1
|
Predicting the Presence and Abundance of Bacterial Taxa in Environmental Communities through Flow Cytometric Fingerprinting. mSystems 2021; 6:e0055121. [PMID: 34546074 PMCID: PMC8547484 DOI: 10.1128/msystems.00551-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microbiome management research and applications rely on temporally resolved measurements of community composition. Current technologies to assess community composition make use of either cultivation or sequencing of genomic material, which can become time-consuming and/or laborious in case high-throughput measurements are required. Here, using data from a shrimp hatchery as an economically relevant case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to develop a computational workflow that allows the prediction of taxon abundances based on flow cytometry measurements. The first stage of our pipeline consists of a classifier to predict the presence or absence of the taxon of interest, with yielded an average accuracy of 88.13% ± 4.78% across the top 50 operational taxonomic units (OTUs) of our data set. In the second stage, this classifier was combined with a regression model to predict the relative abundances of the taxon of interest, which yielded an average R2 of 0.35 ± 0.24 across the top 50 OTUs of our data set. Application of the models to flow cytometry time series data showed that the generated models can predict the temporal dynamics of a large fraction of the investigated taxa. Using cell sorting, we validated that the model correctly associates taxa to regions in the cytometric fingerprint, where they are detected using 16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline to two other data sets of microbial ecosystems. This pipeline represents an addition to the expanding toolbox for flow cytometry-based monitoring of bacterial communities and complements the current plating- and marker gene-based methods. IMPORTANCE Monitoring of microbial community composition is crucial for both microbiome management research and applications. Existing technologies, such as plating and amplicon sequencing, can become laborious and expensive when high-throughput measurements are required. In recent years, flow cytometry-based measurements of community diversity have been shown to correlate well with those derived from 16S rRNA gene amplicon sequencing in several aquatic ecosystems, suggesting that there is a link between the taxonomic community composition and phenotypic properties as derived through flow cytometry. Here, we further integrated 16S rRNA gene amplicon sequencing and flow cytometry survey data in order to construct models that enable the prediction of both the presence and the abundances of individual bacterial taxa in mixed communities using flow cytometric fingerprinting. The developed pipeline holds great potential to be integrated into routine monitoring schemes and early warning systems for biotechnological applications.
Collapse
|
2
|
Liu J, Tu T, Gao G, Bartlam M, Wang Y. Biogeography and Diversity of Freshwater Bacteria on a River Catchment Scale. MICROBIAL ECOLOGY 2019; 78:324-335. [PMID: 30687882 DOI: 10.1007/s00248-019-01323-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
To illustrate how freshwater bacterial community changes with geographic gradient, we investigated the spatial changes of bacterial abundance and community structures from over 200 samples on a catchment scale in the Songhua River using heterotrophic plate counts, flow cytometry, denaturing gradient gel electrophoresis, and pyrosequencing analysis. The results showed that the mainstream had higher cultivable bacteria and total bacterial concentration than tributaries in the Songhua River catchment. Response model analysis demonstrated that the bacterial community exhibits a biogeographical signature even in an interconnected river network system, and the total bacterial concentration and biodiversity were significantly correlated to latitude (p < 0.001) and longitude (p < 0.001). Multivariate redundancy analysis indicated that temperature was the most important factor driving bacterial community structure in the Songhua River, which accounts for 35.30% variance of communities, then dissolved oxygen (17.60%), latitude (17.60%), longitude (11.80%), and pH (5.88%). High-throughput pyrosequencing revealed that at the phylum level, Proteobacteria was numerically dominant (89.6%) in river catchment, followed by Bacteroidetes (8.1%) and Cyanobacteria (1.2%). The overall results revealed that the bacterial community was driven by geographical distance regardless of the continuum of the river on a catchment scale.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Teng Tu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Center for Earth Environment and Resources, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology & College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Lack of impact of the El Hierro (Canary Islands) submarine volcanic eruption on the local phytoplankton community. Sci Rep 2018; 8:4667. [PMID: 29549332 PMCID: PMC5856795 DOI: 10.1038/s41598-018-22967-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
The eruption of a submarine volcano south of El Hierro Island (Canary Islands) in October 2011 led to major physical and chemical changes in the local environment. Large amounts of nutrients were found at specific depths in the water column above the volcano associated with suboxic layers resulting from the oxidation of reduced chemical species expelled during the eruptive phase. It has been suggested that the fertilization with these compounds enabled the rapid restoration of the ecosystem in the marine reserve south of the island once the volcanic activity ceased, although no biological evidence for this has been provided yet. To test the biological fertilization hypothesis on the pelagic ecosystem, we studied the evolution and variability in chlorophyll a, from in situ and remote sensing data, combined with information on phytoplankton and bacterial community structure during and after the eruptive episode. Remote sensing and in situ data revealed that no phytoplankton bloom took place neither during nor after the eruptive episode. We hypothesize that the fertilization by the volcano did not have an effect in the phytoplankton community due to the strong dilution of macro- and micronutrients caused by the efficient renewal of ambient waters in the zone.
Collapse
|
4
|
Uria N, Ferrera I, Mas J. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol 2017; 17:208. [PMID: 29047333 PMCID: PMC5648455 DOI: 10.1186/s12866-017-1115-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial fuel cells (MFCs) operating with complex microbial communities have been extensively reported in the past, and are commonly used in applications such as wastewater treatment, bioremediation or in-situ powering of environmental sensors. However, our knowledge on how the composition of the microbial community and the different types of electron transfer to the anode affect the performance of these bioelectrochemical systems is far from complete. To fill this gap of knowledge, we designed a set of three MFCs with different constrains limiting direct and mediated electron transfer to the anode. RESULTS The results obtained indicate that MFCs with a naked anode on which a biofilm was allowed unrestricted development (MFC-A) had the most diverse archaeal and bacterial community, and offered the best performance. In this MFC both, direct and mediated electron transfer, occurred simultaneously, but direct electron transfer was the predominant mechanism. Microbial fuel cells in which the anode was enclosed in a dialysis membrane and biofilm was not allowed to develop (MFC-D), had a much lower power output (about 60% lower), and a prevalence of dissolved redox species that acted as putative electron shuttles. In the anolyte of this MFC, Arcobacter and Methanosaeta were the prevalent bacteria and archaea respectively. In the third MFC, in which the anode had been covered by a cation selective nafion membrane (MFC-N), power output decreased a further 5% (95% less than MFC-A). In this MFC, conventional organic electron shuttles could not operate and the low power output obtained was presumably attributed to fermentation end-products produced by some of the organisms present in the anolyte, probably Pseudomonas or Methanosaeta. CONCLUSION Electron transfer mechanisms have an impact on the development of different microbial communities and in turn on MFC performance. Although a stable current was achieved in all cases, direct electron transfer MFC showed the best performance concluding that biofilms are the major contributors to current production in MFCs. Characterization of the complex microbial assemblages in these systems may help us to unveil new electrogenic microorganisms and improve our understanding on their role to the functioning of MFCs.
Collapse
Affiliation(s)
- Naroa Uria
- Departament de Micro-Nano Sistemes, Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - Jordi Mas
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
Kirchman DL. Marine microbial ecology: Life after volcanic destruction. Nat Ecol Evol 2017; 1:157. [DOI: 10.1038/s41559-017-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Danovaro R, Canals M, Tangherlini M, Dell'Anno A, Gambi C, Lastras G, Amblas D, Sanchez-Vidal A, Frigola J, Calafat AM, Pedrosa-Pàmies R, Rivera J, Rayo X, Corinaldesi C. A submarine volcanic eruption leads to a novel microbial habitat. Nat Ecol Evol 2017; 1:144. [PMID: 28812643 DOI: 10.1038/s41559-017-0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022]
Abstract
Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.,Stazione Zoologica Anton Dohrn, Naples, Naples 80121, Italy
| | - Miquel Canals
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - Michael Tangherlini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Cristina Gambi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Galderic Lastras
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - David Amblas
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain.,Scott Polar Research Institute, Lensfield Road, Cambridge, UK
| | - Anna Sanchez-Vidal
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - Jaime Frigola
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - Antoni M Calafat
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - Rut Pedrosa-Pàmies
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - Jesus Rivera
- Instituto Español de Oceanografía, Corazón de María 8, Madrid E-28002, Spain
| | - Xavier Rayo
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain
| | - Cinzia Corinaldesi
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|
7
|
Guerrero-Feijóo E, Nieto-Cid M, Sintes E, Dobal-Amador V, Hernando-Morales V, Álvarez M, Balagué V, Varela MM. Optical properties of dissolved organic matter relate to different depth-specific patterns of archaeal and bacterial community structure in the North Atlantic Ocean. FEMS Microbiol Ecol 2016; 93:fiw224. [PMID: 27789536 DOI: 10.1093/femsec/fiw224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/19/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic abundance, activity and community composition were studied in the euphotic, intermediate and deep waters off the Galician coast (NW Iberian margin) in relation to the optical characterization of dissolved organic matter (DOM). Microbial (archaeal and bacterial) community structure was vertically stratified. Among the Archaea, Euryarchaeota, especially Thermoplasmata, was dominant in the intermediate waters and decreased with depth, whereas marine Thaumarchaeota, especially Marine Group I, was the most abundant archaeal phylum in the deeper layers. The bacterial community was dominated by Proteobacteria through the whole water column. However, Cyanobacteria and Bacteroidetes occurrence was considerable in the upper layer and SAR202 was dominant in deep waters. Microbial composition and abundance were not shaped by the quantity of dissolved organic carbon, but instead they revealed a strong connection with the DOM quality. Archaeal communities were mainly related to the fluorescence of DOM (which indicates respiration of labile DOM and generation of refractory subproducts), while bacterial communities were mainly linked to the aromaticity/age of the DOM produced along the water column. Taken together, our results indicate that the microbial community composition is associated with the DOM composition of the water masses, suggesting that distinct microbial taxa have the potential to use and/or produce specific DOM compounds.
Collapse
Affiliation(s)
- Elisa Guerrero-Feijóo
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo. 130, 15080, A Coruña, Spain
| | - Mar Nieto-Cid
- IIM-CSIC, Instituto de Investigacións Mariñas, 36208 Vigo, Spain
| | - Eva Sintes
- Department of Limnology and Bio-Oceanography, University of Vienna, A-1090, Vienna, Austria
| | - Vladimir Dobal-Amador
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo. 130, 15080, A Coruña, Spain.,Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, 36200 Vigo, Spain
| | | | - Marta Álvarez
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo. 130, 15080, A Coruña, Spain
| | - Vanessa Balagué
- ICM-CSIC, Institut de Ciències del Mar, 08003, Barcelona, Spain
| | - Marta M Varela
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo. 130, 15080, A Coruña, Spain
| |
Collapse
|
8
|
Gasol JM, Morán XAG. Flow Cytometric Determination of Microbial Abundances and Its Use to Obtain Indices of Community Structure and Relative Activity. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|