1
|
Steuber J, Fritz G. The Na +-translocating NADH:quinone oxidoreductase (Na +-NQR): Physiological role, structure and function of a redox-driven, molecular machine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149485. [PMID: 38955304 DOI: 10.1016/j.bbabio.2024.149485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Many bacterial processes are powered by the sodium motive force (smf) and in case of pathogens, the smf contributes to virulence. Vibrio cholerae, the causative agent of Cholera disease, possesses a Na+-translocating NADH:quinone oxidoreductase (NQR), a six-subunit membrane protein assembly. The 3D structure of NQR revealed the arrangement of the six subunits NqrABCDEF, the position of all redox cofactors (four flavins, two [2Fe-2S] centers) and the binding sites for the substrates NADH (in NqrF) and ubiquinone (in NqrB). Upon oxidation of NADH, electrons are shuttled twice across the membrane, starting with cytoplasmic FADNqrF and electron transfer to the [2Fe2S] clusterNqrF and from there to an intra-membranous [2Fe-2S] clusterNqrDE, periplasmic FMNNqrC, FMNNqrB and from there to riboflavinNqrB. This riboflavin is located at the cytoplasmic entry site of the sodium channel in NqrB, and it donates electrons to ubiquinone-8 positioned at the cytoplasmic side of NqrB. Targeting the substrate binding sites of NQR is a promising strategy to identify new inhibitors against many bacterial pathogens. Detailed structural information on the binding mode of natural inhibitors and small molecules in the active sites of NQR is now available, paving the way for the development of new antibiotics. The NQR shows different conformations as revealed in recent cryo-EM and crystallographic studies combined with spectroscopic analyses. These conformations represent distinct steps in the catalytic cycle. Considering the structural and functional data available, we propose a mechanism of Na+-NQR based on conformational coupling of electron transfer and Na+ translocation reaction steps.
Collapse
Affiliation(s)
- Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Huang S, Méheust R, Barquera B, Light SH. Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584918. [PMID: 38559090 PMCID: PMC10979944 DOI: 10.1101/2024.03.13.584918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remains unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We find that ApbE flavinylation sites exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models.
Collapse
Affiliation(s)
- Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Blanca Barquera
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy, NY
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV. A Redox-Regulated, Heterodimeric NADH:cinnamate Reductase in Vibrio ruber. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:241-256. [PMID: 38622093 DOI: 10.1134/s0006297924020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024]
Abstract
Genes of putative reductases of α,β-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Victor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
4
|
Lin W, He M, Gao L, Zhong H, Ye S, Li H. An enzyme-free monosaccharide fuel cell using bio-mimetically hemin-intercalated polydopamine as anode and cathode catalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Tong Y, Lee M, Drenth J, Fraaije MW. Flavin-tag: A Facile Method for Site-Specific Labeling of Proteins with a Flavin Fluorophore. Bioconjug Chem 2021; 32:1559-1563. [PMID: 34304568 DOI: 10.1021/acs.bioconjchem.1c00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific protein labeling methods are highly valuable tools for research and applications. We present a new protein labeling method that allows covalent attachment of a chromo- and fluorogenic flavin (FMN) to any targeted protein using a short flavinylation peptide-tag. We show that this peptide can be as short as 7 residues and can be located at the N-terminus, C-terminus, or in internal regions of the target protein. Analogous to kinase-catalyzed phosphorylation, the flavin is covalently attached via a stable phosphothreonyl linkage. The site-specific covalent tethering of FMN is accomplished by using a bacterial flavin transferase. The covalent coupling of FMN was shown to work in Escherichia coli and Saccharomyces cerevisiae cells and could be performed in vitro, rendering the "Flavin-tag" method a powerful tool for the selective decoration of proteins with a biocompatible redox-active fluorescent chromophore.
Collapse
Affiliation(s)
- Yapei Tong
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Misun Lee
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Jeroen Drenth
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
6
|
Bertsova YV, Oleynikov IP, Bogachev AV. A new water-soluble bacterial NADH: fumarate oxidoreductase. FEMS Microbiol Lett 2021; 367:5941483. [PMID: 33107907 DOI: 10.1093/femsle/fnaa175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
The cytoplasmic fumarate reductase of Klebsiella pneumoniae (FRD) is a monomeric protein which contains three prosthetic groups: noncovalently bound FMN and FAD plus a covalently bound FMN. In the present work, NADH is revealed to be an inherent electron donor for this enzyme. We found that the fumarate reductase activity of FRD significantly exceeds its NADH dehydrogenase activity. During the catalysis of NADH:fumarate oxidoreductase reaction, FRD turnover is limited by a very low rate (∼10/s) of electron transfer between the noncovalently and covalently bound FMN moieties. Induction of FRD synthesis in K. pneumoniae cells was observed only under anaerobic conditions in the presence of fumarate or malate. Enzymes with the FRD-like domain architecture are widely distributed among various bacteria and apparently comprise a new type of water-soluble NADH:fumarate oxidoreductases.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Ilya P Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| |
Collapse
|
7
|
Méheust R, Huang S, Rivera-Lugo R, Banfield JF, Light SH. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. eLife 2021; 10:66878. [PMID: 34032212 PMCID: PMC8238504 DOI: 10.7554/elife.66878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Disparate redox activities that take place beyond the bounds of the prokaryotic cell cytosol must connect to membrane or cytosolic electron pools. Proteins post-translationally flavinylated by the enzyme ApbE mediate electron transfer in several characterized extracytosolic redox systems but the breadth of functions of this modification remains unknown. Here, we present a comprehensive bioinformatic analysis of 31,910 prokaryotic genomes that provides evidence of extracytosolic ApbEs within ~50% of bacteria and the involvement of flavinylation in numerous uncharacterized biochemical processes. By mining flavinylation-associated gene clusters, we identify five protein classes responsible for transmembrane electron transfer and two domains of unknown function (DUF2271 and DUF3570) that are flavinylated by ApbE. We observe flavinylation/iron transporter gene colocalization patterns that implicate functions in iron reduction and assimilation. We find associations with characterized and uncharacterized respiratory oxidoreductases that highlight roles of flavinylation in respiratory electron transport chains. Finally, we identify interspecies gene cluster variability consistent with flavinylation/cytochrome functional redundancies and discover a class of ‘multi-flavinylated proteins’ that may resemble multi-heme cytochromes in facilitating longer distance electron transfer. These findings provide mechanistic insight into an important facet of bacterial physiology and establish flavinylation as a functionally diverse mediator of extracytosolic electron transfer. In bacteria, certain chemical reactions required for life do not take place directly inside the cells. For instance, ‘redox’ reactions essential to gather minerals, repair proteins and obtain energy are localised in the membranes and space that surround a bacterium. These chemical reactions involve electrons being transferred from one molecule to another in a cascade that connects the exterior of a cell to its internal space. The enzyme ApbE allows proteins to perform electron transfer by equipping them with ring-like compounds called flavins, through a process known as flavinylation. Yet, the prevelance of flavinylation in bacteria and the scope of redox reactions it facilitates has remained unclear. To investigate this question, Méheust, Huang et al. analysed over 30,000 bacterial genomes, finding genes essential for ApbE flavinylation in about half of all bacterial species across the tree of life. The role of ApbE-flavinylated proteins was then deciphered using a ‘guilt by association’ approach. In bacteria, genes that perform similar roles are often close to each other in the genome, which helps to infer the function of a protein coded by a specific gene. This approach revealed that flavinylation is involved in processes that allow bacteria to acquire iron and to use various energy sources. A number of interesting proteins were also identified, including a group that carry multiple flavins, and could therefore, in theory, transfer electrons over long distances. This discovery could be relevant to bioelectronic applications, which are already considering another class of bacterial electron-carrying molecules as candidates to form minuscule electric wires.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France
| | - Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
8
|
In silico studies on structural, functional, and evolutionary analysis of bacterial chromate reductase family responsible for high chromate bioremediation efficiency. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
9
|
Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV. Mutational analysis of the flavinylation and binding motifs in two protein targets of the flavin transferase ApbE. FEMS Microbiol Lett 2019; 366:5675630. [DOI: 10.1093/femsle/fnz252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Many flavoproteins belonging to three domain types contain an FMN residue linked through a phosphoester bond to a threonine or serine residue found in a conserved seven-residue motif. The flavinylation reaction is catalyzed by a specific enzyme, ApbE, which uses FAD as a substrate. To determine the structural requirements of the flavinylation reaction, we examined the effects of single substitutions in the flavinylation motif of Klebsiella pneumoniae cytoplasmic fumarate reductase on its modification by its own ApbE in recombinant Escherichia coli cells. The replacement of the flavin acceptor threonine with alanine completely abolished the modification reaction, whereas the replacements of conserved aspartate and serine had only minor effects. Effects of other substitutions, including replacing the acceptor threonine with serine, (a 10–55% decrease in the flavinylation degree) pinpointed important glycine and alanine residues and suggested an excessive capacity of the ApbE-based flavinylation system in vivo. Consistent with this deduction, drastic replacements of conserved leucine and threonine residues in the binding pocket that accommodates FMN residue still allowed appreciable flavinylation of the NqrC subunit of Vibrio harveyi Na+-translocating NADH:quinone oxidoreductase, despite a profound weakening of the isoalloxazine ring binding and an increase in its exposure to solvent.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Victor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| |
Collapse
|
10
|
Flavin transferase: the maturation factor of flavin-containing oxidoreductases. Biochem Soc Trans 2018; 46:1161-1169. [PMID: 30154099 DOI: 10.1042/bst20180524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Flavins, cofactors of many enzymes, are often covalently linked to these enzymes; for instance, flavin adenine mononucleotide (FMN) can form a covalent bond through either its phosphate or isoalloxazine group. The prevailing view had long been that all types of covalent attachment of flavins occur as autocatalytic reactions; however, in 2013, the first flavin transferase was identified, which catalyzes phosphoester bond formation between FMN and Na+-translocating NADH:quinone oxidoreductase in certain bacteria. Later studies have indicated that this post-translational modification is widespread in prokaryotes and is even found in some eukaryotes. Flavin transferase can occur as a separate ∼40 kDa protein or as a domain within the target protein and recognizes a degenerate DgxtsAT/S motif in various target proteins. The purpose of this review was to summarize the progress already achieved by studies of the structure, mechanism, and specificity of flavin transferase and to encourage future research on this topic. Interestingly, the flavin transferase gene (apbE) is found in many bacteria that have no known target protein, suggesting the presence of yet unknown flavinylation targets.
Collapse
|
11
|
Catalytically important flavin linked through a phosphoester bond in a eukaryotic fumarate reductase. Biochimie 2018; 149:34-40. [DOI: 10.1016/j.biochi.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023]
|
12
|
Buttet GF, Willemin MS, Hamelin R, Rupakula A, Maillard J. The Membrane-Bound C Subunit of Reductive Dehalogenases: Topology Analysis and Reconstitution of the FMN-Binding Domain of PceC. Front Microbiol 2018; 9:755. [PMID: 29740408 PMCID: PMC5928378 DOI: 10.3389/fmicb.2018.00755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results suggest that PceC, and more generally RdhC proteins, may play a role in electron transfer in the metabolism of OHR.
Collapse
Affiliation(s)
- Géraldine F Buttet
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Mathilde S Willemin
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Protein Core Facility, Faculty of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Aamani Rupakula
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Kang MG, Park J, Balboni G, Lim MH, Lee C, Rhee HW. Genetically Encodable Bacterial Flavin Transferase for Fluorogenic Protein Modification in Mammalian Cells. ACS Synth Biol 2017; 6:667-677. [PMID: 28035820 DOI: 10.1021/acssynbio.6b00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A bacterial flavin transferase (ApbE) was recently employed for flavin mononucleotide (FMN) modification on the Na+-translocating NADH:quinone oxidoreductase C (NqrC) protein in the pathogenic Gram-negative bacterium Vibrio cholerae. We employed this unique post-translational modification in mammalian cells and found that the FMN transfer reaction robustly occurred when NqrC and ApbE were genetically targeted in the cytosol of live mammalian cells. Moreover, NqrC expression in the endoplasmic reticulum (NqrC-ER) induced the retro-translocation of NqrC to the cytosol, leading to the proteasome-mediated ER-associated degradation of NqrC, which is considered to be an innate immunological response toward the bacterial protein. This unexpected cellular process of NqrC-ER could be exploited for the construction of an in cellulo proteasome inhibitor screening system, and our proposed approach yielded substantially improved results compared to a previous method. In addition, a truncated version of RnfG (half-RnfG) was found to be potentially useful as a genetically encoded tag for monitoring protein-protein interactions in a specific compartment, even in the ER, in a live cell according to its fluorogenic post-translational modification via ApbE. This new genetically encoded system in mammalian cells should serve as a valuable tool for anticancer drug screening and other applications in molecular and synthetic biology.
Collapse
Affiliation(s)
| | | | - Gianfranco Balboni
- Department
of Life and Environmental Sciences, Pharmaceutical, Pharmacological
and Nutraceutical Sciences Unit, University of Cagliari, I-09124 Cagliari, Italy
| | | | | | | |
Collapse
|
14
|
Bender BJ, Cisneros A, Duran AM, Finn JA, Fu D, Lokits AD, Mueller BK, Sangha AK, Sauer MF, Sevy AM, Sliwoski G, Sheehan JH, DiMaio F, Meiler J, Moretti R. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016; 55:4748-63. [PMID: 27490953 PMCID: PMC5007558 DOI: 10.1021/acs.biochem.6b00444] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Previously, we published an article
providing an overview of the
Rosetta suite of biomacromolecular modeling software and a series
of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987–2998]. The overwhelming positive
response to this publication we received motivates us to here share
the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking,
small molecule docking, and protein design. This updated and expanded
set of tutorials is needed, as since 2010 Rosetta has been fully redesigned
into an object-oriented protein modeling program Rosetta3. Notable
improvements include a substantially improved energy function, an
XML-like language termed “RosettaScripts” for flexibly
specifying modeling task, new analysis tools, the addition of the
TopologyBroker to control conformational sampling, and support for
multiple templates in comparative modeling. Rosetta’s ability
to model systems with symmetric proteins, membrane proteins, noncanonical
amino acids, and RNA has also been greatly expanded and improved.
Collapse
Affiliation(s)
- Brian J Bender
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States.,Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States
| | - Alberto Cisneros
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States
| | - Amanda M Duran
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Jessica A Finn
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, Tennessee 37232-2561, United States
| | - Darwin Fu
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Alyssa D Lokits
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Neuroscience Program, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Benjamin K Mueller
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Amandeep K Sangha
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Marion F Sauer
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States
| | - Alexander M Sevy
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States
| | - Gregory Sliwoski
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Jens Meiler
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States.,Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Chemical and Physical Biology Program, Vanderbilt University , Nashville, Tennessee 37232-0301, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, Tennessee 37232-2561, United States.,Neuroscience Program, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Rocco Moretti
- Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240-7917, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
15
|
Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm. Microbiologyopen 2015; 5:21-38. [PMID: 26626129 PMCID: PMC4767422 DOI: 10.1002/mbo3.306] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023] Open
Abstract
We recently reported a flavin‐trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal‐dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal‐dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal‐dependent Ftp catalysis in either Nqr‐ or Rnf‐redox‐containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD‐binding protein to a Mg2+‐dependent FAD pyrophosphatase (Ftp_Tp‐like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox‐carrying proteins (e.g., RnfG_Ec) via the metal‐dependent covalent attachment of FMN. A high‐resolution structure of the Ftp‐mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester‐threonyl‐FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Wei Z Liu
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Diana R Tomchick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|