1
|
Suárez-Rodríguez B, Regueira-Iglesias A, Blanco-Pintos T, Sánchez-Barco A, Vila-Blanco N, Balsa-Castro C, Carreira MJ, Tomás I. Randomised-crossover clinical trial on the substantivity of a single application of a gel containing chlorhexidine and o-cymen-5-ol on the oral biofilm and saliva. BMC Oral Health 2024; 24:1247. [PMID: 39427170 PMCID: PMC11490038 DOI: 10.1186/s12903-024-05042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND No clinical trials have evaluated the antimicrobial activity and substantivity of gel formulations containing chlorhexidine (CHX) and cymenol. OBJECTIVE To compare the in situ antimicrobial effect and substantivity of a new 0.20% CHX + cymenol gel (test) with the current 0.20% CHX gel formulation (control) on salivary flora and dental plaque biofilm up to seven hours after a single application. METHODS A randomised-crossover clinical trial was conducted with 29 orally healthy volunteers participating in the development of Experiments 1 (saliva) and 2 (dental plaque biofilm). All subjects participated in both experiments and were randomly assigned to receive either the test or control gels. Samples were collected at baseline and five minutes and one, three, five, and seven hours after a single application of the products. The specimens were processed using confocal laser scanning microscopy after staining with the LIVE/DEAD® BacLight™ solution. Bacterial viability (BV) was quantified in the saliva and biofilm samples. The BV was calculated using the DenTiUS Biofilm software. RESULTS In Experiment 1, the mean baseline BV was significantly reduced five minutes after application in the test group (87.00% vs. 26.50%; p < 0.01). This effect was maintained throughout all sampling times and continued up to seven hours (40.40%, p < 0.01). The CHX control followed the same pattern. In Experiment 2, the mean baseline BV was also significantly lower five minutes after applying the test gel for: (1) the total thickness of biofilm (91.00% vs. 5.80%; p < 0.01); (2) the upper layer (91.29% vs. 3.94%; p < 0.01); and (3) the lower layer (86.29% vs. 3.83%; p < 0.01). The reduction of BV from baseline was observed for the full-thickness and by layers at all sampling moments and continued seven hours after application (21.30%, 24.13%, and 22.06%, respectively; p < 0.01). Again, the control group showed similar results. No significant differences between test and control gels were observed in either saliva or dental plaque biofilm at any sampling time. CONCLUSIONS A 0.20% CHX + cymenol gel application demonstrates potent and immediate antimicrobial activity on salivary flora and de novo biofilm. This effect is maintained seven hours after application. Similar effects are obtained with a 0.20% CHX-only gel.
Collapse
Grants
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- 2021-CE161 Lacer, S. A.
- ED431G-2023/04; GRC2021/48 Xunta de Galicia - Consellería de Cultura, Educación, Formación Profesional e Universidades and the European Union (European Regional Development Fund)
- ED431G-2023/04; GRC2021/48 Xunta de Galicia - Consellería de Cultura, Educación, Formación Profesional e Universidades and the European Union (European Regional Development Fund)
Collapse
Affiliation(s)
- B Suárez-Rodríguez
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain.
| | - T Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - A Sánchez-Barco
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - N Vila-Blanco
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - M J Carreira
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical- Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
2
|
Silva RA, da Silva BF, Pereira MS, Coelho PAT, Costa RA, Chaves AC, Silva IGN, Carneiro VA. Combinatorial effects between aromatic plant compounds and chlorhexidine digluconate against canine otitis-related Staphylococcus spp. Res Vet Sci 2024; 170:105182. [PMID: 38377791 DOI: 10.1016/j.rvsc.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
The increasing prevalence of antimicrobial resistance among bacterial pathogens necessitates novel treatment strategies, particularly in veterinary medicine where otitis in dogs is very common in small animals' clinical routines. Considering this challenge, this study explores the efficacy of aromatic plant compounds (APC), including eugenol (EUG), trans-cinnamaldehyde (TC), and geraniol (GER), and their synergistic potential when combined with the antiseptic agent chlorhexidine (CLX), offering insight into alternative therapeutic approaches. The disk diffusion assay revealed differential sensitivity of Staphylococcus spp. strains to the tested compounds, with EUG and GER showing moderate inhibition zones and TC displaying considerably larger inhibition zones. Further analysis through MIC and MBC determinations suggested that EUG required the highest concentrations to inhibit and kill the bacteria, whereas TC and GER were effective at lower concentrations. Combined with CLX, all three plant-derived compounds demonstrated a significant enhancement of antibacterial activity, indicated by reduced MIC values and a predominantly synergistic interaction across the strains tested. GER was the most potent in combination with CLX, presenting the lowest mean FICi values and the highest fold reductions in MIC. This study emphasizes the APC's potential as an adjunct to conventional antimicrobial agents like CLX. The marked synergy observed, especially with GER, suggests that such combinations could be promising alternatives in managing bacterial otitis in dogs, potentially mitigating the impact of antibiotic resistance.
Collapse
Affiliation(s)
- Romério Alves Silva
- Veterinary Sciences Department of State University of Ceará, Campus Itaperi, Fortaleza 60714-903, Ceará, Brazil
| | - Benise Ferreira da Silva
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Mainara Saraiva Pereira
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Paulo Adenes Teixeira Coelho
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Renata Albuquerque Costa
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Andrey Carvalho Chaves
- Veterinary Sciences Department of State University of Ceará, Campus Itaperi, Fortaleza 60714-903, Ceará, Brazil
| | - Isaac Goes Neto Silva
- Veterinary Sciences Department of State University of Ceará, Campus Itaperi, Fortaleza 60714-903, Ceará, Brazil
| | - Victor Alves Carneiro
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil.
| |
Collapse
|
3
|
Kamran MA, Alnazeh AA, Almoammar S, Almagbol M, Baig EA, Alrwuili MR, Aljabab MA, Alshahrani I. Effect of Plant-Based Mouthwash ( Morinda citrifolia and Ocimum sanctum) on TNF-α, IL-α, IL-β, IL-2, and IL-6 in Gingival Crevicular Fluid and Plaque Scores of Patients Undergoing Fixed Orthodontic Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1968. [PMID: 38004017 PMCID: PMC10673364 DOI: 10.3390/medicina59111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: To investigate the antiplaque properties of two plant-based mouthwashes, Morinda citrifolia (MC) and Ocimum sanctum (OS), and their effect on TNF-α, IL-α, IL-β, IL-2, and IL-6 in gingival crevicular fluid (GCF) of patients undergoing fixed orthodontic treatment. Materials and Methods: Seventy-five individuals were recruited according to defined inclusion and exclusion criteria. This study was structured into two distinct phases. Phase I was a combination of toothbrushing using toothpaste containing fluoride (Protocol A), while Phase II toothbrushing included fluoride toothpaste and use of a mouthwash (Protocol B). For Phase II, individuals participating in this study were allocated into different groups through a randomization process: Group 1-0.12% CHX, Group 2-5% MC, and Group 3-4% OS. Each individual's Phase I and Phase II scores were assessed. GCF was measured in three phases to determine the level of inflammatory biomarkers. The paired t-test evaluated the disparities between the pre- and post-plaque index. Categorical data were subjected to crosstab analysis to assess qualitative variables. The mean values of cytokine levels were presented. An unpaired t-test was employed to assess the levels of cytokines between individuals in Phase I and Phase II. Results: Toothbrushing, fluoride toothpaste, and the supplementary use of mouthwash (Phase II) resulted in mean plaque scores significantly lower than group A (p < 0.001). Cytokines TNF-α, IL-α, and IL-β demonstrated a significant downward trend in herbal mouthwash users. Conclusions: In conjunction with fluoridated toothpaste and brushing, OS and MC can serve as a viable alternative to conventional synthetic mouthwash CHX. This combination demonstrates reducing mean plaque scores and diminishing the levels of cytokines TNF-α, IL-α, and IL-β.
Collapse
Affiliation(s)
- Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (S.A.); (I.A.)
| | - Abdullah A. Alnazeh
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (S.A.); (I.A.)
| | - Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (S.A.); (I.A.)
| | - Mohammad Almagbol
- Department of Community and Periodontics, Faculty of Dentistry, King Khalid University, Abha 62529, Saudi Arabia;
| | - Eisha Abrar Baig
- Dow International Dental College, Dow University of Health Science, Karachi 74200, Pakistan;
| | - Mohammad Raji Alrwuili
- Orthodontic Department, Qurayyat Specialized Dental Center, Al-Qurayyat 77453, Saudi Arabia; (M.R.A.); (M.A.A.)
| | - Mohammed Ahmed Aljabab
- Orthodontic Department, Qurayyat Specialized Dental Center, Al-Qurayyat 77453, Saudi Arabia; (M.R.A.); (M.A.A.)
| | - Ibrahim Alshahrani
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.A.A.); (S.A.); (I.A.)
| |
Collapse
|
4
|
Liu T, Chen YC, Jeng SL, Chang JJ, Wang JY, Lin CH, Tsai PF, Ko NY, Ko WC, Wang JL. Short-term effects of Chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol 2023; 13:1056534. [PMID: 36816590 PMCID: PMC9932516 DOI: 10.3389/fcimb.2023.1056534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chlorhexidine (CHX) and essential oil containing mouthwashes like Listerine® can improve oral hygiene via suppressing oral microbes. In hospitalized patients, CHX mouthwash reduces the incidence of ventilator-associated pneumonia. However, CHX use was also associated with increased mortality, which might be related to nitrate-reducing bacteria. Currently, no study determines oral bacteria targeted by essential oils mouthwash in hospitalized patients using a metagenomic approach. Methods We recruited 87 hospitalized patients from a previous randomized control study, and assigned them to three mouthwash groups: CHX, Listerine, and normal saline (control). Before and after gargling the mouthwash twice a day for 5-7 days, oral bacteria were examined using a 16S rDNA approach. Results Alpha diversities at the genus level decreased significantly only for the CHX and Listerine groups. Only for the two groups, oral microbiota before and after gargling were significantly different, but not clearly distinct. Paired analysis eliminated the substantial individual differences and revealed eight bacterial genera (including Prevotella, Fusobacterium, and Selenomonas) with a decreased relative abundance, while Rothia increased after gargling the CHX mouthwash. After gargling Listerine, seven genera (including Parvimonas, Eubacterium, and Selenomonas) showed a decreased relative abundance, and the magnitudes were smaller compared to the CHX group. Fewer bacteria targeted by Listerine were reported to be nitrate-reducing compared to the CHX mouthwash. Discussion In conclusion, short-term gargling of the CHX mouthwash and Listerine altered oral microbiota in our hospitalized patients. The bacterial genera targeted by the CHX mouthwash and Listerine were largely different and the magnitudes of changes were smaller using Listerine. Functional alterations of gargling CHX and Listerine were also different. These findings can be considered for managing oral hygiene of hospitalized patients.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chin Chen
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jiu-Yao Wang
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Cheng-Han Lin
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Ying Ko
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,*Correspondence: Jiun-Ling Wang,
| |
Collapse
|
5
|
Souza JGS, Costa Oliveira BE, Costa RC, Bechara K, Cardoso-Filho O, Benso B, Shibli JA, Bertolini M, Barāo VAR. Bacterial-derived extracellular polysaccharides reduce antimicrobial susceptibility on biotic and abiotic surfaces. Arch Oral Biol 2022; 142:105521. [PMID: 35988499 DOI: 10.1016/j.archoralbio.2022.105521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Extracellular biofilm matrix plays a role in reducing bacterial susceptibility against antimicrobials. Since the surface where biofilm is growing modulates microbial accumulation and bacterial-derived exopolysaccharides (EPS) synthesis, this study compared the role of EPS to reduce antimicrobial susceptibility on biotic (dental surface) and abiotic (titanium (Ti) material) surfaces and the effect of remaining matrix-enriched biofilms to promote bacterial recolonization. DESIGN 48 h Streptococcus mutans UA159 strain biofilms were grown on enamel and Ti surfaces. The medium was supplemented with 1% sucrose, substrate for EPS synthesis, or with 0.5% glucose + 0.5% fructose as control. Chlorhexidine (CHX) 0.2% was used for antimicrobial treatment. Biofilms were collected and the following analyses were considered: viable bacterial counts, biofilm pH, EPS content, and biofilm structure by scanning electron microscopy and confocal laser scanning microscopy (CLSM). Substrate surfaces were analyzed by 3D laser scanning confocal microscope. RESULTS Enamel surface showed a higher amount of EPS content (p < 0.05), which may be explained by the higher bacterial biomass compared to Ti material. EPS content reduced bacterial susceptibility against antimicrobial treatments for both substrates, compared to EPS control (p < 0.05). However, sucrose-treated cells presented the same magnitude of reduction for Ti or enamel. Interestingly, matrix-enriched biofilms favored bacterial recolonization for both substrates. CONCLUSION The surface where the biofilm is growing modulates the amount of EPS synthesized and matrix content plays a key role in reducing antimicrobial susceptibility and promoting bacterial recolonization.
Collapse
Affiliation(s)
- Joāo Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, Brazil.
| | | | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Karen Bechara
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo, Brazil
| | - Otávio Cardoso-Filho
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jamil Awad Shibli
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
6
|
Chebib N, Cuvelier C, Malézieux-Picard A, Parent T, Roux X, Fassier T, Müller F, Prendki V. Pneumonia prevention in the elderly patients: the other sides. Aging Clin Exp Res 2021; 33:1091-1100. [PMID: 31893384 DOI: 10.1007/s40520-019-01437-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Pneumonia is one of the leading causes of morbidity and mortality from infection in elderly patients. The increased frequency of pneumonia among elderly subjects can be explained by the physiological changes linked to the progressive aging of the respiratory tree and the diminished immunological response. A spiral of event leads to frailty, infection and possible death; preventing pneumonia consists of controlling the risk factors. Dysphagia, which is associated with malnutrition and dehydration, is recognized as one of the major pathophysiological mechanism leading to pneumonia and its screening is crucial for the pneumonia risk assessment. The impairment in the oropharyngeal reflexes results in stagnation of foreign material in the lateral cavities of the pharynx which may then get aspirated repeatedly in the lungs and cause pneumonia. Pneumonia prevention starts with lifestyle modifications such as alcohol and tobacco cessation. A careful review of the risk-benefit of the prescribed medication is critical and adaptation may be required in elders with multiple morbidities. Respiratory physiotherapy and mobilization improve the functional status and hence may help reduce the risk of pneumonia. Maintaining teeth and masticatory efficiency is important if malnutrition and its consequences are to be avoided. Daily oral hygiene and regular professional removal of oral biofilm can prevent the onset of periodontitis and can avoid an oral environment favoring the colonization of respiratory pathogens than can then be aspirated into the lungs.
Collapse
|
7
|
Contribution of Essential Oils to the Fight against Microbial Biofilms—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9030537] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The increasing clinical use of artificial medical devices raises the issue of microbial contamination, which is a risk factor for the occurrence of biofilm-associated infections. A huge amount of scientific data highlights the promising potential of essential oils (EOs) to be used for the development of novel antibiofilm strategies. We aimed to review the relevant literature indexed in PubMed and Embase and to identify the recent directions in the field of EOs, as a new modality to eradicate microbial biofilms. We paid special attention to studies that explain the mechanisms of the microbicidal and antibiofilm activity of EOs, as well as their synergism with other antimicrobials. The EOs are difficult to test for their antimicrobial activity due to lipophilicity and volatility, so we have presented recent methods that facilitate these tests. There are presented the applications of EOs in chronic wounds and biofilm-mediated infection treatment, in the food industry and as air disinfectants. This analysis concludes that EOs are a source of antimicrobial agents that should not be neglected and that will probably provide new anti-infective therapeutic agents.
Collapse
|
8
|
Yanakiev S. Effects of Cinnamon ( Cinnamomum spp.) in Dentistry: A Review. Molecules 2020; 25:E4184. [PMID: 32932678 PMCID: PMC7571082 DOI: 10.3390/molecules25184184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Dental medicine is one of the fields of medicine where the most common pathologies are of bacterial and fungal origins. This review is mainly focused on the antimicrobial effects of cinnamon essential oil (EO), cinnamon extracts, and pure compounds against different oral pathogens and the oral biofilm and the possible effects on soft mouth tissue. Basic information is provided about cinnamon, as is a review of its antimicrobial properties against the most common microorganisms causing dental caries, endodontic and periodontal lesions, and candidiasis. Cinnamon EO, cinnamon extracts, and pure compounds show significant antimicrobial activities against oral pathogens and could be beneficial in caries and periodontal disease prevention, endodontics, and candidiasis treatment.
Collapse
Affiliation(s)
- Spartak Yanakiev
- Medical College Y. Filaretova, Medical University-Sofia, Yordanka Filaretova Street 3, 1000 Sofia, Bulgaria
| |
Collapse
|
9
|
Abdullah N, Al-Marzooq F, Mohamad S, Abd Rahman N, Chi Ngo H, Perera Samaranayake L. Intraoral appliances for in situ oral biofilm growth: a systematic review. J Oral Microbiol 2019; 11:1647757. [PMID: 31489127 PMCID: PMC6713217 DOI: 10.1080/20002297.2019.1647757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 10/29/2022] Open
Abstract
Background: Oral biofilms are the root cause of major oral diseases. As in vitro biofilms are not representative of the intraoral milieu, various devices have been manufactured over the years to develop Appliance Grown Oral Biofilm (AGOB). Objective: To review various intraoral appliances used to develop AGOB for microbiological analysis, and to judge the optimal means for such analyses. Design: Four databases (PubMed, Science Direct, Scopus and Medline) were searched by two independent reviewers, and articles featuring the key words 'device' OR 'splint' OR 'appliance'; 'Oral biofilm' OR 'dental plaque'; 'in vivo' OR 'in situ'; 'Microbiology' OR 'Bacteria' OR 'microbiome'; were included. The standard Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were adopted for data gathering. Results: Of the 517 articles which met the initial inclusion criteria, 24 were deemed eligible for review. The age of the AGOB, sampled at various intervals, ranged from 30 min to 28 days. The most commonly used microbiome analytical methods were fluorescence microscopy, total cell count using conventional, and molecular tools including Next Generation Sequencing (NGS) platforms. Conclusions: No uniformly superior method for collecting AGOB could be discerned. NGS platforms are preferable for AGOB analyses.
Collapse
Affiliation(s)
- Nizam Abdullah
- College of Dental Medicine, University of Sharjah, Sharjah, UAE.,School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Farah Al-Marzooq
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Normastura Abd Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Hien Chi Ngo
- College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Lakshman Perera Samaranayake
- College of Dental Medicine, University of Sharjah, Sharjah, UAE.,Faculty of Dentistry, University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Blom A, Cho J, Fleischman A, Goswami K, Ketonis C, Kunutsor SK, Makar G, Meeker DG, Morgan-Jones R, Ortega-Peña S, Parvizi J, Smeltzer M, Stambough JB, Urish K, Ziliotto G. General Assembly, Prevention, Antiseptic Irrigation Solution: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S131-S138. [PMID: 30348567 DOI: 10.1016/j.arth.2018.09.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Tomás I, Prada-López I, Quintas V, Carreira MJ, Simón-Soro Á, Mira A, Balsa-Castro C. In situ substrate-formed biofilms using IDODS mimic supragingival tooth-formed biofilms. J Oral Microbiol 2018; 10:1495975. [PMID: 30181819 PMCID: PMC6116702 DOI: 10.1080/20002297.2018.1495975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/29/2018] [Indexed: 01/15/2023] Open
Abstract
This study aimed to compare the bacterial viability and diversity of a substrate-formed biofilm (SF-biofilm) in situ to a supragingival tooth-formed biofilm (TF-biofilm) in the same group of individuals. The impact of the device/disc position and toothbrushing during the formation of SF-biofilm was also assessed. Two tests were run. In test 1, 15 volunteers wore two hemi-splints carrying six discs of human enamel, glass, and hydroxyapatite for 2 days, and were instructed to not perform any oral hygiene measure. Biofilm samples were collected from the substrates and the contralateral tooth and were analysed using CLSM. In five volunteers, half of the biofilm present on the discs and their contralateral teeth were scraped and analysed using 16S pyrosequencing. In test 2, the microscopic analysis was repeated only on the SF-biofilm samples, and the volunteers were allowed to brush their teeth. Multivariate analyses revealed that the donors had a significant effect on the composition of the biofilm, confirming its subject-dependent character. The bacterial composition of the SF-biofilm was similar to the TF-biofilm, with significant differential abundance detected in very few taxa of low abundance. The toothbrushing during the formation of SF-biofilm was the only factor that conditioned the thickness or bacterial viability.
Collapse
Affiliation(s)
- Inmaculada Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Isabel Prada-López
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Victor Quintas
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Maria José Carreira
- Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Health Research Institute of Santiago, Universidade de Santiago de Compostela, Spain, Santiago de Compostela, Spain
| | - Áurea Simón-Soro
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alejandro Mira
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| |
Collapse
|
12
|
Quintas V, Prada-López I, Carreira MJ, Suárez-Quintanilla D, Balsa-Castro C, Tomás I. In Situ Antibacterial Activity of Essential Oils with and without Alcohol on Oral Biofilm: A Randomized Clinical Trial. Front Microbiol 2017; 8:2162. [PMID: 29218030 PMCID: PMC5703870 DOI: 10.3389/fmicb.2017.02162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/20/2017] [Indexed: 12/04/2022] Open
Abstract
Currently, there is little evidence on the in situ antibacterial activity of essential oils (EO) without alcohol. This study aimed to evaluate in situ the substantivity and antiplaque effect on the plaque-like biofilm (PL-biofilm) of two solutions, a traditional formulation that contains EO with alcohol (T-EO) and an alcohol-free formulation of EO (Af-EO). Eighteen healthy adults performed a single mouthwash of: T-EO, Af-EO, and sterile water (WATER) after wearing an individualized disk-holding splint for 2 days. The bacterial viability (BV) and thickness of the PL-biofilm were quantified at baseline, 30 s, and 1, 3, 5, and 7 h post-rinsing (Test 1). Subsequently, each volunteer wore the splint for 4 days, applying two daily mouthwashes of: T-EO, Af-EO, and WATER. The BV, thickness, and covering grade (CG) of the PL-biofilm were quantified (Test 2). Samples were analyzed by confocal laser scanning microscopy after staining with the LIVE/DEAD® BacLight™ solution. To conduct the computations of the BV automatically, a Matlab toolbox called Dentius Biofilm was developed. In test 1, both EO antiseptics had a similar antibacterial effect, reducing BV after a single rinse compared to the WATER, and keeping it below baseline levels up to 7 h post-rinse (P < 0.001). The mean thickness of the PL-biofilm after rinsing was not affected by any of the EO formulations and ranged from 18.58 to 20.19 μm. After 4 days, the T-EO and Af-EO solutions were significantly more effective than the WATER, reducing the BV, thickness, and CG of the PL-biofilm (P < 0.001). Although, both EO antiseptics presented a similar bactericidal activity, the Af-EO rinses led to more significant reductions in the thickness and CG of the PL-biofilm than the T-EO rinses (thickness = 7.90 vs. 9.92 μm, P = 0.012; CG = 33.36 vs. 46.61%, P = 0.001). In conclusion, both essential oils antiseptics had very high immediate antibacterial activity and substantivity in situ on the 2-day PL-biofilm after a single mouthwash. In the 4-day PL-biofilm, both essential oils formulations demonstrated a very good antiplaque effect in situ, although the alcohol-free formula performed better at reducing the biofilm thickness and covering grade.
Collapse
Affiliation(s)
- Victor Quintas
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Prada-López
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Carreira
- Centro Singular de Investigación en Tecnoloxías da Información, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - David Suárez-Quintanilla
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
13
|
de Souza ME, Clerici DJ, Verdi CM, Fleck G, Quatrin PM, Spat LE, Bonez PC, Santos CFD, Antoniazzi RP, Zanatta FB, Gundel A, Martinez DST, de Almeida Vaucher R, Santos RCV. Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ. Microb Pathog 2017; 113:432-437. [PMID: 29162482 DOI: 10.1016/j.micpath.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Microbial biofilms represent a challenge in the treatment of infections, due to the low efficacy of the antimicrobials. This study evaluated the antimicrobial effect of nanoparticles of Melaleuca alternifolia (TTO) in dental biofilm. Thirty-eight volunteers used an oral device in situ in situ including four bovine enamel specimens for 07 days. From the fifth day four solutions were applied randomly for each specimen: Physiological Saline Solution (0.85% NaCl) (C+), Chlorhexidine 0.12% (CHX), M. alternifolia oil 0.3% (TTO), and a nanoparticle solution of 0.3% M. alternifolia oil (NPTTO). The nanoparticles of TTO were characterized for pH, IPD, medium size, zeta potential and Transmission Electron Microscopy. Antimicrobial activity was evaluated by viable microorganisms count and the structure of the biofilm by atomic force microscopy. The NPTTO presented pH 6.4, particle diameter of 197.9 ± 1 nm, polydispersion index of 0.242 ± 0.005, zeta potential of -7.12 mV and ±0:27 spherical shape. The C+ resulted in 100% of bacterial vitality, while CHX, TTO and NPTTO showed 34.2%, 51.4% and 25.8%, respectively. The AFM images showed biofilms with an average roughness of 350 nm for C+, 275 nm for CHX, 500 nm for TTO and 100 nm for NPTTO. The NPTTO demonstrated excellent antimicrobial activity in the biofilm formed in situ and will possibly be used in future for the treatment/prevention of oral biofilms.
Collapse
Affiliation(s)
- Márcia Ebling de Souza
- Laboratory of Microbiological Research, Centro Universitário Franciscano, Santa Maria, Brazil; Laboratory of Nanotechnology, Post Graduate Program of Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Dariane Jornada Clerici
- Laboratory of Microbiological Research, Centro Universitário Franciscano, Santa Maria, Brazil; Laboratory of Nanotechnology, Post Graduate Program of Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil; Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Camila Marina Verdi
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gabriela Fleck
- Department of Odontology, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Priscilla Maciel Quatrin
- Laboratory of Microbiological Research, Centro Universitário Franciscano, Santa Maria, Brazil; Laboratory of Nanotechnology, Post Graduate Program of Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Luana Ebling Spat
- Department of Odontology, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Pauline Cordenonsi Bonez
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | | - André Gundel
- Physic School - Federal University of Pampa - Bagé - RS - Brazil, Universidade Federal do Pampa, Brazil
| | | | - Rodrigo de Almeida Vaucher
- Laboratory of Microbiological Research, Centro Universitário Franciscano, Santa Maria, Brazil; Laboratory of Nanotechnology, Post Graduate Program of Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - Roberto Christ Vianna Santos
- Laboratory of Nanotechnology, Post Graduate Program of Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil; Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
14
|
Serbiak B, Fourre T, Geonnotti AR, Gambogi RJ. In vitro efficacy of essential oil mouthrinse versus dentifrices. J Dent 2017; 69:49-54. [PMID: 28863962 DOI: 10.1016/j.jdent.2017.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To compare the antimicrobial efficacy and kill penetration of essential oils (EO) mouthrinse versus stannous fluoride, and triclosan dentifrice slurries on saliva-derived biofilms using confocal laser scanning microscopy (CLSM). METHODS Saliva-derived biofilms were grown for 48h on hydroxyapatite discs using pooled, homogenized saliva from 8 healthy volunteers as the inoculum. The mean thickness of these biofilms was 84μm (range, 23-241μm). CLSM with viability mapping was used to visualize the antimicrobial kill penetration of each treatment regime within a biofilm. RESULTS At 30s treatment durations, CLSM imaging revealed greater antimicrobial activity and kill penetration of EO mouthrinse compared to sodium fluoride-, stannous fluoride-, and triclosan-containing dentifrice slurries. Quantification of biovolume revealed that EO mouthrinse treatment at 30s resulted in a greater non-viable biovolume proportion (84.6%±15.0%) than other treatment groups. Increasing the treatment duration of the triclosan dentifrice (to 60 and 120s) resulted in better penetration and an increased reduction of viable cells, comparable to EO mouthrinse treatment at 30s duration. Further, CLSM imaging showed that the combined treatment of a non-antimicrobial dentifrice (45s) with EO mouthrinse (30s) showed superior antimicrobial activity (96.2%±3.7%) compared to the antimicrobial triclosan-containing dentifrice used without a mouthrinse step (26.0%±32.0%). CONCLUSIONS Within typical exposure times, the EO-containing mouthrinse can penetrate deep into the accumulating plaque biofilm compared to the chemotherapeutic dentifrice slurries, and may provide an efficacious alternative to triclosan, when used as an adjunct with a mechanical oral care regimen. CLINICAL SIGNIFICANCE Using viability mapping and CLSM, this study demonstrated that EO-containing mouthrinse penetrates and kills microorganisms deeper and more effectively in plaque biofilm in typical exposure times when compared to dentifrice chemotherapeutic agents, providing an efficacious alternative to triclosan or stannous fluoride when used as an adjunct to mechanical oral care.
Collapse
Affiliation(s)
- Benjamin Serbiak
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Tara Fourre
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Anthony R Geonnotti
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Robert J Gambogi
- Johnson & Johnson Consumer Inc., 199 Grandview Road, Skillman, NJ, 08558, USA.
| |
Collapse
|
15
|
Cho H, Lynham AJ, Hsu E. Postoperative interventions to reduce inflammatory complications after third molar surgery: review of the current evidence. Aust Dent J 2017; 62:412-419. [DOI: 10.1111/adj.12526] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- H Cho
- School of Medicine; The University of Queensland; Brisbane Queensland Australia
| | - AJ Lynham
- School of Medicine; The University of Queensland; Brisbane Queensland Australia
| | - E Hsu
- Maxillofacial Unit; Royal Brisbane and Women's Hospital; Brisbane Queensland Australia
| |
Collapse
|
16
|
Prada-López I, Quintas V, Vilaboa C, Suárez-Quintanilla D, Tomás I. Devices for In situ Development of Non-disturbed Oral Biofilm. A Systematic Review. Front Microbiol 2016; 7:1055. [PMID: 27486437 PMCID: PMC4949230 DOI: 10.3389/fmicb.2016.01055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/23/2016] [Indexed: 01/22/2023] Open
Abstract
Objective: The aim of this review was to assess the types of devices used for in situ development of oral biofilm analyzed microbiologically. Materials and Methods: A systematic search of the literature was conducted to identify all in situ studies of oral biofilm which used an oral device; the Ovid MEDLINE and EMBASE databases complemented with manual search were used. Specific devices used to microbiologically analyze oral biofilm in adults were included. After reading of the selected full texts, devices were identified and classified according to the oral cavity zone and manufacturing material. The “ideal” characteristics were analyzed in every group. Results: The search provided 787 abstracts, of which 111 papers were included. The devices used in these studies were classified as palatal, lingual or buccal. The last group was sub-classified in six groups based on the material of the device. Considering the analyzed characteristics, the thermoplastic devices and the Intraoral Device of Overlaid Disk-holding Splints (IDODS) presented more advantages than limitations. Conclusions: Buccal devices were the most commonly used for the study of in situ biofilm. The majority of buccal devices seemed to slightly affect the volunteer's comfort, the IDODS being the closest to the “ideal” model. Clinical Relevance: New devices for in situ oral biofilm microbiological studies should take into account the possible effect of their design on the volunteer's comfort and biofilm formation.
Collapse
Affiliation(s)
- Isabel Prada-López
- Oral Sciences Research Group, Special Needs Unit, School of Medicine and Dentistry, Universidade de Santiago de Compostela La Coruña, Spain
| | - Víctor Quintas
- Oral Sciences Research Group, Special Needs Unit, School of Medicine and Dentistry, Universidade de Santiago de Compostela La Coruña, Spain
| | - Carlos Vilaboa
- Dental Prosthesis Laboratory, School of Medicine and Dentistry, Universidade de Santiago de Compostela La Coruña, Spain
| | - David Suárez-Quintanilla
- Oral Sciences Research Group, Special Needs Unit, School of Medicine and Dentistry, Universidade de Santiago de Compostela La Coruña, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Special Needs Unit, School of Medicine and Dentistry, Universidade de Santiago de Compostela La Coruña, Spain
| |
Collapse
|
17
|
Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm Activity as a Health Issue. Front Microbiol 2016; 7:592. [PMID: 27199924 PMCID: PMC4845594 DOI: 10.3389/fmicb.2016.00592] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.
Collapse
Affiliation(s)
- Sylvie Miquel
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| | - Rosyne Lagrafeuille
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| | - Bertrand Souweine
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont AuvergneClermont-Ferrand, France; Service de Réanimation Médicale Polyvalente, CHU de Clermont-Ferrand, Clermont-FerrandFrance
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
18
|
Papaioannou W, Vassilopoulos S, Vrotsos I, Margaritis V, Panis V. A comparison of a new alcohol-free 0.2% chlorhexidine oral rinse to an established 0.2% chlorhexidine rinse with alcohol for the control of dental plaque accumulation. Int J Dent Hyg 2015; 14:272-277. [DOI: 10.1111/idh.12182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- W Papaioannou
- Department of Preventive and Community Dentistry; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| | - S Vassilopoulos
- Department of Periodontology; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| | - I Vrotsos
- Department of Periodontology; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| | - V Margaritis
- College of Health Sciences; Walden University; Minneapolis MN USA
| | - V Panis
- Department of Periodontology; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|