1
|
Zhao L, Zhang X, Birmann BM, Danford CJ, Lai M, Simon TG, Chan AT, Giovannucci EL, Ngo L, Libermann TA, Zhang X. Pre-diagnostic plasma inflammatory proteins and risk of hepatocellular carcinoma in three population-based cohort studies from the United States and the United Kingdom. Int J Cancer 2024; 155:1593-1603. [PMID: 38861327 PMCID: PMC11537828 DOI: 10.1002/ijc.35054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Previous studies suggest a role for inflammation in hepatocarcinogenesis. However, no study has comprehensively evaluated associations between circulating inflammatory proteins and risk of hepatocellular carcinoma (HCC) among the general population. We conducted a nested case-control study in the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) with 56 pairs of incident HCC cases and controls. External validation was performed in the UK Biobank (34 HCC cases and 48,471 non-HCC controls). Inflammatory protein levels were measured in pre-diagnostic plasma using the Olink® Inflammation Panel. We used conditional logistic regression to calculate multivariable odds ratios (ORs) with 95% confidence intervals (CIs) for associations between a 1-standard deviation (SD) increase in biomarker levels and HCC risk, considering a statistically significant threshold of false discovery rate (FDR)-adjusted p < .05. In the NHS/HPFS, among 70 analyzed proteins with call rates >80%, 15 proteins had significant associations with HCC risk (pFDR < .05). Two proteins (stem cell factor, OR per SD = 0.31, 95% CI = 0.16-0.58; tumor necrosis factor superfamily member 12, OR per SD = 0.51, 95% CI = 0.31-0.85) were inversely associated whereas 13 proteins were positively associated with risk of HCC; positive ORs per SD ranged from 1.73 for interleukin (IL)-10 to 2.35 for C-C motif chemokine-19. A total of 11 proteins were further replicated in the UK Biobank. Seven of the eight selected positively associated proteins also showed positive associations with HCC risk by enzyme-linked immunosorbent assay, with ORs ranging from 1.56 for IL-10 to 2.72 for hepatocyte growth factor. More studies are warranted to further investigate the roles of these observed inflammatory proteins in HCC etiology, early detection, risk stratification, and disease treatment.
Collapse
Affiliation(s)
- Longgang Zhao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tracey G. Simon
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Yale University School of Nursing, Orange, Connecticut, USA
| |
Collapse
|
2
|
Gunes M, Rosen ST, Shachar I, Gunes EG. Signaling lymphocytic activation molecule family receptors as potential immune therapeutic targets in solid tumors. Front Immunol 2024; 15:1297473. [PMID: 38476238 PMCID: PMC10927787 DOI: 10.3389/fimmu.2024.1297473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, cancer immunotherapy has revolutionized cancer treatment. Various forms of immunotherapy have a manageable safety profile and result in prolongation of overall survival in patients with solid tumors, but only in a proportion of patients. Various factors in the tumor microenvironment play critical roles and may be responsible for this lack of therapeutic response. Signaling lymphocytic activation molecule family (SLAMF) members are increasingly being studied as factors impacting the tumor immune microenvironment. SLAMF members consist of nine receptors mainly expressed in immune cells. However, SLAMF receptors have also been detected in cancer cells, and they may be involved in a spectrum of anti-tumor immune responses. Here, we review the current knowledge of the expression of SLAMF receptors in solid tumors and tumor-infiltrating immune cells and their association with patient outcomes. Furthermore, we discuss the therapeutic potential of targeting SLAMF receptors to improve outcomes of cancer therapy in solid tumors. We believe the research on SLAMF receptor-targeted strategies may enhance anti-cancer immunity in patients with solid tumors and improve clinical outcomes.
Collapse
Affiliation(s)
- Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
| | - Steven T. Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
| | - Idit Shachar
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - E. Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
- Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA, United States
| |
Collapse
|
3
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Viral Membrane Fusion Proteins and RNA Sorting Mechanisms for the Molecular Delivery by Exosomes. Cells 2021; 10:cells10113043. [PMID: 34831268 PMCID: PMC8622164 DOI: 10.3390/cells10113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.
Collapse
|
5
|
Chen Q, Qiu B, Zeng X, Hu L, Huang D, Chen K, Qiu X. Identification of a tumor microenvironment-related gene signature to improve the prediction of cervical cancer prognosis. Cancer Cell Int 2021; 21:182. [PMID: 33766042 PMCID: PMC7992856 DOI: 10.1186/s12935-021-01867-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have found that the microenvironment of cervical cancer (CESC) affects the progression and treatment of this disease. Thus, we constructed a multigene model to assess the survival of patients with cervical cancer. Methods We scored 307 CESC samples from The Cancer Genome Atlas (TCGA) and divided them into high and low matrix and immune scores using the ESTIMATE algorithm for differential gene analysis. Cervical cancer patients were randomly divided into a training group, testing group and combined group. The multigene signature prognostic model was constructed by Cox analyses. Multivariate Cox analysis was applied to evaluate the significance of the multigene signature for cervical cancer prognosis. Prognosis was assessed by Kaplan–Meier curves comparing the different groups, and the accuracy of the prognostic model was analyzed by receiver operating characteristic-area under the curve (ROC-AUC) analysis and calibration curve. The Tumor Immune Estimation Resource (TIMER) database was used to analyze the relationship between the multigene signature and immune cell infiltration. Results We obtained 420 differentially expressed genes in the tumor microenvironment from 307 patients with cervical cancer. A three-gene signature (SLAMF1, CD27, SELL) model related to the tumor microenvironment was constructed to assess patient survival. Kaplan–Meier analysis showed that patients with high risk scores had a poor prognosis. The ROC-AUC value indicated that the model was an accurate predictor of cervical cancer prognosis. Multivariate cox analysis showed the three-gene signature to be an independent risk factor for the prognosis of cervical cancer. A nomogram combining the three-gene signature and clinical features was constructed, and calibration plots showed that the nomogram resulted in an accurate prognosis for patients. The three-gene signature was associated with T stage, M stage and degree of immune infiltration in patients with cervical cancer. Conclusions This research suggests that the developed three-gene signature may be applied as a biomarker to predict the prognosis of and personalized therapy for CESC.
Collapse
Affiliation(s)
- Qian Chen
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.,Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bingqing Qiu
- Department of Nuclear Medicine, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lang Hu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Dongping Huang
- Department of Nutrition, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
6
|
Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin Immunol 2018; 204:14-22. [PMID: 30616923 DOI: 10.1016/j.clim.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Inna Gordiienko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Larysa Shlapatska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa Kovalevska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svetlana P Sidorenko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
7
|
Fouquet G, Marcq I, Debuysscher V, Bayry J, Rabbind Singh A, Bengrine A, Nguyen-Khac E, Naassila M, Bouhlal H. Signaling lymphocytic activation molecules Slam and cancers: friends or foes? Oncotarget 2018; 9:16248-16262. [PMID: 29662641 PMCID: PMC5882332 DOI: 10.18632/oncotarget.24575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/03/2017] [Indexed: 01/01/2023] Open
Abstract
Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.
Collapse
Affiliation(s)
- Gregory Fouquet
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Ingrid Marcq
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Véronique Debuysscher
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Jagadeesh Bayry
- INSERM UMRS 1138, Centre de Recherche des Cordeliers-Paris, Paris, France
| | | | | | - Eric Nguyen-Khac
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France.,Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mickael Naassila
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Hicham Bouhlal
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| |
Collapse
|
8
|
Yurchenko M, Skjesol A, Ryan L, Richard GM, Kandasamy RK, Wang N, Terhorst C, Husebye H, Espevik T. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol 2018; 217:1411-1429. [PMID: 29440514 PMCID: PMC5881497 DOI: 10.1083/jcb.201707027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Yurchenko et al. discover that the Ig-like receptor molecule SLAMF1 enhances production of type I interferon induced by Gram-negative bacteria through modulation of MyD88-independent TLR4 signaling. This makes SLAMF1 a potential target for controlling inflammatory responses against Gram-negative bacteria. Signaling lymphocytic activation molecule family 1 (SLAMF1) is an Ig-like receptor and a costimulatory molecule that initiates signal transduction networks in a variety of immune cells. In this study, we report that SLAMF1 is required for Toll-like receptor 4 (TLR4)-mediated induction of interferon β (IFNβ) and for killing of Gram-negative bacteria by human macrophages. We found that SLAMF1 controls trafficking of the Toll receptor–associated molecule (TRAM) from the endocytic recycling compartment (ERC) to Escherichia coli phagosomes. In resting macrophages, SLAMF1 is localized to ERC, but upon addition of E. coli, it is trafficked together with TRAM from ERC to E. coli phagosomes in a Rab11-dependent manner. We found that endogenous SLAMF1 protein interacted with TRAM and defined key interaction domains as amino acids 68 to 95 of TRAM as well as 15 C-terminal amino acids of SLAMF1. Interestingly, the SLAMF1–TRAM interaction was observed for human but not mouse proteins. Overall, our observations suggest that SLAMF1 is a new target for modulation of TLR4–TRAM–TRIF inflammatory signaling in human cells.
Collapse
Affiliation(s)
- Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway .,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Astrid Skjesol
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gabriel Mary Richard
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard Kumaran Kandasamy
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| |
Collapse
|
9
|
The interplay of CD150 and CD180 receptor pathways contribute to the pathobiology of chronic lymphocytic leukemia B cells by selective inhibition of Akt and MAPK signaling. PLoS One 2017; 12:e0185940. [PMID: 28982149 PMCID: PMC5628907 DOI: 10.1371/journal.pone.0185940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Cell surface expression of CD150 and CD180 receptors in chronic lymphocytic leukemia (CLL) associates with mutational IGHV status and favourable prognosis. Here we show a direct correlation between cell surface expression and colocalization of these receptors on CLL B cells. In the absence of CD150 and CD180 on the cell surface both receptors were expressed in the cytoplasm. The CD150 receptor was colocalized with markers of the endoplasmic reticulum, the Golgi apparatus and early endosomes. In contrast, CD180 was detected preferentially in early endosomes. Analysis of CD150 isoforms differential expression revealed that regardless of CD150 cell surface expression the mCD150 isoform with two ITSM signaling motifs was a predominant CD150 isoform in CLL B cells. The majority of CLL cases had significantly elevated expression level of the soluble sCD150, moreover CLL B cells secrete this isoform. CD150 or CD180 crosslinking on CLL B cells alone led to activation of Akt, mTORC1, ERK1/2, p38MAPK and JNK1/2 networks. Both CD150 and CD180 target the translation machinery through mTOR independent as well as mTOR dependent pathways. Moreover, both these receptors transmit pro-survival signals via Akt-mediated inhibition of GSK3β and FOXO1/FOXO3a. Unexpectedly, coligation CD150 and CD180 receptors on CLL B cells led to mutual inhibition of the Akt and MAPK pathways. While CD150 and CD180 coligation resulted in reduced phosphorylation of Akt, ERK1/2, c-Jun, RSK, p70S6K, S6RP, and 4E-BP; it led to complete blocking of mTOR and p38MAPK phosphorylation. At the same time coligation of CD150 and CD40 receptors did not result in Akt and MAPK inhibition. This suggests that combination of signals via CD150 and CD180 leads to blocking of pro-survival pathways that may be a restraining factor for neoplastic CLL B cells propagation in more than 50% of CLL cases where these receptors are coexpressed.
Collapse
|
10
|
Schwartz AM, Putlyaeva LV, Covich M, Klepikova AV, Akulich KA, Vorontsov IE, Korneev KV, Dmitriev SE, Polanovsky OL, Sidorenko SP, Kulakovskiy IV, Kuprash DV. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1259-68. [PMID: 27424222 DOI: 10.1016/j.bbagrm.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.
Collapse
Affiliation(s)
- Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Milica Covich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|