1
|
Hallows WC, Skvorak K, Agard N, Kruse N, Zhang X, Zhu Y, Botham RC, Chng C, Shukla C, Lao J, Miller M, Sero A, Viduya J, Ismaili MHA, McCluskie K, Schiffmann R, Silverman AP, Shen JS, Huisman GW. Optimizing human α-galactosidase for treatment of Fabry disease. Sci Rep 2023; 13:4748. [PMID: 36959353 PMCID: PMC10036536 DOI: 10.1038/s41598-023-31777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA-/- podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
| | - Kristen Skvorak
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Nick Agard
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Nikki Kruse
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Xiyun Zhang
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Fornia BioSolutions Inc US, Hayward, CA, 94545, USA
| | - Yu Zhu
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Rachel C Botham
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Chinping Chng
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Charu Shukla
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Jessica Lao
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Octant, Emeryville, CA, 94608, USA
| | - Mathew Miller
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Antoinette Sero
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Judy Viduya
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Moulay Hicham Alaoui Ismaili
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Glycomine, San Mateo, CA, 94070, USA
| | - Kerryn McCluskie
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Glycomine, San Mateo, CA, 94070, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, 75246, USA
- 4D Molecular Therapeutics, Emeryville, CA, 94608, USA
| | - Adam P Silverman
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Jin-Song Shen
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, 75246, USA
- 4D Molecular Therapeutics, Emeryville, CA, 94608, USA
| | - Gjalt W Huisman
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| |
Collapse
|
2
|
Modrego A, Amaranto M, Godino A, Mendoza R, Barra JL, Corchero JL. Human α-Galactosidase A Mutants: Priceless Tools to Develop Novel Therapies for Fabry Disease. Int J Mol Sci 2021; 22:6518. [PMID: 34204583 PMCID: PMC8234732 DOI: 10.3390/ijms22126518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity. Currently, FD is treated by enzyme replacement therapy (ERT) or pharmacological chaperone therapy (PCT). However, as both approaches show specific drawbacks, new strategies (such as new forms of ERT, organ/cell transplant, substrate reduction therapy, or gene therapy) are under extensive study. In this review, we summarize GLA mutants described so far and discuss their putative application for the development of novel drugs for the treatment of FD. Unfavorable mutants with lower activities and stabilities than wild-type enzymes could serve as tools for the development of new pharmacological chaperones. On the other hand, GLA mutants showing improved enzymatic activity have been identified and produced in vitro. Such mutants could overcome several complications associated with current ERT, as lower-dose infusions of these mutants could achieve a therapeutic effect equivalent to that of the wild-type enzyme.
Collapse
Affiliation(s)
- Andrea Modrego
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.M.); (R.M.)
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Marilla Amaranto
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina; (M.A.); (A.G.); (J.L.B.)
| | - Agustina Godino
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina; (M.A.); (A.G.); (J.L.B.)
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.M.); (R.M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Monforte de Lemos 3–5, 28029 Madrid, Spain
| | - José Luis Barra
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina; (M.A.); (A.G.); (J.L.B.)
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.M.); (R.M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Monforte de Lemos 3–5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Abasolo I, Seras-Franzoso J, Moltó-Abad M, Díaz-Riascos V, Corchero JL, Pintos-Morell G, Schwartz S. Nanotechnology-based approaches for treating lysosomal storage disorders, a focus on Fabry disease. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1684. [PMID: 33314628 DOI: 10.1002/wnan.1684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Lysosomal storage disorders (LSDs) are a group of rare diseases in which the defect of a lysosomal protein results in a pathogenic accumulation of nonmetabolized products within the cells. The main treatment for LSDs is enzyme replacement therapy (ERT), consisting in the exogenous administration a recombinant protein to replace the defective one. Although several diseases such as Gaucher, Fabry, and Pompe are treated following this approach, ERT is limited to LSDs without severe neuronal affectation because recombinant enzymes do not cross the blood-brain barrier. Moreover, ERT shows additional drawbacks, including enzyme low half-life, poor bioavailability, and immunogenic responses. In this scenario, nanotechnology-based drug delivery systems (DDS) have been proposed as solution to overcome these limitations and improve the efficacy of ERT. The present review summarizes distinct approaches followed by our group and collaborators on the use of DDS for restoring lysosomal enzymes in disease-affected cells. During the last decade, we have been exploring different synthetic nanoparticles, from electrolytic complexes, to liposomes and aggresomes, for the delivery of α-galactosidase A (GLA) enzyme. Studies were mainly conducted on Fabry disease models, but results can be also extrapolated to other LSDs, as well as to other diseases treated with alternative therapeutic proteins. The advantages and disadvantages of different DDS, the difficulties from working with very labile and highly glycosylated enzymes and the relevance of using appropriate targeting moieties is thoroughly discussed. Finally, the use of natural DDS, namely extracellular vesicles (EVs) is also introduced. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Ibane Abasolo
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Joaquin Seras-Franzoso
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marc Moltó-Abad
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Division of Rare Diseases, Reference Center for Hereditary Metabolic Disorders (CSUR, XUEC, MetabERN, and CIBER-ER), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Vanessa Díaz-Riascos
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José Luis Corchero
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina (IBB) and Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Guillem Pintos-Morell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Division of Rare Diseases, Reference Center for Hereditary Metabolic Disorders (CSUR, XUEC, MetabERN, and CIBER-ER), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Simó Schwartz
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|