1
|
An Y, Kawaguchi A, Zhao C, Toyoda A, Sharifi-Zarchi A, Mousavi SA, Bagherzadeh R, Inoue T, Ogino H, Fujiyama A, Chitsaz H, Baharvand H, Agata K. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. ZOOLOGICAL LETTERS 2018; 4:24. [PMID: 30181897 PMCID: PMC6114478 DOI: 10.1186/s40851-018-0102-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Planarians are non-parasitic Platyhelminthes (flatworms) famous for their regeneration ability and for having a well-organized brain. Dugesia japonica is a typical planarian species that is widely distributed in the East Asia. Extensive cellular and molecular experimental methods have been developed to identify the functions of thousands of genes in this species, making this planarian a good experimental model for regeneration biology and neurobiology. However, no genome-level information is available for D. japonica, and few gene regulatory networks have been identified thus far. RESULTS To obtain whole-genome information on this species and to study its gene regulatory networks, we extracted genomic DNA from 200 planarians derived from a laboratory-bred asexual clonal strain, and sequenced 476 Gb of data by second-generation sequencing. Kmer frequency graphing and fosmid sequence analysis indicated a complex genome that would be difficult to assemble using second-generation sequencing short reads. To address this challenge, we developed a new assembly strategy and improved the de novo genome assembly, producing a 1.56 Gb genome sequence (DjGenome ver1.0, including 202,925 scaffolds and N50 length 27,741 bp) that covers 99.4% of all 19,543 genes in the assembled transcriptome, although the genome is fragmented as 80% of the genome consists of repeated sequences (genomic frequency ≥ 2). By genome comparison between two planarian genera, we identified conserved non-coding elements (CNEs), which are indicative of gene regulatory elements. Transgenic experiments using Xenopus laevis indicated that one of the CNEs in the Djndk gene may be a regulatory element, suggesting that the regulation of the ndk gene and the brain formation mechanism may be conserved between vertebrates and invertebrates. CONCLUSION This draft genome and CNE analysis will contribute to resolving gene regulatory networks in planarians. The genome database is available at: http://www.planarian.jp.
Collapse
Affiliation(s)
- Yang An
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Immolife-biotech Co., Ltd., Nanjing, China
| | - Akane Kawaguchi
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Present address: Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Chen Zhao
- School of Pharmacy, Fudan University, Shanghai, China
- Present address: Immolife-biotech Co., Ltd., Nanjing, China
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ali Sharifi-Zarchi
- Department of Computer Science, Colorado State University, Fort Collins, USA
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Computer Science, Colorado State University, Fort Collins, USA
| | - Reza Bagherzadeh
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Hajime Ogino
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Present address: Amphibian Research Center, Hiroshima University, Higashi-hiroshima, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hamidreza Chitsaz
- Department of Computer Science, Colorado State University, Fort Collins, USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|