion people globally and sickens tens of millions annually. Recent clinical evidence discredits the long-held notion of this infection as intrinsically benign revealing an often threatening course associated with mortality. Most acute attacks by this species derive from latent forms in the human liver called hypnozoites. Radical cure for P. vivax malaria includes therapy aimed both at the acute attack (blood schizontocidal) and against future attacks (hypnozoitocidal). The only hypnozoitocide available is primaquine, a drug causing life-threatening acute hemolytic anemia in patients with the inherited blood disorder glucose-6-phosphate dehydrogenase (G6PD) deficiency. This disorder affects 400 million people worldwide, at an average prevalence of 8 % in malaria-endemic nations. In the absence of certain knowledge regarding the G6PD status of patients infected by P. vivax, providers must choose between the risk of harm caused by primaquine and that caused by the parasite by withholding therapy. Resolving this dilemma requires the availability of point-of-care G6PD diagnostics practical for use in the impoverished rural tropics where the vast majority of malaria patients seek care.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No. 69, Jakarta, Indonesia. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Lam R, Li H, Nock ML. Assessment of G6PD screening program in premature infants in a NICU. J Perinatol 2015; 35:1027-9. [PMID: 26491849 DOI: 10.1038/jp.2015.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Targeted screening for glucose-6-phosphate dehydrogenase deficiency (G6PDdef) using fluorescent spot test (FST) is done in our newborn nursery (NN) and now in our NICU. Premature infants have higher G6PD levels than term infants. FST may result in under diagnosis of G6PDdef in preterms. We sought to determine if FST is appropriate for diagnosis of G6PDdef at<35 weeks and assess screening in NICU. STUDY DESIGN Retrospective chart review of male, inborn infants<35 weeks in NICU from 2008 to 2011. Difference in G6PDdef incidence<5% between NN and NICU was acceptable for equivalence. RESULTS Out of 679 subjects, 442 were screened for G6PDdef and 11.3% had abnormal results. Binomial testing comparing 11.3% (95% confidence interval (CI) 8.5 to 14.6) incidence of G6PDdef in NICU and reported incidence in NN (11%) demonstrated no difference. 12.2% of Black/African American males were not screened. CONCLUSION FST is appropriate for screening all at-risk newborns. A number of at-risk premature males were not screened.
Collapse
Affiliation(s)
- R Lam
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Doernbecher Children's Hospital, Portland, OR, USA
| | - H Li
- Center for Clinical Investigation, Case Western Reserve University, Cleveland, OH, USA
| | - M L Nock
- Division of Neonatology, Department of Pediatrics, University Hospitals Case Medical Center Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
45
|
Challenges in Antimalarial Drug Treatment for Vivax Malaria Control. Trends Mol Med 2015; 21:776-788. [DOI: 10.1016/j.molmed.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023]
|
46
|
Ley B, Luter N, Espino FE, Devine A, Kalnoky M, Lubell Y, Thriemer K, Baird JK, Poirot E, Conan N, Kheong CC, Dysoley L, Khan WA, Dion-Berboso AG, Bancone G, Hwang J, Kumar R, Price RN, von Seidlein L, Domingo GJ. The challenges of introducing routine G6PD testing into radical cure: a workshop report. Malar J 2015; 14:377. [PMID: 26416229 PMCID: PMC4587750 DOI: 10.1186/s12936-015-0896-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/12/2015] [Indexed: 12/11/2022] Open
Abstract
The only currently available drug that effectively removes malaria hypnozoites from the human host is primaquine. The use of 8-aminoquinolines is hampered by haemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. Recently a number of qualitative and a quantitative rapid diagnostic test (RDT) format have been developed that provide an alternative to the current standard G6PD activity assays. The WHO has recently recommended routine testing of G6PD status prior to primaquine radical cure whenever possible. A workshop was held in the Philippines in early 2015 to discuss key challenges and knowledge gaps that hinder the introduction of routine G6PD testing. Two point-of-care (PoC) test formats for the measurement of G6PD activity are currently available: qualitative tests comparable to malaria RDT as well as biosensors that provide a quantitative reading. Qualitative G6PD PoC tests provide a binomial test result, are easy to use and some products are comparable in price to the widely used fluorescent spot test. Qualitative test results can accurately classify hemizygous males, heterozygous females, but may misclassify females with intermediate G6PD activity. Biosensors provide a more complex quantitative readout and are better suited to identify heterozygous females. While associated with higher costs per sample tested biosensors have the potential for broader use in other scenarios where knowledge of G6PD activity is relevant as well. The introduction of routine G6PD testing is associated with additional costs on top of routine treatment that will vary by setting and will need to be assessed prior to test introduction. Reliable G6PD PoC tests have the potential to play an essential role in future malaria elimination programmes, however require an improved understanding on how to best integrate routine G6PD testing into different health settings.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| | - Nick Luter
- PATH, Diagnostics Program, Seattle, WA, USA.
| | | | - Angela Devine
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | | | - Yoel Lubell
- Research Institute of Tropical Medicine, Manila, Philippines. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| | - J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Eugenie Poirot
- The Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA.
| | | | - Chong Chee Kheong
- Disease Control Division, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
| | - Lek Dysoley
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia. .,School of Public Health, National Institution of Public Health, Phnom Penh, Cambodia.
| | - Wasif Ali Khan
- International Center for Diarrheal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh.
| | - April G Dion-Berboso
- Newborn Screening Center, Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines.
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, Thailand.
| | - Jimee Hwang
- The Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA. .,Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | - Ritu Kumar
- PATH, Diagnostics Program, Seattle, WA, USA.
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | | |
Collapse
|
47
|
Kheng S, Muth S, Taylor WRJ, Tops N, Kosal K, Sothea K, Souy P, Kim S, Char CM, Vanna C, Ly P, Ringwald P, Khieu V, Kerleguer A, Tor P, Baird JK, Bjorge S, Menard D, Christophel E. Tolerability and safety of weekly primaquine against relapse of Plasmodium vivax in Cambodians with glucose-6-phosphate dehydrogenase deficiency. BMC Med 2015; 13:203. [PMID: 26303162 PMCID: PMC4549079 DOI: 10.1186/s12916-015-0441-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Primaquine is used to prevent Plasmodium vivax relapse; however, it is not implemented in many malaria-endemic countries, including Cambodia, for fear of precipitating primaquine-induced acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency (G6PDd). Reluctance to use primaquine is reinforced by a lack of quality safety data. This study was conducted to assess the tolerability of a primaquine regimen in Cambodian severely deficient G6PD variants to ascertain whether a weekly primaquine could be given without testing for G6PDd. METHODS From January 2013 to January 2014, Cambodians with acute vivax malaria were treated with dihydroartemisinin/piperaquine on days (D) 0, 1 and 2 with weekly doses of primaquine 0.75 mg/kg for 8 weeks (starting on D0, last dose on D49), and followed until D56. Participants' G6PD status was confirmed by G6PD genotype and measured G6PD activity. The primary outcome was treatment completion without primaquine toxicity defined as any one of: (1) severe anaemia (haemoglobin [Hb] <7 g/dL), (2) a >25 % fractional fall in Hb from D0, (3) the need for a blood transfusion, (4) haemoglobinuria, (5) acute kidney injury (an increase in baseline serum creatinine >50 %) or (6) methaemoglobinaemia >20 %. RESULTS We enrolled 75 patients with a median age of 24 years (range 5-63); 63 patients (84 %) were male. Eighteen patients were G6PDd (17/18 had the Viangchan variant) and had D0 G6PD activity ranging from 0.1 to 1.5 U/g Hb (median 0.85 U/g Hb). In the 57 patients with normal G6PD (G6PDn), D0 G6PD activity ranged from 6.9 to 18.5 U/g Hb (median 12 U/g Hb). Median D0 Hb concentrations were similar (P = 0.46) between G6PDd (13 g/dL, range 9.6-16) and G6PDn (13.5 g/dL, range 9-16.3) and reached a nadir on D2 in both groups: 10.8 g/dL (8.2-15.3) versus 12.4 g/dL (8.8-15.2) (P = 0.006), respectively. By D7, five G6PDd patients (27.7 %) had a >25 % fall in Hb, compared to 0 G6PDn patients (P = 0.00049). One of these G6PDd patients required a blood transfusion (D0-D5 Hb, 10.0-7.2 g/dL). No patients developed severe anaemia, haemoglobinuria, a methaemoglobin concentration >4.9 %, or acute kidney injury. CONCLUSIONS Vivax-infected G6PDd Cambodian patients demonstrated significant, mostly transient, falls in Hb and one received a blood transfusion. Weekly primaquine in G6PDd patients mandates medical supervision and pre-treatment screening for G6PD status. The feasibility of implementing a package of G6PDd testing and supervised primaquine should be explored. TRIAL REGISTRATION The trial was registered on 3/1/2013 and the registration number is ACTRN12613000003774.
Collapse
Affiliation(s)
- Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Walter R J Taylor
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
- Service de Médecine Tropicale et Humanitaire, Hôpitaux Universitaires de Genève, Geneva, Switzerland.
- Mahidol Oxford Tropical Medicine Research Unit, 420/60 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Narann Tops
- WHO Cambodia Country Office, Pasteur Street, Phnom Penh, Cambodia.
| | - Khem Kosal
- Pailin Referral Hospital, Pailin, Cambodia.
| | | | - Phum Souy
- Anlong Veng Referral Hospital, Anlong Venh, Oddar Meanchey, Cambodia.
| | - Saorin Kim
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
| | - Chuor Meng Char
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Chan Vanna
- Pramoy Health Centre, Veal Veng, Pursat, Cambodia.
| | - Po Ly
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | | | - Virak Khieu
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | | | - Pety Tor
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
| | - John K Baird
- Eijkman Oxford Clinical Research Unit, Jakarta, Indonesia.
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Steven Bjorge
- WHO Cambodia Country Office, Pasteur Street, Phnom Penh, Cambodia.
| | | | | |
Collapse
|
48
|
Adu-Gyasi D, Asante KP, Newton S, Dosoo D, Amoako S, Adjei G, Amoako N, Ankrah L, Tchum SK, Mahama E, Agyemang V, Kayan K, Owusu-Agyei S. Evaluation of the diagnostic accuracy of CareStart G6PD deficiency Rapid Diagnostic Test (RDT) in a malaria endemic area in Ghana, Africa. PLoS One 2015; 10:e0125796. [PMID: 25885097 PMCID: PMC4401677 DOI: 10.1371/journal.pone.0125796] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most widespread enzyme defect that can result in red cell breakdown under oxidative stress when exposed to certain medicines including antimalarials. We evaluated the diagnostic accuracy of CareStart G6PD deficiency Rapid Diagnostic Test (RDT) as a point-of-care tool for screening G6PD deficiency. METHODS A cross-sectional study was conducted among 206 randomly selected and consented participants from a group with known G6PD deficiency status between February 2013 and June 2013. A maximum of 1.6ml of capillary blood samples were used for G6PD deficiency screening using CareStart G6PD RDT and Trinity qualitative with Trinity quantitative methods as the "gold standard". Samples were also screened for the presence of malaria parasites. Data entry and analysis were done using Microsoft Access 2010 and Stata Software version 12. Kintampo Health Research Centre Institutional Ethics Committee granted ethical approval. RESULTS The sensitivity (SE) and specificity (SP) of CareStart G6PD deficiency RDT was 100% and 72.1% compared to Trinity quantitative method respectively and was 98.9% and 96.2% compared to Trinity qualitative method. Malaria infection status had no significant (P=0.199) change on the performance of the G6PD RDT test kit compared to the "gold standard". CONCLUSIONS The outcome of this study suggests that the diagnostic performance of the CareStart G6PD deficiency RDT kit was high and it is acceptable at determining the G6PD deficiency status in a high malaria endemic area in Ghana. The RDT kit presents as an attractive tool for point-of-care G6PD deficiency for rapid testing in areas with high temperatures and less expertise. The CareStart G6PD deficiency RDT kit could be used to screen malaria patients before administration of the fixed dose primaquine with artemisinin-based combination therapy.
Collapse
Affiliation(s)
- Dennis Adu-Gyasi
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
- * E-mail:
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Sam Newton
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - David Dosoo
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Sabastina Amoako
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - George Adjei
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Nicholas Amoako
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Love Ankrah
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Samuel Kofi Tchum
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Emmanuel Mahama
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Veronica Agyemang
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Kingsley Kayan
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| | - Seth Owusu-Agyei
- Kintampo Health Research Centre, P O Box 200, Kintampo, Brong Ahafo, Ghana
| |
Collapse
|