1
|
Taleei T, Nazem-Zadeh MR, Amiri M, Keliris GA. EEG-based functional connectivity for tactile roughness discrimination. Cogn Neurodyn 2023; 17:921-940. [PMID: 37522039 PMCID: PMC10374498 DOI: 10.1007/s11571-022-09876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022] Open
Abstract
Tactile sensation and perception involve cooperation between different parts of the brain. Roughness discrimination is an important phase of texture recognition. In this study, we investigated how different roughness levels would influence the brain network characteristics. We recorded EEG signals from nine right-handed healthy subjects who underwent touching three surfaces with different levels of roughness. The experiment was separately repeated in 108 trials for each hand for both static and dynamic touch. For estimation of the functional connectivity between brain regions, the phase lag index method was employed. Frequency-specific connectivity patterns were observed in the ipsilateral and contralateral hemispheres to the hand of interest, for delta, theta, alpha, and beta frequency bands under the study. A number of connections were identified to be in charge of discrimination between surfaces in both alpha and beta frequency bands for the left hand in static touch and for the right hand in dynamic touch. In addition, common connections were determined in both hands for all three roughness in alpha band for static touch and in theta band for dynamic touch. The common connections were identified for the smooth surface in beta band for static touch and in delta and alpha bands for dynamic touch. As observed for static touch in alpha band and for dynamic touch in theta band, the number of common connections between the two hands was decreased by increasing the surface roughness. The results of this research would extend the current knowledge about tactile information processing in the brain. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09876-1.
Collapse
Affiliation(s)
- Tahereh Taleei
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
2
|
Underestimation in temporal numerosity judgments computationally explained by population coding model. Sci Rep 2022; 12:15632. [PMID: 36115877 PMCID: PMC9482646 DOI: 10.1038/s41598-022-19941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to judge numerosity is essential to an animal’s survival. Nevertheless, the number of signals presented in a sequence is often underestimated. We attempted to elucidate the mechanism for the underestimation by means of computational modeling based on population coding. In the model, the population of neurons which were selective to the logarithmic number of signals responded to sequential signals and the population activity was integrated by a temporal window. The total number of signals was decoded by a weighted average of the integrated activity. The model predicted well the general trends in the human data while the prediction was not fully sufficient for the novel aging effect wherein underestimation was significantly greater for the elderly than for the young in specific stimulus conditions. Barring the aging effect, we can conclude that humans judge the number of signals in sequence by temporally integrating the neural representations of numerosity.
Collapse
|
3
|
White PA. The extended present: an informational context for perception. Acta Psychol (Amst) 2021; 220:103403. [PMID: 34454251 DOI: 10.1016/j.actpsy.2021.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 01/29/2023] Open
Abstract
Several previous authors have proposed a kind of specious or subjective present moment that covers a few seconds of recent information. This article proposes a new hypothesis about the subjective present, renamed the extended present, defined not in terms of time covered but as a thematically connected information structure held in working memory and in transiently accessible form in long-term memory. The three key features of the extended present are that information in it is thematically connected, both internally and to current attended perceptual input, it is organised in a hierarchical structure, and all information in it is marked with temporal information, specifically ordinal and duration information. Temporal boundaries to the information structure are determined by hierarchical structure processing and by limits on processing and storage capacity. Supporting evidence for the importance of hierarchical structure analysis is found in the domains of music perception, speech and language processing, perception and production of goal-directed action, and exact arithmetical calculation. Temporal information marking is also discussed and a possible mechanism for representing ordinal and duration information on the time scale of the extended present is proposed. It is hypothesised that the extended present functions primarily as an informational context for making sense of current perceptual input, and as an enabler for perception and generation of complex structures and operations in language, action, music, exact calculation, and other domains.
Collapse
|
4
|
White PA. Is conscious perception a series of discrete temporal frames? Conscious Cogn 2018; 60:98-126. [PMID: 29549714 DOI: 10.1016/j.concog.2018.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
This paper reviews proposals that conscious perception consists, in whole or part, of successive discrete temporal frames on the sub-second time scale, each frame containing information registered as simultaneous or static. Although the idea of discrete frames in conscious perception cannot be regarded as falsified, there are many problems. Evidence does not consistently support any proposed duration or range of durations for frames. EEG waveforms provide evidence of periodicity in brain activity, but not necessarily in conscious perception. Temporal properties of perceptual processes are flexible in response to competing processing demands, which is hard to reconcile with the relative inflexibility of regular frames. There are also problems concerning the definition of frames, the need for informational connections between frames, the means by which boundaries between frames are established, and the apparent requirement for a storage buffer for information awaiting entry to the next frame.
Collapse
Affiliation(s)
- Peter A White
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3YG, Wales, UK.
| |
Collapse
|
5
|
Takahashi T, Kitazawa S. Modulation of Illusory Reversal in Tactile Temporal Order by the Phase of Posterior α Rhythm. J Neurosci 2017; 37:5298-5308. [PMID: 28450538 PMCID: PMC6596459 DOI: 10.1523/jneurosci.2899-15.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 11/21/2022] Open
Abstract
The subjective temporal order of tactile stimuli, delivered sequentially to each hand with an interval of 100-300 ms, is often inverted when the arms are crossed. Based on data from behavioral and neuroimaging studies, it has been proposed that the reversal is due to a conflict between anatomical and spatial representations of the tactile signal or to the production of an inverted apparent motion signal. Because the α rhythms, which consist of a few distinct components, reportedly modulate tactile perception and apparent motion and serve as a 10 Hz timer, we hypothesized that the illusory reversal would be regulated by some of the α rhythms. To test this hypothesis, we conducted magnetoencephalographic recordings in both male and female participants during the tactile temporal order judgment task. We decomposed the α rhythms into five independent components and discovered that the illusory reversal was modulated by the phase of one independent component with strong current sources near the parieto-occipital (PO) sulcus (peri-PO component). As expected, the estimated current sources distributed over the human MST implicated to represent tactile apparent motion, in addition to the intraparietal region implicated in mapping tactile signals in space. However, the strongest source was located in the precuneus that occupies a central hub region in the cortical networks and receives tactile inputs through a tecto-thalamic pathway. These results suggest that the peri-PO component plays an essential role in regulating tactile temporal perception by modulating the thalamic nuclei that interconnect the superior colliculus with the cortical networks.SIGNIFICANCE STATEMENT Despite a long-held hypothesis that the posterior α rhythm serves as a 10 Hz timer that regulates human temporal perception, the contribution of the α rhythms in temporal perception is still unclear. We examined how the α rhythms influence tactile temporal order judgment. Judgment reversal depended on the phase of one particular α rhythm with its source near the parieto-occipital sulcus. The peri-parieto-occipital α rhythm may play a crucial role in organizing tactile temporal perception.
Collapse
Affiliation(s)
- Toshimitsu Takahashi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan, and
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan,
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan, and
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, and Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Azañón E, Camacho K, Morales M, Longo MR. The Sensitive Period for Tactile Remapping Does Not Include Early Infancy. Child Dev 2017; 89:1394-1404. [PMID: 28452406 DOI: 10.1111/cdev.12813] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visual input during development seems crucial in tactile spatial perception, given that late, but not congenitally, blind people are impaired when skin-based and tactile external representations are in conflict (when crossing the limbs). To test whether there is a sensitive period during which visual input is necessary, 14 children (age = 7.95) and a teenager (LM; age = 17.38) deprived of early vision by cataracts, and whose sight was restored during the first 5 months and at age 7, respectively, were tested. Tactile localization with arms crossed and uncrossed was measured. Children showed a crossing effect indistinguishable from a control group (Ns = 28, age = 8.24), whereas LM showed no crossing effect (Ns controls = 14, age = 20.78). This demonstrates a sensitive period which, critically, does not include early infancy.
Collapse
|
7
|
Hao Q, Ora H, Ogawa KI, Ogata T, Miyake Y. Voluntary movement affects simultaneous perception of auditory and tactile stimuli presented to a non-moving body part. Sci Rep 2016; 6:33336. [PMID: 27622584 PMCID: PMC5020736 DOI: 10.1038/srep33336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/24/2016] [Indexed: 11/10/2022] Open
Abstract
The simultaneous perception of multimodal sensory information has a crucial role for effective reactions to the external environment. Voluntary movements are known to occasionally affect simultaneous perception of auditory and tactile stimuli presented to the moving body part. However, little is known about spatial limits on the effect of voluntary movements on simultaneous perception, especially when tactile stimuli are presented to a non-moving body part. We examined the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli presented to the non-moving body part. We considered the possible mechanism using a temporal order judgement task under three experimental conditions: voluntary movement, where participants voluntarily moved their right index finger and judged the temporal order of auditory and tactile stimuli presented to their non-moving left index finger; passive movement; and no movement. During voluntary movement, the auditory stimulus needed to be presented before the tactile stimulus so that they were perceived as occurring simultaneously. This subjective simultaneity differed significantly from the passive movement and no movement conditions. This finding indicates that the effect of voluntary movement on simultaneous perception of auditory and tactile stimuli extends to the non-moving body part.
Collapse
Affiliation(s)
- Qiao Hao
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroki Ora
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichiro Ogawa
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Taiki Ogata
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan.,Research into Artifacts, Center for Engineering (RACE), the University of Tokyo, Kashiwa, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
8
|
Badde S, Heed T. Towards explaining spatial touch perception: Weighted integration of multiple location codes. Cogn Neuropsychol 2016; 33:26-47. [PMID: 27327353 PMCID: PMC4975087 DOI: 10.1080/02643294.2016.1168791] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Touch is bound to the skin – that is, to the boundaries of the body. Yet, the activity of neurons in primary somatosensory cortex just mirrors the spatial distribution of the sensors across the skin. To determine the location of a tactile stimulus on the body, the body's spatial layout must be considered. Moreover, to relate touch to the external world, body posture has to be evaluated. In this review, we argue that posture is incorporated, by default, for any tactile stimulus. However, the relevance of the external location and, thus, its expression in behaviour, depends on various sensory and cognitive factors. Together, these factors imply that an external representation of touch dominates over the skin-based, anatomical when our focus is on the world rather than on our own body. We conclude that touch localization is a reconstructive process that is adjusted to the context while maintaining all available spatial information.
Collapse
Affiliation(s)
- Stephanie Badde
- a Department of Psychology , New York University , New York , NY , USA
| | - Tobias Heed
- b Faculty of Psychology and Human Movement Science , University of Hamburg , Hamburg , Germany
| |
Collapse
|
9
|
Feher da Silva C, Morgero KCS, Mota AM, Piemonte MEP, Baldo MVC. Aging and Parkinson's disease as functional models of temporal order perception. Neuropsychologia 2015; 78:1-9. [DOI: 10.1016/j.neuropsychologia.2015.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
|
10
|
Hao Q, Ogata T, Ogawa KI, Kwon J, Miyake Y. The simultaneous perception of auditory-tactile stimuli in voluntary movement. Front Psychol 2015; 6:1429. [PMID: 26441799 PMCID: PMC4585164 DOI: 10.3389/fpsyg.2015.01429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
The simultaneous perception of multimodal information in the environment during voluntary movement is very important for effective reactions to the environment. Previous studies have found that voluntary movement affects the simultaneous perception of auditory and tactile stimuli. However, the results of these experiments are not completely consistent, and the differences may be attributable to methodological differences in the previous studies. In this study, we investigated the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli using a temporal order judgment task with voluntary movement, involuntary movement, and no movement. To eliminate the potential effect of stimulus predictability and the effect of spatial information associated with large-scale movement in the previous studies, we randomized the interval between the start of movement and the first stimulus, and used small-scale movement. As a result, the point of subjective simultaneity (PSS) during voluntary movement shifted from the tactile stimulus being first during involuntary movement or no movement to the auditory stimulus being first. The just noticeable difference (JND), an indicator of temporal resolution, did not differ across the three conditions. These results indicate that voluntary movement itself affects the PSS in auditory–tactile simultaneous perception, but it does not influence the JND. In the discussion of these results, we suggest that simultaneous perception may be affected by the efference copy.
Collapse
Affiliation(s)
- Qiao Hao
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology Yokohama, Japan
| | - Taiki Ogata
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology Yokohama, Japan ; Research into Artifacts, Center for Engineering (RACE), The University of Tokyo Kashiwa, Japan
| | - Ken-Ichiro Ogawa
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology Yokohama, Japan
| | - Jinhwan Kwon
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology Yokohama, Japan
| | - Yoshihiro Miyake
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology Yokohama, Japan
| |
Collapse
|