1
|
Nithianandam V, Sarkar S, Feany MB. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Hum Mol Genet 2024; 33:860-871. [PMID: 38324746 PMCID: PMC11070137 DOI: 10.1093/hmg/ddae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| |
Collapse
|
2
|
Analysis of RIOK2 Functions in Mediating the Toxic Effects of Deoxynivalenol in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2022; 23:ijms232112712. [PMID: 36361502 PMCID: PMC9653672 DOI: 10.3390/ijms232112712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Deoxynivalenol (DON) is a type of mycotoxin that threatens human and livestock health. Right open reading frame kinase 2 (RIOK2) is a kinase that has a pivotal function in ribosome maturation and cell cycle progression. This study aims to clarify the role of the RIOK2 gene in DON-induced cytotoxicity regulation in porcine intestinal epithelial cells (IPEC-J2). Cell viability assay and flow cytometry showed that the knockdown of RIOK2 inhibited proliferation and induced apoptosis, cell cycle arrest, and oxidative stress in DON-induced IPEC-J2. Then, transcriptome profiling identified candidate genes and pathways that closely interacted with both DON cytotoxicity regulation and RIOK2 expression. Furthermore, RIOK2 interference promoted the activation of the MAPK signaling pathway by increasing the phosphorylation of ERK and JNK. Additionally, we performed the dual-luciferase reporter and ChIP assays to elucidate that the expression of RIOK2 was influenced by the binding of transcription factor Sp1 with the promoter region. Briefly, the reduced expression of the RIOK2 gene exacerbates the cytotoxic effects induced by DON in IPEC-J2. Our findings provide insights into the control strategies for DON contamination by identifying functional genes and effective molecular markers.
Collapse
|
3
|
Mughal MN, Ye Q, Zhao L, Grevelding CG, Li Y, Di W, He X, Li X, Gasser RB, Hu M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens 2021; 10:862. [PMID: 34358012 PMCID: PMC8308690 DOI: 10.3390/pathogens10070862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.
Collapse
Affiliation(s)
- Mudassar N. Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Christoph G. Grevelding
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China;
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Xuesong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| |
Collapse
|
4
|
Zhou H, Zhou T, Zhang B, Lei W, Yuan W, Shan J, Zhang Y, Gupta N, Hu M. RIOK-2 protein is essential for egg hatching in a common parasitic nematode. Int J Parasitol 2020; 50:595-602. [PMID: 32592810 DOI: 10.1016/j.ijpara.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 11/18/2022]
Abstract
The atypical protein kinase RIOK-2 is a non-ribosomal factor essential for ribosome maturation in yeast and human cells; however, little is known about its physiological role in pathogens. Our earlier work examined the expression profile of a RIOK-2 gene (Ss-riok-2) in Strongyloides stercoralis - a prevalent nematode parasite of dogs and humans. Herein, we demonstrate that Ss-RIOK-2 encodes a catalytically active kinase, distributed primarily in the cytoplasm of intestinal and hypodermal cells in transgenic larvae. Its expression oscillates as the free-living L1s develop into infective L3s. Overexpression of a catalytically impaired Ss-RIOK-2-D228A mutant delayed the development of transgenic larvae, while ectopic expression of another dominant negative isoform with a mutation in the ATP-binding site (K123A) abrogated the process of egg hatching, which could be rescued by co-expressing a wild-type Ss-RIOK-2 but not by its Ss-RIOK-1 ortholog. Collectively, our findings show a critical and specific role of Ss-RIOK-2 during the development of a pathogenic roundworm, which can be exploited to develop anti-infectives.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Biying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wang Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianan Shan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China; Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
5
|
The Rio1 protein kinases/ATPases: conserved regulators of growth, division, and genomic stability. Curr Genet 2018; 65:457-466. [DOI: 10.1007/s00294-018-0912-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
|
6
|
Chen YW, Ko WC, Chen CS, Chen PL. RIOK-1 Is a Suppressor of the p38 MAPK Innate Immune Pathway in Caenorhabditis elegans. Front Immunol 2018; 9:774. [PMID: 29719537 PMCID: PMC5913292 DOI: 10.3389/fimmu.2018.00774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 01/08/2023] Open
Abstract
Innate immunity is the primary defense mechanism against infection in metazoans. However, aberrant upregulation of innate immune-signaling pathways can also be detrimental to the host. The p38 MAPK/PMK-1 innate immune-signaling pathway has been demonstrated to play essential roles in cellular defenses against numerous infections in metazoans, including Caenorhabditis elegans. However, the negative regulators that maintain the homeostasis of this important innate immune pathway remain largely understudied. By screening a focused RNAi library against the kinome of C. elegans, we identified RIOK-1, a human RIO kinase homolog, as a novel suppressor of the p38 MAPK/PMK-1 signal pathway. We demonstrated that the suppression of riok-1 confers resistance to Aeromonas dhakensis infection in C. elegans. Using quantitative real time-PCR and riok-1 reporter worms, we found the expression levels of riok-1 to be significantly upregulated in worms infected with A. dhakensis. Our genetic epistasis analysis suggested that riok-1 acts on the upstream of the p38 MAPK/pmk-1 genetic pathway. Moreover, the suppression of riok-1 enhanced the p38 MAPK signal, suggesting that riok-1 is a negative regulator of this innate pathway in C. elegans. Our epistatic results put riok-1 downstream of skn-1, which encodes a p38 MAPK downstream transcription factor and serves as a feedback loop to the p38 MAPK pathway during an A. dhakensis infection. In conclusion, riok-1 is proposed as a novel innate immune suppressor and as a negative feedback loop model involving p38 MAPK, SKN-1, and RIOK-1 in C. elegans.
Collapse
Affiliation(s)
- Yi-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Hong X, Huang H, Qiu X, Ding Z, Feng X, Zhu Y, Zhuo H, Hou J, Zhao J, Cai W, Sha R, Hong X, Li Y, Song H, Zhang Z. Targeting posttranslational modifications of RIOK1 inhibits the progression of colorectal and gastric cancers. eLife 2018; 7:e29511. [PMID: 29384474 PMCID: PMC5815853 DOI: 10.7554/elife.29511] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
RIOK1 has recently been shown to play important roles in cancers, but its posttranslational regulation is largely unknown. Here we report that RIOK1 is methylated at K411 by SETD7 methyltransferase and that lysine-specific demethylase 1 (LSD1) reverses its methylation. The mutated RIOK1 (K411R) that cannot be methylated exhibits a longer half-life than does the methylated RIOK1. FBXO6 specifically interacts with K411-methylated RIOK1 through its FBA domain to induce RIOK1 ubiquitination. Casein kinase 2 (CK2) phosphorylates RIOK1 at T410, which stabilizes RIOK1 by antagonizing K411 methylation and impeding the recruitment of FBXO6 to RIOK1. Functional experiments demonstrate the RIOK1 methylation reduces the tumor growth and metastasis in mice model. Importantly, the protein levels of CK2 and LSD1 show an inverse correlation with FBXO6 and SETD7 expression in human colorectal cancer tissues. Together, this study highlights the importance of a RIOK1 methylation-phosphorylation switch in determining colorectal and gastric cancer development.
Collapse
Affiliation(s)
- Xuehui Hong
- Longju Medical Research CenterKey Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical CollegeZunyiChina
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - He Huang
- Department of Histology and EmbryologyXiangya School of Medicine, Central South UniversityChangshaChina
- Digestive Cancer LaboratorySecond Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Xingfeng Qiu
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Zhijie Ding
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Xing Feng
- Department of Radiation Oncology, Cancer Institute of New JerseyRutgers UniversityNew BrunswickUnited States
| | - Yuekun Zhu
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Huiqin Zhuo
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jingjing Hou
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jiabao Zhao
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Wangyu Cai
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Ruihua Sha
- Department of Digestive DiseaseHongqi Hospital, Mudanjiang Medical UniversityMudanjiangChina
| | - Xinya Hong
- Department of Medical Imaging and UltrasoundZhongshan Hospital of Xiamen UniversityXiamenFujian, China
| | - Yongxiang Li
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hongjiang Song
- Department of General SurgeryThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhiyong Zhang
- Longju Medical Research CenterKey Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical CollegeZunyiChina
- Department of Surgery, Robert-Wood-Johnson Medical School University HospitalRutgers University, The State University of New JerseyNew BrunswickUnited States
| |
Collapse
|
8
|
Zhao L, He X, Grevelding CG, Ye Q, Li Y, Gasser RB, Dissous C, Mughal MN, Zhou YQ, Zhao JL, Hu M. The RIO protein kinase-encoding gene Sj-riok-2 is involved in key reproductive processes in Schistosoma japonicum. Parasit Vectors 2017; 10:604. [PMID: 29233188 PMCID: PMC5727939 DOI: 10.1186/s13071-017-2524-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is caused by parasitic trematodes of the genus Schistosoma. The pathogenesis of schistosomiasis is caused by eggs whose production is the consequence of the pairing of schistosomes and the subsequent sexual maturation of the female. Previous studies have demonstrated that protein kinases are involved in processes leading to the male-induced differentiation of the female gonads, ovary and vitellarium. Right open reading frame protein kinase 2 (RIOK-2) is a member of the atypical kinase family and shown in other organisms to be responsible for ribosomal RNA biogenesis and cell-cycle progression, as well as involves in nematode development. However, nothing is known about its functions in any trematode including schistosome. Methods We isolated and characterized the riok-2 gene from S. japonicum, and detected the transcriptional profiles of Sj-riok-2 by using real-time PCR and in situ hybridization. RNAi-mediated knockdown of Sj-riok-2 was performed, mitotic activities were detected by EdU incorporation assay and morphological changes on organs were observed by confocal laser scanning microscope (CLSM). Results In silico analyses of the amino acid sequence of Sj-RIOK-2 revealed typical features of this class of kinases including a winged helix (wHTH) domain and a RIO kinase domain. Sj-riok-2 is transcribed in different developmental stages of S. japonicum, with a higher abundance in adult females and eggs. Localization studies showed that Sj-riok-2 was mainly transcribed in female reproductive organs. Experiments with adult schistosomes in vitro demonstrated that the transcriptional level of Sj-riok-2 was affected by pairing. Knocking down Sj-riok-2 by RNAi reduced cell proliferation in the vitellarium and caused the increased amount of mature oocytes in ovary and an accumulation of eggs within the uterus. Conclusions Sj-riok-2 is involved in the reproductive development and maturation of female S. japonicum. Our findings provide first evidence for a pairing-dependent role of Sj-riok-2 in the reproductive development and maturation of female S. japonicum. Thus this study contributes to the understanding of molecular processes controlling reproduction in schistosomes. Electronic supplementary material The online version of this article (10.1186/s13071-017-2524-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, Australia
| | - Colette Dissous
- CIIL - Center for Infection and Immunity of Lille Inserm, University Lille, Lille, France
| | - Mudassar N Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yan-Qin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
9
|
Yuan W, Zhou H, Lok JB, Lei W, He S, Gasser RB, Zhou R, Fang R, Zhou Y, Zhao J, Hu M. Functional genomic exploration reveals that Ss-RIOK-1 is essential for the development and survival of Strongyloides stercoralis larvae. Int J Parasitol 2017; 47:933-940. [PMID: 28780152 DOI: 10.1016/j.ijpara.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
Abstract
Protein kinase RIOK-1 is a non-ribosomal factor essential for rRNA cleavage and ribosome small subunit maturation. It is encoded in all eukaryotic organisms. The RIOK-1 encoding gene of Caenorhabditis elegans (Ce-riok-1) is expressed in the neuronal and reproductive systems in larvae and adults of this free-living nematode, and it supports larval growth and development of the adult gonad. In spite of its recognised roles in model organisms such as C. elegans, little is known about the function of this molecule in parasitic nematodes. In a previous study, we characterised the structure, transcriptional profiles and in vivo transcriptional expression patterns of the Ss-riok-1 of human and canine parasitic nematode Strongyloides stercoralis. Here, we extend previous work to undertake functional studies, using transgenesis to assess the roles of Ss-RIOK-1 in the development of S. stercoralis. The results revealed that recombinant Ss-RIOK-1 with D282A mutation at its catalytic site lost its kinase phosphorylation activity in vitro. Both wild-type and mutant Ss-RIOK-1s were expressed in the cytoplasm of neurons and some hypodermal cells in the wild-type strain (UPD) of S. stercoralis. Larvae expressing the dominant negative mutant Ss-RIOK-1 that lost the catalytic activity had a decreased mobility and a severe defect in development to the infective L3 stage. Our findings demonstrated that Ss-RIOK-1 is essential for the development and survival of free-living larvae of S. stercoralis, and that catalytic activity is essential for its function in the parasitic nematode.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siyuan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
10
|
Weinberg F, Reischmann N, Fauth L, Taromi S, Mastroianni J, Köhler M, Halbach S, Becker AC, Deng N, Schmitz T, Uhl FM, Herbener N, Riedel B, Beier F, Swarbrick A, Lassmann S, Dengjel J, Zeiser R, Brummer T. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior. EBioMedicine 2017; 20:79-97. [PMID: 28499923 PMCID: PMC5478185 DOI: 10.1016/j.ebiom.2017.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022] Open
Abstract
Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany
| | - Nadine Reischmann
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Lisa Fauth
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Sanaz Taromi
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Justin Mastroianni
- Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Andrea C Becker
- Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany
| | - Niantao Deng
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Franziska Maria Uhl
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Fabian Beier
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Silke Lassmann
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Dengjel
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany; Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Robert Zeiser
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Mendes TK, Novakovic S, Raymant G, Bertram SE, Esmaillie R, Nadarajan S, Breugelmans B, Hofmann A, Gasser RB, Colaiácovo MP, Boag PR. Correction: Investigating the Role of RIO Protein Kinases in Caenorhabditis elegans. PLoS One 2016; 11:e0156191. [PMID: 27192152 PMCID: PMC4871552 DOI: 10.1371/journal.pone.0156191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|