1
|
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2019; 18:648-659. [PMID: 30089912 DOI: 10.1038/s41577-018-0046-y] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-2 was first identified as a growth factor capable of driving the expansion of activated human T cell populations. In the more than 40 years since its discovery, a tremendous amount has been learned regarding the mechanisms that regulate the expression of both IL-2 and its cell surface receptor, its mechanisms of signalling and its range of biological actions. More recently, the mechanisms by which IL-2 regulates CD4+ T cell differentiation and function have been elucidated. IL-2 also regulates the effector and memory responses of CD8+ T cells, and the loss of IL-2 or responsiveness to IL-2 at least in part explains the exhausted phenotype that occurs during chronic viral infections and in tumour responses. These basic mechanistic studies have led to the therapeutic ability to manipulate the action of IL-2 on regulatory T (Treg) cells for the treatment of autoimmune disease and on CD8+ T cells for immunotherapy of cancer. IL-2 can have either positive or deleterious effects, and we discuss here recent ideas and approaches for manipulating the actions and overall net effects of IL-2 in disease settings, including cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.
Collapse
|
3
|
Siripurapu P, Kankanamge D, Ratnayake K, Senarath K, Karunarathne A. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration. J Biol Chem 2017; 292:17482-17495. [PMID: 28864771 DOI: 10.1074/jbc.m117.787838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/27/2017] [Indexed: 12/25/2022] Open
Abstract
Chemokine-induced directional cell migration is a universal cellular mechanism and plays crucial roles in numerous biological processes, including embryonic development, immune system function, and tissue remodeling and regeneration. During the migration of a stationary cell, the cell polarizes, forms lamellipodia at the leading edge (LE), and triggers the concurrent retraction of the trailing edge (TE). During cell migration governed by inhibitory G protein (Gi)-coupled receptors (GPCRs), G protein βγ (Gβγ) subunits control the LE signaling. Interestingly, TE retraction has been linked to the activation of the small GTPase Ras homolog family member A (RhoA) by the Gα12/13 pathway. However, it is not clear how the activation of Gi-coupled GPCRs at the LE orchestrates the TE retraction in RAW264.7 macrophages. Here, using an optogenetic approach involving an opsin to activate the Gi pathway in defined subcellular regions of RAW cells, we show that in addition to their LE activities, free Gβγ subunits also govern TE retraction by operating two independent, yet synchronized, pathways. The first pathway involves RhoA activation, which prevents dephosphorylation of the myosin light chain, allowing actomyosin contractility to proceed. The second pathway activates phospholipase Cβ and induces myosin light chain phosphorylation to enhance actomyosin contractility through increasing cytosolic calcium. We further show that both of these pathways are essential, and inhibition of either one is sufficient to abolish the Gi-coupled GPCR-governed TE retraction and subsequent migration of RAW cells.
Collapse
Affiliation(s)
- Praneeth Siripurapu
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kasun Ratnayake
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Kanishka Senarath
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- From the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
4
|
Wang Q, Wang L, Wu L, Zhang M, Hu S, Wang R, Han Y, Wu Y, Zhang L, Wang X, Sun W, Wei W. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Sci Rep 2017; 7:45364. [PMID: 28349925 PMCID: PMC5368980 DOI: 10.1038/srep45364] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
T cell infiltration to synovial tissue is an early pathogenic mechanism of rheumatoid arthritis (RA). In the present work, we reveal that G protein coupled receptor kinase 2 (GRK2) is abundantly expressed in T cells of collagen-induced arthritis (CIA). A GRK2 inhibitor, paroxetine protects the joints from inflammation and destruction, primarily through inhibition of both CD4+ helper T (Th) cell and CD8+ cytotoxic T (Tc) cell migration to synovial tissue. Meanwhile, paroxetine restores the balance of Th/Tc, effector Th (Theff)/ naïve Th (Thnaive) and effector Tc (Tceff)/ naïve Tc (Tcnaive) to equilibrium by elevating the frequency of Thnaive, Tcnaive and regulatory Th cells; reducing the increased Theff, activated Th and Tceff, having a similar effect as methotrexate (MTX). In addition, both serum and synovial IL-1β, TNF-α and CX3CL1 expression was effectively inhibited in treated rats. In vitro assay confirmed that paroxetine inhibits CX3CL1-induced T cell migration through blocking the activity of GRK2. Among three MAPK families, paroxetine was found to be able to decrease the phosphorylation of ERK. This study elucidates that paroxetine attenuates the symptoms of CIA rats due to its inhibitory effect on T cell activation and infiltration to synovial tissue via suppression of ERK pathway.
Collapse
Affiliation(s)
- Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Longsheng Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Li Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shanshan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Rui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yongsheng Han
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wuyi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| |
Collapse
|
5
|
Gβγ subunits-Different spaces, different faces. Pharmacol Res 2016; 111:434-441. [PMID: 27378564 DOI: 10.1016/j.phrs.2016.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Gβγ subunits play key roles in modulation of canonical effectors in G protein-coupled receptor (GPCR)-dependent signalling at the cell surface. However, a number of recent studies of Gβγ function have revealed that they regulate a large number of molecules at distinct subcellular sites. These novel, non-canonical Gβγ roles have reshaped our understanding of how important Gβγ signalling is compared to our original notion of Gβγ subunits as simple negative regulators of Gα subunits. Gβγ dimers have now been identified as regulators of transcription, anterograde and retrograde trafficking and modulators of second messenger molecule generation in intracellular organelles. Here, we review some recent advances in our understanding of these novel non-canonical roles of Gβγ.
Collapse
|
6
|
Abstract
BACKGROUND The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. METHODS The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. RESULTS ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. CONCLUSIONS GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Collapse
|
7
|
Inhibition of G-Protein βγ Signaling Decreases Levels of Messenger RNAs Encoding Proinflammatory Cytokines in T Cell Receptor-Stimulated CD4(+) T Helper Cells. J Mol Signal 2015; 10:1. [PMID: 27095999 PMCID: PMC4831316 DOI: 10.5334/1750-2187-10-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Inhibition of G-protein βγ (Gβγ) signaling was found previously to enhance T cell receptor (TCR)-stimulated increases in interleukin 2 (IL-2) mRNA in CD4+ T helper cells, suggesting that Gβγ might be a useful drug target for treating autoimmune diseases, as low dose IL-2 therapy can suppress autoimmune responses. Because IL-2 may counteract autoimmunity in part by shifting CD4+ T helper cells away from the Type 1 T helper cell (TH1) and TH17 subtypes towards the TH2 subtype, the purpose of this study was to determine if blocking Gβγ signaling affected the balance of TH1, TH17, and TH2 cytokine mRNAs produced by CD4+ T helper cells. Methods: Gallein, a small molecule inhibitor of Gβγ, and siRNA-mediated silencing of the G-protein β1 subunit (Gβ1) were used to test the effect of blocking Gβγ on mRNA levels of cytokines in primary human TCR-stimulated CD4+ T helper cells. Results: Gallein and Gβ1 siRNA decreased interferon-γ (IFN-γ) and IL-17A mRNA levels in TCR-stimulated CD4+ T cells grown under TH1-promoting conditions. Inhibiting Gβγ also decreased mRNA levels of STAT4, which plays a positive role in TH1 differentiation and IL-17A production. Moreover, mRNA levels of the STAT4-regulated TH1-associated proteins, IL-18 receptor β chain (IL-18Rβ), mitogen-activated protein kinase kinase kinase 8 (MAP3K8), lymphocyte activation gene 3 (LAG-3), natural killer cell group 7 sequence (NKG7), and oncostatin M (OSM) were also decreased upon Gβγ inhibition. Gallein also increased IL-4, IL-5, IL-9, and IL-13 mRNA levels in TCR-stimulated memory CD4+ T cells grown in TH2-promoting conditions. Conclusions: Inhibiting Gβγ to produce these shifts in cytokine mRNA production might be beneficial for patients with autoimmune diseases such as rheumatoid arthritis (RA), Crohn’s disease (CD), psoriasis, multiple sclerosis (MS), and Hashimoto’s thyroiditis (HT), in which both IFN-γ and IL-17A are elevated.
Collapse
|