1
|
Ahmad HI, Zhou J, Ahmad MJ, Afzal G, Jiang H, Zhang X, Elokil AA, Khan MA, Li L, Li H, Ping L, Chen J. Adaptive selection in the evolution of programmed cell death-1 and its ligands in vertebrates. Aging (Albany NY) 2020; 12:3516-3557. [PMID: 32045365 PMCID: PMC7066927 DOI: 10.18632/aging.102827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Programmed cell death-1 (PD-1) and its ligands, particularly PD-L1 and PD-L2, are the most important proteins responsible for signaling T-cell inhibition and arbitrating immune homeostasis and tolerance mechanisms. However, the adaptive evolution of these genes is poorly understood. In this study, we aligned protein-coding genes from vertebrate species to evaluate positive selection constraints and evolution in the PD1, PD-L1 and PD-L2 genes conserved across up to 166 vertebrate species, with an average of 55 species per gene. We determined that although the positive selection was obvious, an average of 5.3% of codons underwent positive selection in the three genes across vertebrate lineages, and increased positive selection pressure was detected in both the Ig-like domains and transmembrane domains of the proteins. Moreover, the PD1, PD-L1 and PD-L2 genes were highly expressed in almost all tissues of the selected species indicating a distinct expression pattern in different tissues among most species. Our study reveals that adaptive selection plays a key role in the evolution of PD1 and its ligands in the majority of vertebrate species, which is in agreement with the contribution of these residues to the mechanisms of pathogen identification and coevolution in the complexity and novelties of vertebrate immune systems.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Muhammad Jamil Ahmad
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University, Bahawalpur, Pakistan
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Abdelmotaleb A. Elokil
- Department of Zoology, The Islamia University, Bahawalpur, Pakistan
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Musarrat Abbas Khan
- Department of Animal Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Liu Ping
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
3
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Stetz G, Verkhivker GM. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication. PLoS Comput Biol 2017; 13:e1005299. [PMID: 28095400 PMCID: PMC5240922 DOI: 10.1371/journal.pcbi.1005299] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. The diversity of allosteric mechanisms in the Hsp70 proteins could range from modulation of the inter-domain interactions and conformational dynamics to fine-tuning of the Hsp70 interactions with co-chaperones. The goal of this study is to present a systematic computational analysis of the dynamic and evolutionary factors underlying allosteric structural transformations of the Hsp70 proteins. We investigated the relationship between functional dynamics, residue coevolution, and network organization of residue interactions in the Hsp70 proteins. The results of this study revealed that conformational dynamics of the Hsp70 proteins may be linked with coevolutionary propensities and mutual information dependencies of the protein residues. Modularity and connectivity of allosteric interactions in the Hsp70 chaperones are coordinated by stable functional sites that feature unique coevolutionary signatures and high network centrality. The emergence of the inter-domain communities that are coordinated by functional centers and include highly coevolving residues could facilitate structural transitions through cooperative reorganization of the local interacting modules. We determined that the differences in the modularity of the residue interactions and organization of coevolutionary networks in DnaK may be associated with variations in their allosteric mechanisms. The network signatures of the DnaK structures are characteristic of a population-shift allostery that allows for coordinated structural rearrangements of local communities. A dislocation of mediating centers and insufficient coevolutionary coupling between functional regions may render a reduced cooperativity and promote a limited entropy-driven allostery in the Sse1 chaperone that occurs without structural changes. The results of this study showed that a network-centric framework and a community-hopping model of allosteric communication pathways may provide novel insights into molecular and evolutionary principles of allosteric regulation in the Hsp70 proteins.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways. PLoS One 2016; 11:e0166583. [PMID: 27861609 PMCID: PMC5115767 DOI: 10.1371/journal.pone.0166583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment.
Collapse
|
6
|
Khwaja A, Galilee M, Marx A, Alian A. Structure of FIV capsid C-terminal domain demonstrates lentiviral evasion of genetic fragility by coevolved substitutions. Sci Rep 2016; 6:24957. [PMID: 27102180 PMCID: PMC4840305 DOI: 10.1038/srep24957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Viruses use a strategy of high mutational rates to adapt to environmental and therapeutic pressures, circumventing the deleterious effects of random single-point mutations by coevolved compensatory mutations, which restore protein fold, function or interactions damaged by initial ones. This mechanism has been identified as contributing to drug resistance in the HIV-1 Gag polyprotein and especially its capsid proteolytic product, which forms the viral capsid core and plays multifaceted roles in the viral life cycle. Here, we determined the X-ray crystal structure of C-terminal domain of the feline immunodeficiency virus (FIV) capsid and through interspecies analysis elucidate the structural basis of co-evolutionarily and spatially correlated substitutions in capsid sequences, which when otherwise uncoupled and individually substituted into HIV-1 capsid impair virion assembly and infectivity. The ability to circumvent the deleterious effects of single amino acid substitutions by cooperative secondary substitutions allows mutational flexibility that may afford viruses an important survival advantage. The potential of such interspecies structural analysis for preempting viral resistance by identifying such alternative but functionally equivalent patterns is discussed.
Collapse
Affiliation(s)
- Aya Khwaja
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Meytal Galilee
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Ailie Marx
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
7
|
Coevolution Analysis of HIV-1 Envelope Glycoprotein Complex. PLoS One 2015; 10:e0143245. [PMID: 26579711 PMCID: PMC4651434 DOI: 10.1371/journal.pone.0143245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 Env spike is the main protein complex that facilitates HIV-1 entry into CD4+ host cells. HIV-1 entry is a multistep process that is not yet completely understood. This process involves several protein-protein interactions between HIV-1 Env and a variety of host cell receptors along with many conformational changes within the spike. HIV-1 Env developed due to high mutation rates and plasticity escape strategies from immense immune pressure and entry inhibitors. We applied a coevolution and residue-residue contact detecting method to identify coevolution patterns within HIV-1 Env protein sequences representing all group M subtypes. We identified 424 coevolving residue pairs within HIV-1 Env. The majority of predicted pairs are residue-residue contacts and are proximal in 3D structure. Furthermore, many of the detected pairs have functional implications due to contributions in either CD4 or coreceptor binding, or variable loop, gp120-gp41, and interdomain interactions. This study provides a new dimension of information in HIV research. The identified residue couplings may not only be important in assisting gp120 and gp41 coordinate structure prediction, but also in designing new and effective entry inhibitors that incorporate mutation patterns of HIV-1 Env.
Collapse
|
8
|
Prathiviraj R, Prisilla A, Chellapandi P. Structure–function discrepancy inClostridium botulinumC3 toxin for its rational prioritization as a subunit vaccine. J Biomol Struct Dyn 2015; 34:1317-29. [DOI: 10.1080/07391102.2015.1078745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Tse A, Verkhivker GM. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. PLoS One 2015; 10:e0130203. [PMID: 26075886 PMCID: PMC4468085 DOI: 10.1371/journal.pone.0130203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating residues. This study has outlined mechanisms by which inhibitor binding could modulate resilience and efficiency of allosteric interactions in the kinase structures, while preserving structural topology required for catalytic activity and regulation.
Collapse
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Correction: Integrated analysis of residue coevolution and protein structures capture key protein sectors in HIV-1 proteins. PLoS One 2015; 10:e0123493. [PMID: 25822728 PMCID: PMC4378974 DOI: 10.1371/journal.pone.0123493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|