1
|
Limbal epithelial stem cell sheets from young donors have better regenerative potential. Sci Rep 2022; 12:14191. [PMID: 35986035 PMCID: PMC9391416 DOI: 10.1038/s41598-022-17821-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate the stemness of limbal epithelial stem cell sheets in relation to the donor’s age. Human limbal explants from cadaveric donors were set on human amniotic membrane scaffolds with the xeno-free medium. We evaluated limbal epithelial sheet size, expression of stem/progenitor cell markers, and colony formation efficiency from donors of different age groups (age ≤ 45, age 45–65, and age > 65). Expression of the proliferation marker Ki67, stem/progenitor cell markers p63α and ABCG2, cornea specific marker PANCK, and differentiation marker CK12 were evaluated. To determine the effect of donor age on the storage period of limbal explant sheets, the limbal explant outgrowth sheets were stored in 4 °C for 2 days and analyzed for JC-1, p63α, and PANCK with FACS on each day. From days 6 to 12, the outgrowth area of the limbal epithelial stem cell sheet was significantly larger in the age ≤ 45 groups (296 ± 54.7 mm2, day 9) compared to the other two age groups [age 45–65 group (278 ± 62.6 mm2), age > 65 group (257 ± 44.0 mm2), day 9] (p < 0.01). In terms of stemness, outgrowth cells from aged donors (age > 65) showed lower expression of stem/progenitor cell markers p63α and ABCG2 and decreased CFE compared to the other two groups. There were significantly more p63α+ cells in outgrowth cells in the age ≤ 45 group (18.2 ± 3.6%) compared to the age > 65 group (14.1 ± 4.6%; p < 0.01). Limbal explant outgrowth sheet on the age ≤ 45 group (32.7 ± 7.5%) had higher percentages of cells resisting staining by JC-1 compared with sheets under the age > 65 groups (25.7 ± 7.1%, p < 0.01) (JC-1low). Cells from the age ≤ 45 group showed a higher clonogenic capacity than those from the other two age groups (45 < Age ≤ 65 CFE ratio = 0.7 ± 0.16, p < 0.01; 65 < Age CFE ratio = 0.3 ± 0.06, p < 0.01, vs. Age ≤ 45). In the age > 65 group, positive cells of p63α on D0, 1, and 2 were significantly lower compared to those in the age ≤ 45 group on the storage period (p < 0.01, respectively). Our results imply that donors younger than 65 years of age are a better source of limbal epithelial stem cell sheet generation with high regeneration potential.
Collapse
|
2
|
Trosan P, Cabral JV, Smeringaiova I, Studeny P, Jirsova K. Interleukin-13 increases the stemness of limbal epithelial stem cells cultures. PLoS One 2022; 17:e0272081. [PMID: 35917378 PMCID: PMC9345474 DOI: 10.1371/journal.pone.0272081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to determine the effect of interleukin-13 (IL13) on the stemness, differentiation, proliferation, clonogenicity, and morphology of cultured limbal epithelial cells (LECs). Human limbal explants were used to culture LECs up to the second passage (P0-P2) with or without IL13 (IL13+ and IL13-, respectively). Cells were analyzed by qPCR (for the expression of ΔNp63α, BMI-1, keratin (K) 3, K7, K12, K14, K17, mucin 4, and MKI67) and immunofluorescence staining for p63α. The clonogenic ability was determined by colony-forming assay (CFA), and their metabolic activity was measured by WST-1 assay. The results of the CFA showed a significantly increased clonogenic ability in P1 and P2 cultures when LECs were cultured with IL13. In addition, the expression of putative stem cell markers (ΔNp63α, K14, and K17) was significantly higher in all IL13+ cultures compared to IL13-. Similarly, immunofluorescence analysis showed a significantly higher percentage of p63α positive cells in P2 cultures with IL13 than without it. LECs cultures without IL13 lost their cuboidal morphology with a high nucleocytoplasmic ratio after P1. The use of IL13 also led to significantly higher proliferation in P2, which can be reflected by a higher ability to reach confluence in P2 cultures. On the other hand, IL13 had no effect on corneal epithelial cell differentiation (K3 and K12 expression), and the expression of the conjunctival marker K7 significantly increased in all IL13+ cultures compared to the respective cell culture without IL13. This study showed that IL13 enhanced the stemness of LECs by increasing the clonogenicity and the expression of putative stem cell markers of LECs while maintaining their stem cell morphology. We established IL13 as a culture supplement for LESCs, which increases their stemness potential in culture, even after the second passage, and may lead to the greater success of LESCs transplantation in patients with LSCD.
Collapse
Affiliation(s)
- Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
- * E-mail:
| | - Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of 3 Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Torsahakul C, Israsena N, Khramchantuk S, Ratanavaraporn J, Dhitavat S, Rodprasert W, Nantavisai S, Sawangmake C. Bio-fabrication of stem-cell-incorporated corneal epithelial and stromal equivalents from silk fibroin and gelatin-based biomaterial for canine corneal regeneration. PLoS One 2022; 17:e0263141. [PMID: 35120168 PMCID: PMC8815981 DOI: 10.1371/journal.pone.0263141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 01/15/2023] Open
Abstract
Corneal grafts are the imperative clinical treatment for canine corneal blindness. To serve the growing demand, this study aimed to generate tissue-engineered canine cornea in part of the corneal epithelium and underlying stroma based on canine limbal epithelial stem cells (cLESCs) seeded silk fibroin/gelatin (SF/G) film and canine corneal stromal stem cells (cCSSCs) seeded SF/G scaffold, respectively. Both cell types were successfully isolated by collagenase I. SF/G corneal films and stromal scaffolds served as the prospective substrates for cLESCs and cCSSCs by promoting cell adhesion, cell viability, and cell proliferation. The results revealed the upregulation of tumor protein P63 (P63) and ATP-binding cassette super-family G member 2 (Abcg2) of cLESCs as well as Keratocan (Kera), Lumican (Lum), aldehyde dehydrogenase 3 family member A1 (Aldh3a1) and Aquaporin 1 (Aqp1) of differentiated keratocytes. Moreover, immunohistochemistry illustrated the positive staining of tumor protein P63 (P63), aldehyde dehydrogenase 3 family member A1 (Aldh3a1), lumican (Lum) and collagen I (Col-I), which are considerable for native cornea. This study manifested a feasible platform to construct tissue-engineered canine cornea for functional grafts and positively contributed to the body of knowledge related to canine corneal stem cells.
Collapse
Affiliation(s)
- Chutirat Torsahakul
- Graduate program in Veterinary Bioscience, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Khramchantuk
- Excellence Center for Stem Cell and Cell Therapy, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Juthamas Ratanavaraporn
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sirakarnt Dhitavat
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Nantavisai
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Khan AZ, Utheim TP, Jackson CJ, Tønseth KA, Eidet JR. Concise Review: Considering Optimal Temperature for Short-Term Storage of Epithelial Cells. Front Med (Lausanne) 2021; 8:686774. [PMID: 34485330 PMCID: PMC8416270 DOI: 10.3389/fmed.2021.686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Transplantation of novel tissue-engineered products using cultured epithelial cells is gaining significant interest. While such treatments can readily be provided at centralized medical centers, delivery to patients at geographically remote locations requires the establishment of suitable storage protocols. One important aspect of storage technology is temperature. This paper reviews storage temperature for above-freezing point storage of human epithelial cells for regenerative medicine purposes. The literature search uncovered publications on epidermal cells, retinal pigment epithelial cells, conjunctival epithelial cells, corneal/limbal epithelial cells, oral keratinocytes, and seminiferous epithelial cells. The following general patterns were noted: (1) Several studies across different cell types inclined toward 4 and 16°C being suitable short-term storage temperatures. Correspondingly, almost all studies investigating 37°C concluded that this storage temperature was suboptimal. (2) Cell death typically escalates rapidly following 7–10 days of storage. (3) The importance of the type of storage medium and its composition was highlighted by some of the studies; however, the relative importance of storage medium vs. storage temperature has not been investigated systematically. Although a direct comparison between the included investigations is not reasonable due to differences in cell types, storage media, and storage duration, this review provides an overview, summarizing the work carried out on each cell type during the past two decades.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Surgery, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Ifocus Eye Clinic, Haugesund, Norway
| | - Kim Alexander Tønseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Yazdani M, Shahdadfar A, Reppe S, Sapkota D, Vallenari EM, Lako M, Connon CJ, Figueiredo FC, Utheim TP. Response of human oral mucosal epithelial cells to different storage temperatures: A structural and transcriptional study. PLoS One 2020; 15:e0243914. [PMID: 33326470 PMCID: PMC7744058 DOI: 10.1371/journal.pone.0243914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Seeking to improve the access to regenerative medicine, this study investigated the structural and transcriptional effects of storage temperature on human oral mucosal epithelial cells (OMECs). METHODS Cells were stored at four different temperatures (4°C, 12°C, 24°C and 37°C) for two weeks. Then, the morphology, cell viability and differential gene expression were examined using light and scanning electron microscopy, trypan blue exclusion test and TaqMan gene expression array cards, respectively. RESULTS Cells stored at 4°C had the most similar morphology to non-stored controls with the highest viability rate (58%), whereas the 37°C group was most dissimilar with no living cells. The genes involved in stress-induced growth arrest (GADD45B) and cell proliferation inhibition (TGFB2) were upregulated at 12°C and 24°C. Upregulation was also observed in multifunctional genes responsible for morphology, growth, adhesion and motility such as EFEMP1 (12°C) and EPHA4 (4°C-24°C). Among genes used as differentiation markers, PPARA and TP53 (along with its associated gene CDKN1A) were downregulated in all temperature conditions, whereas KRT1 and KRT10 were either unchanged (4°C) or downregulated (24°C and 12°C; and 24°C, respectively), except for upregulation at 12°C for KRT1. CONCLUSIONS Cells stored at 12°C and 24°C were stressed, although the expression levels of some adhesion-, growth- and apoptosis-related genes were favourable. Collectively, this study suggests that 4°C is the optimal storage temperature for maintenance of structure, viability and function of OMECs after two weeks.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Evan M. Vallenari
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Che J. Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Francisco C. Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
6
|
Lee H, Lee JH, Hong S, Sunwoo JH, Kim HT, Kim ES, Kim JY, Hwang C, Tchah H. Transplantation of human corneal limbal epithelial cell sheet harvested on synthesized carboxymethyl cellulose and dopamine in a limbal stem cell deficiency. J Tissue Eng Regen Med 2020; 15:139-149. [PMID: 33210832 DOI: 10.1002/term.3159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the efficacy and safety of transplantation with human corneal limbal epithelial (HCLE) cell sheets cultured on carboxymethyl cellulose (CMC)-dopamine (DA)-coated substrates and harvested via enzymatic digestion of CMC with cellulase in a rabbit animal model of limbal stem cell deficiency (LSCD). Synthesized CMC-DA was pretreated onto the surface of culture plates. Then, HCLE cells were cultured on precoated CMC-DA and HCLE cell sheets were harvested using cellulase-containing cell culture medium. HCLE cell sheets were evaluated using a live/dead assay, histological examination, and immunofluorescence staining. For in vivo assessment, HCLE cell sheets were transplanted in a rabbit model of LSCD for 2 weeks to determine the effectiveness of the repair. Primary culture of HCLE cells stained positively for p63, cytokeratin (CK)15, and CK12. HCLE cell sheets were generated with a well-preserved morphology and transparency ranging in size from 15 to 19 mm after cellulase-assisted cell sheet generation. HCLE cell sheets uniformly stained positively for human mitochondria, p63, CK15, CK12, CK3/2p, and zonula occludens (ZO)-1. HCLE cell sheet transplantation in a rabbit model of LSCD improved the corneal opacity and neovascularization scores. Transplanted HCLE cell sheets stained positively for p63 and CK12. Transplantation of HCLE cell sheets harvested on CMC-DA coating combined with cellulase is a safe and efficient procedure for corneal epithelial regeneration in a rabbit model of LSCD. This system could enable a promising strategy to regenerate corneal epithelium by transplantation in ocular surface disorders.
Collapse
Affiliation(s)
- Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Hyuck Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Tae Kim
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Eun-Soon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Hernáez-Moya R, González S, Urkaregi A, Pijoan JI, Deng SX, Andollo N. Expansion of Human Limbal Epithelial Stem/Progenitor Cells Using Different Human Sera: A Multivariate Statistical Analysis. Int J Mol Sci 2020; 21:ijms21176132. [PMID: 32854428 PMCID: PMC7503296 DOI: 10.3390/ijms21176132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of human cultured limbal epithelial stem/progenitor cells (LESCs) has demonstrated to restore the integrity and functionality of the corneal surface in about 76% of patients with limbal stem cell deficiency. However, there are different protocols for the expansion of LESCs, and many of them use xenogeneic products, being a risk for the patients’ health. We compared the culture of limbal explants on the denuded amniotic membrane in the culture medium—supplemental hormone epithelial medium (SHEM)—supplemented with FBS or two differently produced human sera. Cell morphology, cell size, cell growth rate, and the expression level of differentiation and putative stem cell markers were examined. Several bioactive molecules were quantified in the human sera. In a novel approach, we performed a multivariate statistical analysis of data to investigate the culture factors, such as differently expressed molecules of human sera that specifically influence the cell phenotype. Our results showed that limbal cells cultured with human sera grew faster and contained similar amounts of small-sized cells, higher expression of the protein p63α, and lower of cytokeratin K12 than FBS cultures, thus, maintaining the stem/progenitor phenotype of LESCs. Furthermore, the multivariate analysis provided much data to better understand the obtaining of different cell phenotypes as a consequence of the use of different culture methodologies or different culture components.
Collapse
Affiliation(s)
- Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; (S.G.); (S.X.D.)
| | - Arantza Urkaregi
- Department of Applied Mathematics and Statistics and Operational Research, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
| | - Jose Ignacio Pijoan
- Clinical Epidemiology Unit, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
| | - Sophie X. Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; (S.G.); (S.X.D.)
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
- Correspondence: ; Tel.: +34-94-601-3295
| |
Collapse
|
8
|
Jackson CJ, Pasovic L, Raeder S, Sehic A, Roald B, de la Paz MF, Tønseth KA, Utheim TP. Optisol-GS Storage of Cultured Human Limbal Epithelial Cells at Ambient Temperature Is Superior to Hypothermic Storage. Curr Eye Res 2020; 45:1497-1503. [PMID: 32578462 DOI: 10.1080/02713683.2020.1770295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the feasibility of using Optisol-GS as a convenient, xenogeneic-free alternative for storage of cultured human limbal epithelial cells (HLECS) for use in treatment of limbal stem cell deficiency (LSCD). In the present study, we compared storage of cultured HLEC using the conventional hypothermic Optisol-GS storage method at 4°C versus storage at 23°C (room temperature). MATERIALS AND METHODS HLECs were cultured for three weeks on amniotic membrane (AM), transferred to polypropylene containers and stored in Optisol-GS for 4 days at 23°C and 4°C. A calcein-acetoxymethyl ester/ethidium homodimer-1 assay was used to assess viability. Morphology and phenotype were analyzed by light microscopy and immunohistochemistry, respectively. RESULTS Expression of stem cell and proliferation markers p63, ∆Np63α, ABCG2, K19, K3, Cx43, Ki67, and PCNA was maintained at pre-storage control levels during storage at 23°C. ABCG2 and PCNA expression were both significantly altered during storage at 4°C. HLEC cell sheet viability also significantly declined following storage at 4°C. HLEC sheets stored at 4°C demonstrated extensive detachment of basal cells from the AM in sharp contrast to storage at 23°C, where attachment to the AM was maintained throughout the storage period. CONCLUSIONS The present study demonstrates the feasibility of short-term storage of cultured HLECs in Optisol-GS, which offers a convenient standardized xenogeneic-free storage method. Storage temperature highly affected the results. Maintenance of cell viability, morphology and undifferentiated proliferative phenotype of cultured HLEC sheets favored storage at 23°C.
Collapse
Affiliation(s)
- Catherine Joan Jackson
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital , Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo , Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital , Oslo, Norway
| | - Lara Pasovic
- Department of Medical Biochemistry, Oslo University Hospital , Oslo, Norway
| | | | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo , Oslo, Norway
| | - Borghild Roald
- Department of Pathology, Oslo University Hospital , Oslo, Norway
| | - Maria F de la Paz
- Institut Universitari Barraquer, Universitat Autonoma de Barcelona , Barcelona, Spain
| | - Kim Alexsander Tønseth
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital , Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo, Norway
| | - Tor Paaske Utheim
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital , Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo , Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital , Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital , Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital , Arendal, Norway
| |
Collapse
|
9
|
Utheim OA, Pasovic L, Raeder S, Eidet JR, Fostad IG, Sehic A, Roald B, de la Paz MF, Lyberg T, Dartt DA, Utheim TP. Effects of explant size on epithelial outgrowth, thickness, stratification, ultrastructure and phenotype of cultured limbal epithelial cells. PLoS One 2019; 14:e0212524. [PMID: 30861002 PMCID: PMC6413940 DOI: 10.1371/journal.pone.0212524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose Transplantation of limbal stem cells is a promising therapy for limbal stem cell deficiency. Limbal cells can be harvested from either a healthy part of the patient’s eye or the eye of a donor. Small explants are less likely to inflict injury to the donor site. We investigated the effects of limbal explant size on multiple characteristics known to be important for transplant function. Methods Human limbal epithelial cells were expanded from large versus small explants (3 versus 1 mm of the corneal circumference) for 3 weeks and characterized by light microscopy, immunohistochemistry, and transmission electron microscopy. Epithelial thickness, stratification, outgrowth, ultrastructure and phenotype were assessed. Results Epithelial thickness and stratification were similar between the groups. Outgrowth size correlated positively with explant size (r = 0.37; P = 0.01), whereas fold growth correlated negatively with explant size (r = –0.55; P < 0.0001). Percentage of cells expressing the limbal epithelial cell marker K19 was higher in cells derived from large explants (99.1±1.2%) compared to cells derived from small explants (93.2±13.6%, P = 0.024). The percentage of cells expressing ABCG2, integrin β1, p63, and p63α that are markers suggestive of an immature phenotype; Keratin 3, Connexin 43, and E-Cadherin that are markers of differentiation; and Ki67 and PCNA that indicate cell proliferation were equal in both groups. Desmosome and hemidesmosome densities were equal between the groups. Conclusion For donor- and culture conditions used in the present study, large explants are preferable to small in terms of outgrowth area. As regards limbal epithelial cell thickness, stratification, mechanical strength, and the attainment of a predominantly immature phenotype, both large and small explants are sufficient.
Collapse
Affiliation(s)
- O. A. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian Dry Eye Clinic, Oslo, Norway
- * E-mail:
| | - L. Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - S. Raeder
- Norwegian Dry Eye Clinic, Oslo, Norway
| | - J. R. Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - I. G. Fostad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A. Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Maxillofacial surgery, Oslo University Hospital, Oslo, Norway
| | - B. Roald
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - M. F. de la Paz
- Institut Universitari Barraquer, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - T. Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - D. A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - T. P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Norwegian Dry Eye Clinic, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Maxillofacial surgery, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Soerlandet Hospital Arendal, Arendal, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of Southeast Norway, Kongsberg, Norway
| |
Collapse
|
10
|
Kitahata S, Tanaka Y, Hori K, Kime C, Sugita S, Ueda H, Takahashi M. Critical Functionality Effects from Storage Temperature on Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Suspensions. Sci Rep 2019; 9:2891. [PMID: 30814559 PMCID: PMC6393435 DOI: 10.1038/s41598-018-38065-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (hiPSC-RPE) cells suspension have the potential for regenerative treatment. However, practical regenerative applications with hiPSC-RPE cells require the development of simple and cost-effective non-freezing preservation methods. We investigated the effect of non-freezing temperatures on suspended hiPSC-RPE cells in various conditions and analysed mechanisms of cell death, anoikis, Rho GTPases, hypoxia, microtubule destruction, and cell metabolism. Cells stored at 37 °C had the lowest viability due to hypoxia from high cell metabolism and cell deposits, and cells preserved at 4 °C were damaged via microtubule fragility. Cell suspensions at 16 °C were optimal with drastically reduced apoptosis and negligible necrosis. Moreover, surviving cells proliferated and secreted key proteins normally, compared to cells without preservation. hiPSC-RPE cell suspensions were optimally preserved at 16 °C. Temperatures above or below the optimal temperature decreased cell viability significantly yet differentially by mechanisms of cell death, cellular metabolism, microtubule destruction, and oxygen tension, all relevant to cell conditions. Surviving cells are expected to function as grafts where high cell death is often reported. This study provides new insight into various non-freezing temperature effects on hiPSC-RPE cells that are highly relevant to clinical applications and may improve cooperation between laboratories and hospitals.
Collapse
Affiliation(s)
- Shohei Kitahata
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Application Biology and Regenerative Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yuji Tanaka
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan. .,Division of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Kanji Hori
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, 113-8431, Japan
| | - Cody Kime
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Kobe City Eye Hospital Research Center, Kobe, 650-0047, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Biosystems Dynamics Research, RIKEN, Kobe, 650-0047, Japan.,Kobe City Eye Hospital Research Center, Kobe, 650-0047, Japan
| |
Collapse
|
11
|
Hong S, Sunwoo JH, Kim JS, Tchah H, Hwang C. Conjugation of carboxymethyl cellulose and dopamine for cell sheet harvesting. Biomater Sci 2019; 7:139-148. [DOI: 10.1039/c8bm00971f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This manuscript focuses on the cell sheet preparation methodology with the conjugation of carboxymethylcellulose (CMC) and dopamine (DA).
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Jeong Hey Sunwoo
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Ji Seon Kim
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Hungwon Tchah
- Department of Convergence Medicine
- University of Ulsan College of Medicine & Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| |
Collapse
|
12
|
High Throughput Screening of Additives Using Factorial Design to Promote Survival of Stored Cultured Epithelial Sheets. Stem Cells Int 2018; 2018:6545876. [PMID: 30581473 PMCID: PMC6276401 DOI: 10.1155/2018/6545876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 02/03/2023] Open
Abstract
There is a need to optimize storage conditions to preserve cell characteristics during transport of cultured cell sheets from specialized culture units to distant hospitals. In this study, we aimed to explore a method to identify additives that diminish the decrease in the viability of stored undifferentiated epidermal cells using multifactorial design and an automated screening procedure. The cultured cells were stored for 7–11 days at 12°C in media supplemented with various additives. Effects were evaluated by calcein staining of live cells as well as morphology. Twenty-six additives were tested using (1) a two-level factorial design in which 10 additives were added or omitted in 64 different combinations and (2) a mixture design with 5 additives at 5 different concentrations in a total of 64 different mixtures. Automated microscopy and cell counting with Fiji enabled efficient processing of data. Significant regression models were identified by Design-Expert software. A calculated maximum increase of live cells to 37 ± 6% was achieved upon storage of cell sheets for 11 days in the presence of 6% glycerol. The beneficial effect of glycerol was shown for epidermal cell sheets from three different donors in two different storage media and with two different factorial designs. We have thus developed a high throughput screening system enabling robust assessment of live cells and identified glycerol as a beneficial additive that has a positive effect on epidermal cell sheet upon storage at 12°C. We believe this method could be of use in other cell culture optimization strategies where a large number of conditions are compared for their effect on cell viability or other quantifiable dependent variables.
Collapse
|
13
|
Lee HJ, Nam SM, Choi SK, Seo KY, Kim HO, Chung SH. Comparative study of substrate free and amniotic membrane scaffolds for cultivation of limbal epithelial sheet. Sci Rep 2018; 8:14628. [PMID: 30279555 PMCID: PMC6168574 DOI: 10.1038/s41598-018-32914-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Abstract
Transplantation of cultivated limbal epithelial transplantation has been proven to restore the corneal surface in limbal stem cell deficiency (LSCD). Here we comparatively investigated the optimized conditions and the efficiency of limbal epithelial sheet growth in three media conditions as well as with substrate free (transwell), human amniotic membrane (HAM) sutured onto transwell inserts (HAMTW), and HAM slide scaffold (HAMS). Outcomes evaluated were outgrowth sheet size from limbal explants, expression of stem/progenitor cell markers p63α, ABCG2 and CK15, and colony formation efficiency (CFE). Additionally, limbal epithelial sheets on HAMS were transplanted into corneas of LSCD rabbit models. Limbal epithelial sheets with 5% human AB serum showed the greatest increase in ABCG2 efflux activity (JC1low), p63α expression, and CFE compared in both conditions without HAM and with HAM, respectively. The outgrowth sheet size, cell yield, and Ki67 expression were increased in limbal epithelial sheets on HAMS compared to transwell and HAMTW. ABCG2 efflux activity, p63α and CK15 expressions, and CFE were also increased in limbal epithelial sheets on HAMS as well. In corneas of transplanted rabbit LSCD models, p63α expressions were noted in the basal layers and CK12 expressions were observed in superficial layers. Cultivation of limbal epithelial sheet on HAMS with xeno-free medium enhances the growth and stemness of limbal epithelial sheets.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Biochemical Engineering, Seoil University, Seoul, Korea
| | - Sang Min Nam
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary's Hospital, Incheon, Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
14
|
Utheim OA, Lyberg T, Eidet JR, Raeder S, Sehic A, Roald B, Messelt E, de la Paz MF, Dartt DA, Utheim TP. Effect of Transportation on Cultured Limbal Epithelial Sheets for Worldwide Treatment of Limbal Stem Cell Deficiency. Sci Rep 2018; 8:10502. [PMID: 30002380 PMCID: PMC6043629 DOI: 10.1038/s41598-018-28553-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/07/2018] [Indexed: 01/13/2023] Open
Abstract
Limbal stem cell deficiency can be treated with transplantation of cultured human limbal epithelial cells (LEC). It can be advantageous to produce LEC in centralized labs and thereafter ship them to eye clinics. The present study used transport simulations of LEC to determine if vigorous shaking during transport altered the viability, morphology and phenotype during a 4 day-long storage of LEC with a previously described serum-free storage method. Inserts with LEC cultured on amniotic membranes were sutured to caps inside air-tight containers with generous amounts of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered minimal essential medium (MEM). The containers were distributed among the following testing conditions: 6 hours with full containers, 36 hours with full containers, 36 hours with container three quarters full of medium, and 36 hours with container full of medium containing a shear-protecting agent (Pluronic-F68). Compared to stored, but non-transported controls, no statistically significant changes in viability and immunohistochemical staining were observed. The epithelial sheets remained intact. However, an air-liquid interface in the containers reduced the number of desmosomes and hemi-desmosomes compared to the controls. In conclusion, cultured LEC sheets appear to endure vigorous shaking for at least 36 hours if the container is full.
Collapse
Affiliation(s)
- O A Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.
- Norwegian Dry Eye Clinic, Oslo, Norway.
| | - T Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - J R Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - S Raeder
- Norwegian Dry Eye Clinic, Oslo, Norway
| | - A Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - B Roald
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - E Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - M F de la Paz
- Institut Universitari Barraquer, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - D A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Norwegian Dry Eye Clinic, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Brejchova K, Trosan P, Studeny P, Skalicka P, Utheim TP, Bednar J, Jirsova K. Characterization and comparison of human limbal explant cultures grown under defined and xeno-free conditions. Exp Eye Res 2018; 176:20-28. [PMID: 29928900 DOI: 10.1016/j.exer.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 01/19/2023]
Abstract
Human limbal epithelial cells (LECs) intended for treatment of limbal stem cell deficiency are commonly cultivated on a 3T3 feeder layer with complex culture medium supplemented with fetal bovine serum (FBS). However, FBS is a xenogeneic component containing poorly characterised constituents and exhibits quantitative and qualitative lot-to-lot variations. Human limbal explants were plated on untreated or fibrin coated plastic plates and cultured in two non-xenogeneic media (supplemented with either human serum or platelet lysate only). Our aim was to find out whether the characteristics of harvested LEC cultures are comparable to those of LEC cultivated in the gold standard - FBS-supplemented complex medium. The growth kinetics, cell proliferation, differentiation, stemness maintenance, apoptosis and contamination by other cell types were evaluated and compared among these conditions. In all of them LECs were successfully cultivated. Stemness was preserved in both xeno-free media. However, cells cultured with human serum on the fibrin-coated plates had the highest growth rate and cell proliferation and very low fibroblast-like cell contamination. These data suggest that xeno-free cell culture conditions can replace the traditional FBS-supplemented medium and thereby provide a safer protocol for ex vivo cultured limbal stem cell transplants.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Research Unit for Rare Diseases, Clinic of Paediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| | - Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of 3rd Medical Faculty and University Hospital Kralovske Vinohrady, Šrobárova 1150/50, 100 34 Prague 10, Czech Republic
| | - Pavlina Skalicka
- Research Unit for Rare Diseases, Clinic of Paediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; Department of Ophthalmology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, U nemocnice 499/2, 128 08 Prague 2, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, 0407 Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Kirkeveien 166, 0407 Oslo, Norway
| | - Jan Bednar
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic; Ophthalmology Department of 3rd Medical Faculty and University Hospital Kralovske Vinohrady, Šrobárova 1150/50, 100 34 Prague 10, Czech Republic
| |
Collapse
|
16
|
Utheim TP, Aass Utheim Ø, Salvanos P, Jackson CJ, Schrader S, Geerling G, Sehic A. Concise Review: Altered Versus Unaltered Amniotic Membrane as a Substrate for Limbal Epithelial Cells. Stem Cells Transl Med 2018; 7:415-427. [PMID: 29573222 PMCID: PMC5905228 DOI: 10.1002/sctm.17-0257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) can result from a variety of corneal disorders, including chemical and thermal burns, infections, and autoimmune diseases. The symptoms of LSCD may include irritation, epiphora, blepharospasms, photophobia, pain, and decreased vision. There are a number of treatment options, ranging from nonsurgical treatments for mild LSCD to various forms of surgery that involve different cell types cultured on various substrates. Ex vivo expansion of limbal epithelial cells (LEC) involves the culture of LEC harvested either from the patient, a living relative, or a cadaver on a substrate in the laboratory. Following the transfer of the cultured cell sheet onto the cornea of patients suffering from LSCD, a successful outcome can be expected in approximately three out of four patients. The phenotype of the cultured cells has proven to be a key predictor of success. The choice of culture substrate is known to affect the phenotype. Several studies have shown that amniotic membrane (AM) can be used as a substrate for expansion of LEC for subsequent transplantation in the treatment of LSCD. There is currently a debate over whether AM should be denuded (i.e., de-epithelialized) prior to LEC culture, or whether this substrate should remain intact. In addition, crosslinking of the AM has been used to increase the thermal and mechanical stability, optical transparency, and resistance to collagenase digestion of AM. In the present review, we discuss the rationale for using altered versus unaltered AM as a culture substrate for LEC. Stem Cells Translational Medicine 2018;7:415-427.
Collapse
Affiliation(s)
- Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University HospitalNorway
- Department of OphthalmologyDrammen Hospital, Vestre Viken Hospital TrustNorway
- Department of OphthalmologyStavanger University HospitalNorway
- Department of Clinical Medicine, Faculty of MedicineUniversity of BergenNorway
- Department of Oral Biology, Faculty of DentistryUniversity of OsloNorway
- Department of Plastic and Reconstructive SurgeryOslo University HospitalNorway
| | | | - Panagiotis Salvanos
- Department of OphthalmologyDrammen Hospital, Vestre Viken Hospital TrustNorway
| | - Catherine J. Jackson
- Department of Medical Biochemistry, Oslo University HospitalNorway
- Department of Oral Biology, Faculty of DentistryUniversity of OsloNorway
- Department of Plastic and Reconstructive SurgeryOslo University HospitalNorway
| | | | - Gerd Geerling
- Department of OphthalmologyUniversity of DüsseldorfGermany
| | - Amer Sehic
- Department of Oral Biology, Faculty of DentistryUniversity of OsloNorway
| |
Collapse
|
17
|
Corneal lenticule storage before reimplantation. Mol Vis 2017; 23:753-764. [PMID: 29123364 PMCID: PMC5661854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/25/2017] [Indexed: 10/29/2022] Open
Abstract
Purpose To explore the optimal lenticule storage conditions that maintain lenticule integrity and clarity. Methods A total of 99 lenticules obtained from myopic patients undergoing small incision lenticule extraction (SMILE) were divided into four combinations for short-term storage conditions: PBS, Dulbecco's Modified Eagle's Medium (DMEM), Optisol GS, or anhydrous glycerol. Two thirds of the lenticules were further stored for 4 weeks under eight different conditions. Clarity evaluation with transmittance measurements, cell-death assays with terminal deoxynucleotidyl transferase-mediated nick end labeling assay (TUNEL), collagen fibril spacing and necrotic response assessed with transmission electron microscopy (TEM), and immunohistochemistry analysis for human leukocyte antigens (HLAs) and CD45 for immunogenicity, and matrix metalloproteinase (MMP)-2 for keratocyte response, were undertaken at baseline, 48 h (short term), and 4 weeks (long term). Results The TUNEL and immunogenicity results were comparable among the groups. The mean percentage of TUNEL-positive cells across all groups was 24.3% ± 11.8% and 62.9% ± 20.7% at the 48 h and 4 week time points, respectively. HLA-ABC+, HLA-DR+, and CD45+ cells were extremely rare, and MMP-2 expression ranged from non-detectable to minimal, under all conditions at all time points. Transmittance at 4 weeks was significantly different among groups with the greatest maintenance of clarity seen in the lenticules stored initially in DMEM at 4 °C for 48 h followed by cryopreservation in serum-free medium or glycerol at 4 °C followed by storage at room temperature. At TEM analysis at 4 weeks, the lenticules cryopreserved in liquid nitrogen, regardless of storage solutions, had significantly narrower inter-fibrillar distance than controls, while glycerol-preserved lenticules, at either room temperature or -80 °C, maintained the inter-fibrillar distance. Conclusions Clarity, structural integrity, and low immunogenicity under various conditions, at 4 °C or room temperature for short-term storage, offer encouragement for lenticule storage. It can be undertaken without access to s specialized and potentially expensive laboratory setup at least within the first 48 h before transportation to larger facilities for long-term storage.
Collapse
|