1
|
Logan IS. The discovery of a ten-generation m.C1494T pedigree in the east of England with probable links to King Richard III. Eur J Med Genet 2024; 70:104957. [PMID: 38897372 DOI: 10.1016/j.ejmg.2024.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
This paper reports the discovery of a m.C1494T pedigree in the east of England made during a search for matrilineal relations of King Richard III. The mitochondrial DNA variant m.C1494T has been associated with aminoglycoside-induced deafness. This variant is very uncommon. although pedigrees with this variant have previously been found in China and Spain. The members of the newly identified pedigree all belong to the mitochondrial haplogroup J1c2c3, which is also the haplogroup of King Richard III. The presence of a few people in the USA from the same haplogroup has previously been noted, and it is now known that one of the people can show his descent from a couple who lived in Nottinghamshire, England, in the late 1700's. The mitochondrial DNA sequence of this man, at present living in the USA, and of his 4th cousin, twice removed, living in Lincoln, England, has shown they belong to haplogroup J1c2c3 and both have the variant m.C1494T; thereby, allowing the production of a multi-generational pedigree originating in the east of England. Fortunately, deafness has not been found in any living member of this large pedigree. It was also noted that the link to the family of King Richard III has not been firmly defined; however the circumstantial evidence is strong as many of his family members lived in this part of England.
Collapse
Affiliation(s)
- Ian S Logan
- 22 Parkside Drive, Exmouth, Devon, EX8 4LB, UK.
| |
Collapse
|
2
|
Ferreira JC, Alshamali F, Pereira L, Fernandes V. Characterization of Arabian Peninsula whole exomes: Contributing to the catalogue of human diversity. iScience 2022; 25:105336. [DOI: 10.1016/j.isci.2022.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
|
3
|
Ferreira JC, Alshamali F, Montinaro F, Cavadas B, Torroni A, Pereira L, Raveane A, Fernandes V. Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: A Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations. Genome Biol Evol 2021; 13:6364187. [PMID: 34480555 PMCID: PMC8435661 DOI: 10.1093/gbe/evab194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.
Collapse
Affiliation(s)
- Joana C Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Farida Alshamali
- Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai, United Arab Emirates
| | - Francesco Montinaro
- Department of Biology-Genetics, University of Bari, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Italy
| | - Luisa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Italy.,Laboratory of Haematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Veronica Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| |
Collapse
|
4
|
Insights into the Middle Eastern paternal genetic pool in Tunisia: high prevalence of T-M70 haplogroup in an Arab population. Sci Rep 2021; 11:15728. [PMID: 34344940 PMCID: PMC8333252 DOI: 10.1038/s41598-021-95144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
To obtain refreshed insights into the paternal lineages of Tunisian populations, Y-chromosome diversity was assessed in two populations belonging to an Arab genealogical lineage, Kairouan and Wesletia, as well as in four Tunisian Andalusian populations, Testour, Slouguia, Qalaat-El-Andalous and El Alia. The Arabs from Kairouan revealed 73.47% of E-M81 and close affinities with Berber groups, indicating they are likely arabized Berbers, clearly differentiated from the Arabs from Wesletia, who harbored the highest frequency (71.8%) of the Middle Eastern component ever observed in North Africa. In the Tunisian Andalusians, the North African component largely prevailed, followed by the Middle Eastern contribution. Global comparative analysis highlighted the heterogeneity of Tunisian populations, among which, as a whole, dominated a set of lineages ascribed to be of autochthonous Berber origin (71.67%), beside a component of essentially Middle Eastern extraction (18.35%), and signatures of Sub-Saharan (5.2%), European (3.45%) and Asiatic (1.33%) contributions. The remarkable frequency of T-M70 in Wesletia (17.4%) prompted to refine its phylogeographic analysis, allowing to confirm its Middle Eastern origin, though signs of local evolution in Northern Africa were also detected. Evidence was clear on the ancient introduction of T lineages into the region, probably since Neolithic times associated to spread of agriculture.
Collapse
|
5
|
Eaaswarkhanth M, Pathak AK, Ongaro L, Montinaro F, Hebbar P, Alsmadi O, Metspalu M, Al-Mulla F, Thanaraj TA. Unraveling a fine-scale high genetic heterogeneity and recent continental connections of an Arabian Peninsula population. Eur J Hum Genet 2021; 30:307-319. [PMID: 33753911 PMCID: PMC8904638 DOI: 10.1038/s41431-021-00861-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have showed the diverse genetic architecture of the highly consanguineous populations inhabiting the Arabian Peninsula. Consanguinity coupled with heterogeneity is complex and makes it difficult to understand the bases of population-specific genetic diseases in the region. Therefore, comprehensive genetic characterization of the populations at the finest scale is warranted. Here, we revisit the genetic structure of the Kuwait population by analyzing genome-wide single nucleotide polymorphisms data from 583 Kuwaiti individuals sorted into three subgroups. We envisage a diverse demographic genetic history among the three subgroups based on drift and allelic sharing with modern and ancient individuals. Furthermore, our comprehensive haplotype-based analyses disclose a high genetic heterogeneity among the Kuwaiti populations. We infer the major sources of ancestry within the newly defined groups; one with an obvious predominance of sub-Saharan/Western Africa mostly comprising Kuwait-B individuals, and other with West Eurasia including Kuwait-P and Kuwait-S individuals. Overall, our results recapitulate the historical population movements and reaffirm the genetic imprints of the legacy of continental trading in the region. Such deciphering of fine-scale population structure and their regional genetic heterogeneity would provide clues to the uncharted areas of disease-gene discovery and related associations in populations inhabiting the Arabian Peninsula.
Collapse
Affiliation(s)
| | - Ajai K Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Tartu, Estonia
| | - Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Bari, Italy
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Osama Alsmadi
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.
| | | |
Collapse
|
6
|
Hernández CL, Pita G, Cavadas B, López S, Sánchez-Martínez LJ, Dugoujon JM, Novelletto A, Cuesta P, Pereira L, Calderón R. Human Genomic Diversity Where the Mediterranean Joins the Atlantic. Mol Biol Evol 2021; 37:1041-1055. [PMID: 31816048 PMCID: PMC7086172 DOI: 10.1093/molbev/msz288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Throughout the past few years, a lively debate emerged about the timing and magnitude of the human migrations between the Iberian Peninsula and the Maghreb. Several pieces of evidence, including archaeological, anthropological, historical, and genetic data, have pointed to a complex and intermingled evolutionary history in the western Mediterranean area. To study to what extent connections across the Strait of Gibraltar and surrounding areas have shaped the present-day genomic diversity of its populations, we have performed a screening of 2.5 million single-nucleotide polymorphisms in 142 samples from southern Spain, southern Portugal, and Morocco. We built comprehensive data sets of the studied area and we implemented multistep bioinformatic approaches to assess population structure, demographic histories, and admixture dynamics. Both local and global ancestry inference showed an internal substructure in the Iberian Peninsula, mainly linked to a differential African ancestry. Western Iberia, from southern Portugal to Galicia, constituted an independent cluster within Iberia characterized by an enriched African genomic input. Migration time modeling showed recent historic dates for the admixture events occurring both in Iberia and in the North of Africa. However, an integrative vision of both paleogenomic and modern DNA data allowed us to detect chronological transitions and population turnovers that could be the result of transcontinental migrations dating back from Neolithic times. The present contribution aimed to fill the gaps in the modern human genomic record of a key geographic area, where the Mediterranean and the Atlantic come together.
Collapse
Affiliation(s)
- Candela L Hernández
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Cavadas
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Saioa López
- UCL Cancer Institute, London, United Kingdom
| | - Luis J Sánchez-Martínez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean-Michel Dugoujon
- CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
7
|
Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Sci Rep 2020; 10:21428. [PMID: 33293675 PMCID: PMC7722846 DOI: 10.1038/s41598-020-78487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Chuetas are a group of descendants of Majorcan Crypto-Jews (Balearic Islands, Spain) who were socially stigmatized and segregated by their Majorcan neighbours until recently; generating a community that, although after the seventeenth century no longer contained Judaic religious elements, maintained strong group cohesion, Jewishness consciousness, and endogamy. Collective memory fixed 15 surnames as a most important defining element of Chueta families. Previous studies demonstrated Chuetas were a differentiated population, with a considerable proportion of their original genetic make-up. Genetic data of Y-chromosome polymorphism and mtDNA control region showed, in Chuetas’ paternal lineages, high prevalence of haplogroups J2-M172 (33%) and J1-M267 (18%). In maternal lineages, the Chuetas hallmark is the presence of a new sub-branching of the rare haplogroup R0a2m as their modal haplogroup (21%). Genetic diversity in both Y-chromosome and mtDNA indicates the Chueta community has managed to avoid the expected heterogeneity decrease in their gene pool after centuries of isolation and inbreeding. Moreover, the composition of their uniparentally transmitted lineages demonstrates a remarkable signature of Middle Eastern ancestry—despite some degree of host admixture—confirming Chuetas have retained over the centuries a considerable degree of ancestral genetic signature along with the cultural memory of their Jewish origin.
Collapse
|
8
|
Priehodová E, Austerlitz F, Čížková M, Nováčková J, Ricaut FX, Hofmanová Z, Schlebusch CM, Černý V. Sahelian pastoralism from the perspective of variants associated with lactase persistence. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:423-436. [PMID: 32812238 DOI: 10.1002/ajpa.24116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Archeological evidence shows that first nomadic pastoralists came to the African Sahel from northeastern Sahara, where milking is reported by ~7.5 ka. A second wave of pastoralists arrived with the expansion of Arabic tribes in 7th-14th century CE. All Sahelian pastoralists depend on milk production but genetic diversity underlying their lactase persistence (LP) is poorly understood. MATERIALS AND METHODS We investigated SNP variants associated with LP in 1,241 individuals from 29 mostly pastoralist populations in the Sahel. Then, we analyzed six SNPs in the neighboring fragment (419 kb) in the Fulani and Tuareg with the -13910*T mutation, reconstructed haplotypes, and calculated expansion age and growth rate of this variant. RESULTS Our results reveal a geographic localization of two different LP variants in the Sahel: -13910*T west of Lake Chad (Fulani and Tuareg pastoralists) and -13915*G east of there (mostly Arabic-speaking pastoralists). We show that -13910*T has a more diversified haplotype background among the Fulani than among the Tuareg and that the age estimate for expansion of this variant among the Fulani (~8.5 ka) corresponds to introduction of cattle to the area. CONCLUSIONS This is the first study showing that the "Eurasian" LP allele -13910*T is widespread both in northern Europe and in the Sahel; however, it is limited to pastoralists in the Sahel. Since the Fulani haplotype with -13910*T is shared with contemporary Eurasians, its origin could be in a region encompassing the Near East and northeastern Africa in a population ancestral to both Saharan pastoralists and European farmers.
Collapse
Affiliation(s)
- Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Frédéric Austerlitz
- UMR 7206 EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Musée de l'Homme, Paris, France
| | - Martina Čížková
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Nováčková
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - François-Xavier Ricaut
- Department of Evolution and Biological Diversity (UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Zuzana Hofmanová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Carina M Schlebusch
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Uppsala, Sweden
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
9
|
Aljasmi FA, Vijayan R, Sudalaimuthuasari N, Souid AK, Karuvantevida N, Almaskari R, Mohammed Abdul Kader H, Kundu B, Michel Hazzouri K, Amiri KMA. Genomic Landscape of the Mitochondrial Genome in the United Arab Emirates Native Population. Genes (Basel) 2020; 11:genes11080876. [PMID: 32752197 PMCID: PMC7464197 DOI: 10.3390/genes11080876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
In order to assess the genomic landscape of the United Arab Emirates (UAE) mitogenome, we sequenced and analyzed the complete genomes of 232 Emirate females mitochondrial DNA (mtDNA) within and compared those to Africa. We investigated the prevalence of haplogroups, genetic variation, heteroplasmy, and demography among the UAE native population with diverse ethnicity and relatively high degree of consanguinity. We identified 968 mtDNA variants and high-resolution 15 haplogroups. Our results show that the UAE population received enough gene flow from Africa represented by the haplogroups L, U6, and M1, and that 16.8% of the population has an eastern provenance, depicted by the U haplogroup and the M Indian haplogroup (12%), whereas western Eurasian and Asian haplogroups (R, J, and K) represent 11 to 15%. Interestingly, we found an ancient migration present through the descendant of L (N1 and X) and other sub-haplogroups (L2a1d and L4) and (L3x1b), which is one of the oldest evolutionary histories outside of Africa. Our demographic analysis shows no population structure among populations, with low diversity and no population differentiation. In addition, we show that the transmission of mtDNA in the UAE population is under purifying selection with hints of diversifying selection on ATP8 gene. Last, our results show a population bottleneck, which coincides with the Western European contact (1400 ybp). Our study of the UAE mitogenomes suggest that several maternal lineage migratory episodes liking African–Asian corridors occurred since the first modern human emerges out of Africa.
Collapse
Affiliation(s)
- Fatma A Aljasmi
- Pediatric Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | - Ranjit Vijayan
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | | | - Abdul-Kader Souid
- Pediatric Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | | | - Raja Almaskari
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | | | - Biduth Kundu
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | - Khaled M A Amiri
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| |
Collapse
|
10
|
Investigating the resolution of ancestry testing in geographic regions characterized by high population admixture. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Fernandes V, Brucato N, Ferreira JC, Pedro N, Cavadas B, Ricaut FX, Alshamali F, Pereira L. Genome-Wide Characterization of Arabian Peninsula Populations: Shedding Light on the History of a Fundamental Bridge between Continents. Mol Biol Evol 2019; 36:575-586. [PMID: 30649405 DOI: 10.1093/molbev/msz005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Arabian Peninsula (AP) was an important crossroad between Africa, Asia, and Europe, being the cradle of the structure defining these main human population groups, and a continuing path for their admixture. The screening of 741,000 variants in 420 Arabians and 80 Iranians allowed us to quantify the dominant sub-Saharan African admixture in the west of the peninsula, whereas South Asian and Levantine/European influence was stronger in the east, leading to a rift between western and eastern sides of the Peninsula. Dating of the admixture events indicated that Indian Ocean slave trade and Islamization periods were important moments in the genetic makeup of the region. The western-eastern axis was also observable in terms of positive selection of diversity conferring lactose tolerance, with the West AP developing local adaptation and the East AP acquiring the derived allele selected in European populations and existing in South Asia. African selected malaria resistance through the DARC gene was enriched in all Arabian genomes, especially in the western part. Clear European influences associated with skin and eye color were equally frequent across the Peninsula.
Collapse
Affiliation(s)
- Veronica Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Nicolas Brucato
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Joana C Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Nicole Pedro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - François-Xavier Ricaut
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Farida Alshamali
- Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai, United Arab Emirates
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Eaaswarkhanth M, Melhem M, Sharma P, Nizam R, Al Madhoun A, Chaubey G, Alsmadi O, AlOzairi E, Al-Mulla F. Mitochondrial DNA D-loop sequencing reveals obesity variants in an Arab population. APPLICATION OF CLINICAL GENETICS 2019; 12:63-70. [PMID: 31213875 PMCID: PMC6541754 DOI: 10.2147/tacg.s198593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/13/2019] [Indexed: 01/11/2023]
Abstract
Background: The association of mitochondrial DNA (mtDNA) variations with obesity has been investigated in diverse populations across the world. However, such obesity-associated mtDNA examinations are rarely conducted in Arab populations. Materials and methods: We re-sequenced mtDNA displacement loop (D-loop) region of 395 Arab individuals of Kuwait. We categorized the individuals based on their BMI scores as obese (n=232; BMI ≥30 kg/m2), overweight (n=110; BMI ≥25 kg/m2 and <30 kg/m2), and lean (n=53; BMI <25 kg/m2). We performed all the statistical tests by combining obese and overweight individuals in one group. Association analyses were conducted applying Fisher's exact test and logistic regression model. Results: We identified that the mtDNA variations m.73A>G, and m.523delAC were positively correlated with obesity, while m.310T>C, and m.16318A>T were negatively associated. All these variants, except m.16318A>T, remain statistically significant after adjusting for age and gender. We found that the variant m.73A>G increases the likelihood of being obese by 6-fold, whereas haplogroup H decreases the probability of being obese in Arab individuals of Kuwait. Haplotype analysis revealed that a haplotype, A263G-C309CT-T310C, defining the H2a clade of H haplogroup, reduces the probability of being obese. Conclusion: Our study reports, for the first time, the obesity-related mtDNA variants in Arabs of Kuwait. Based on the mtDNA D-loop region variations, we detected particular variants and haplogroup that are related with increased and decreased probability of being obese in the Kuwait Arab population.
Collapse
Affiliation(s)
| | - Motasem Melhem
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Prem Sharma
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Osama Alsmadi
- Department of Cell Therapy & Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Ebaa AlOzairi
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| |
Collapse
|
13
|
Kleisner K, Pokorný Š, Čížková M, Froment A, Černý V. Nomadic pastoralists and sedentary farmers of the Sahel/Savannah Belt of Africa in the light of geometric morphometrics based on facial portraits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:632-645. [DOI: 10.1002/ajpa.23845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Karel Kleisner
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Šimon Pokorný
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Alain Froment
- UMR 208‐PalocIRD‐MNHN, Musée de l'Homme Paris France
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
14
|
Vyas DN, Mulligan CJ. Analyses of Neanderthal introgression suggest that Levantine and southern Arabian populations have a shared population history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:227-239. [PMID: 30889271 DOI: 10.1002/ajpa.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Modern humans are thought to have interbred with Neanderthals in the Near East soon after modern humans dispersed out of Africa. This introgression event likely took place in either the Levant or southern Arabia depending on the dispersal route out of Africa that was followed. In this study, we compare Neanderthal introgression in contemporary Levantine and southern Arabian populations to investigate Neanderthal introgression and to study Near Eastern population history. MATERIALS AND METHODS We analyzed genotyping data on >400,000 autosomal SNPs from seven Levantine and five southern Arabian populations and compared these data to those from populations from around the world including Neanderthal and Denisovan genomes. We used f4 and D statistics to estimate and compare levels of Neanderthal introgression between Levantine, southern Arabian, and comparative global populations. We also identified 1,581 putative Neanderthal-introgressed SNPs within our dataset and analyzed their allele frequencies as a means to compare introgression patterns in Levantine and southern Arabian genomes. RESULTS We find that Levantine and southern Arabian populations have similar levels of Neanderthal introgression to each other but lower levels than other non-Africans. Furthermore, we find that introgressed SNPs have very similar allele frequencies in the Levant and southern Arabia, which indicates that Neanderthal introgression is similarly distributed in Levantine and southern Arabian genomes. DISCUSSION We infer that the ancestors of contemporary Levantine and southern Arabian populations received Neanderthal introgression prior to separating from each other and that there has been extensive gene flow between these populations.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Trněný O, Brus J, Hradilová I, Rathore A, Das RR, Kopecký P, Coyne CJ, Reeves P, Richards C, Smýkal P. Molecular Evidence for Two Domestication Events in the Pea Crop. Genes (Basel) 2018; 9:genes9110535. [PMID: 30404223 PMCID: PMC6265838 DOI: 10.3390/genes9110535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/02/2022] Open
Abstract
Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum), we demonstrated that domesticated P. sativum and the Ethiopian pea (P. abyssinicum) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum, which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum.
Collapse
Affiliation(s)
- Oldřich Trněný
- Agricultural Research Ltd., 66441 Troubsko, Czech Republic.
| | - Jan Brus
- Department of Geoinformatics, Palacký University, 783 71 Olomouc, Czech Republic.
| | - Iveta Hradilová
- Department of Botany, Palacký University, 783 71 Olomouc, Czech Republic.
| | - Abhishek Rathore
- The International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana 502324, India.
| | - Roma R Das
- The International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana 502324, India.
| | - Pavel Kopecký
- Crop Research Institute, The Centre of the Region Haná for biotechnological and Agricultural Research, 783 71 Olomouc, Czech Republic.
| | - Clarice J Coyne
- United States Department of Agriculture, Washington State University, Pullman, WA 99164-6402, USA.
| | - Patrick Reeves
- United States Department of Agriculture, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA.
| | - Christopher Richards
- United States Department of Agriculture, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA.
| | - Petr Smýkal
- Department of Botany, Palacký University, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
16
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
17
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
18
|
Černý V, Kulichová I, Poloni ES, Nunes JM, Pereira L, Mayor A, Sanchez-Mazas A. Genetic history of the African Sahelian populations. HLA 2018; 91:153-166. [DOI: 10.1111/tan.13189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- V. Černý
- Department of Anthropology, Faculty of Natural Sciences; Comenius University, Ilkovicova 6; 842 15 Bratislava Slovakia
| | - I. Kulichová
- Department of Anthropology and Human Genetics, Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - E. S. Poloni
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution, Anthropology Unit; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3); Geneva Switzerland
| | - J. M. Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution, Anthropology Unit; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3); Geneva Switzerland
| | - L. Pereira
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto (i3S); Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
| | - A. Mayor
- Laboratory of African Archaeology and Peopling History (APA), Department of Genetics and Evolution, Anthropology Unit; University of Geneva; Geneva Switzerland
| | - A. Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution, Anthropology Unit; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3); Geneva Switzerland
| |
Collapse
|
19
|
Vyas DN, Al‐Meeri A, Mulligan CJ. Testing support for the northern and southern dispersal routes out of Africa: an analysis of Levantine and southern Arabian populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:736-749. [DOI: 10.1002/ajpa.23312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Deven N. Vyas
- Department of AnthropologyUniversity of Florida, 1112 Turlington Hall, PO Box 117305Gainesville Florida 32611‐7305
- Genetics InstituteUniversity of Florida, Cancer & Genetics Research Complex, PO Box 103610Gainesville Florida 32610‐3610
| | - Ali Al‐Meeri
- Department of Clinical Biochemistry, Faculty of Medicine and Health SciencesUniversity of Sana'aSana'a Yemen
| | - Connie J. Mulligan
- Department of AnthropologyUniversity of Florida, 1112 Turlington Hall, PO Box 117305Gainesville Florida 32611‐7305
- Genetics InstituteUniversity of Florida, Cancer & Genetics Research Complex, PO Box 103610Gainesville Florida 32610‐3610
| |
Collapse
|
20
|
Kulichová I, Fernandes V, Deme A, Nováčková J, Stenzl V, Novelletto A, Pereira L, Černý V. Internal diversification of non-Sub-Saharan haplogroups in Sahelian populations and the spread of pastoralism beyond the Sahara. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:424-434. [DOI: 10.1002/ajpa.23285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Iva Kulichová
- Department of Anthropology and Human Genetics, Faculty of Science; Charles University in Prague; Czech Republic
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
| | - Alioune Deme
- Département d'Histoire, Faculté des Lettres et Sciences humaines; Université Cheikh Anta Diop de Dakar; Senegal
| | - Jana Nováčková
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| | - Vlastimil Stenzl
- Department of Forensic Genetics; Institute of Criminalistics; Prague Czech Republic
| | | | - Luísa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
- Faculdade de Medicina da Universidade do Porto; Porto Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| |
Collapse
|
21
|
Čížková M, Hofmanová Z, Mokhtar MG, Janoušek V, Diallo I, Munclinger P, Černý V. Alu insertion polymorphisms in the African Sahel and the origin of Fulani pastoralists. Ann Hum Biol 2017; 44:537-545. [PMID: 28502204 DOI: 10.1080/03014460.2017.1328073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The origin of Western African pastoralism, represented today by the Fulani nomads, has been a highly debated issue for the past decades, and has not yet been conclusively resolved. AIM This study focused on Alu polymorphisms in sedentary and nomadic populations across the African Sahel to investigate patterns of diversity that can complement the existing results and contribute to resolving issues concerning the origin of West African pastoralism. SUBJECTS AND METHODS A new dataset of 21 Alu biallelic markers covering a substantial part of the African Sahel has been analysed jointly with several published North African populations. RESULTS Interestingly, with regard to Alu variation, the relationship of Fulani pastoralists to North Africans is not as evident as was earlier revealed by studies of uniparental loci such as mtDNA and NRY. Alu insertions point rather to an affinity of Fulani pastoralists to Eastern Africans also leading a pastoral lifestyle. CONCLUSIONS It is suggested that contemporary Fulani pastoralists might be descendants of an ancestral Eastern African population that, while crossing the Sahara in the Holocene, admixed slightly with a population of Eurasian (as evidenced by uniparental polymorphisms) ancestry. It seems that, in the Fulani pastoralists, Alu elements reflect more ancient genetic relationships than do uniparental genetic systems.
Collapse
Affiliation(s)
- Martina Čížková
- a Department of Anthropology and Human Genetics, Faculty of Science , Charles University , Prague , Czech Republic
| | - Zuzana Hofmanová
- a Department of Anthropology and Human Genetics, Faculty of Science , Charles University , Prague , Czech Republic.,b Palaeogenetics Group , Johannes Gutenberg University Mainz , Mainz , Germany
| | - Mohammed G Mokhtar
- c Arabic Department, Faculty of Arts , University of Kordofan , Al-Ubayyid , Sudan
| | - Václav Janoušek
- d Department of Zoology, Faculty of Science , Charles University , Prague , Czech Republic
| | - Issa Diallo
- e Département de Linguistique et Langues Nationales , Institut des Sciences des Sociétés, CNRST , Ouagadougou , Burkina Faso
| | - Pavel Munclinger
- d Department of Zoology, Faculty of Science , Charles University , Prague , Czech Republic
| | - Viktor Černý
- f Department of the Archaeology of Landscape and Archaeobiology, Archaeogenetics Laboratory , Institute of Archaeology of the Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
22
|
Silva M, Oliveira M, Vieira D, Brandão A, Rito T, Pereira JB, Fraser RM, Hudson B, Gandini F, Edwards C, Pala M, Koch J, Wilson JF, Pereira L, Richards MB, Soares P. A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals. BMC Evol Biol 2017; 17:88. [PMID: 28335724 PMCID: PMC5364613 DOI: 10.1186/s12862-017-0936-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called "Indo-Aryan invasions" from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. RESULTS We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55-65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. CONCLUSIONS Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y-chromosome lineages, a smaller fraction of autosomal genome-wide variation and an even smaller fraction of mitogenomes across a vast swathe of Eurasia between 5 and 3.5 ka.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Marisa Oliveira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Daniel Vieira
- Department of Informatics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia Brandão
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Teresa Rito
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana B Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ross M Fraser
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,Synpromics Ltd, Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, Sydney, NSW, 2006, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Ceiridwen Edwards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - John Koch
- University of Wales Centre for Advanced Welsh and Celtic Studies, National Library of Wales, Aberystwyth, SY23 3HH, Wales, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
| | - Luísa Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
23
|
Priehodová E, Austerlitz F, Čížková M, Mokhtar MG, Poloni ES, Černý V. The historical spread of
A
rabian
P
astoralists to the eastern
A
frican
S
ahel evidenced by the lactase persistence −13,915*G allele and mitochondrial DNA. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.22950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Edita Priehodová
- Department of Anthropology and Human GeneticsFaculty of Science Charles UniversityPrague Czech Republic
| | - Frédéric Austerlitz
- UMR 7206 EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Musée de l'HommeParis
| | - Martina Čížková
- Department of Anthropology and Human GeneticsFaculty of Science Charles UniversityPrague Czech Republic
| | | | - Estella S. Poloni
- Department of Genetics and EvolutionAnthropology Unit, Faculty of Science, University of Geneva, Switzerland
| | - Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech RepublicPrague
| |
Collapse
|
24
|
Bayoumi R, De Fanti S, Sazzini M, Giuliani C, Quagliariello A, Bortolini E, Boattini A, Al-Habori M, Al-Zubairi AS, Rose JI, Romeo G, Al-Abri A, Luiselli D. Positive selection of lactase persistence among people of Southern Arabia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:676-684. [PMID: 27535199 DOI: 10.1002/ajpa.23072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/07/2016] [Accepted: 08/04/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Frequency patterns of the lactase persistence (LP)-associated -13,915 G allele and archaeological records pointing to substantial role played by southern regions in the peopling and domestication processes that involved the Arabian Peninsula suggest that Southern Arabia plausibly represented the center of diffusion of such adaptive variant. Nevertheless, a well-defined scenario for evolution of Arabian LP is still to be elucidated and the burgeoning archaeological picture of complex human migrations occurred through the peninsula is not matched by an equivalent high-resolution description of genetic variation underlying this adaptive trait. To fill this gap, we investigated diversity at a wide genomic interval surrounding the LCT gene in different Southern Arabian populations. METHODS 40 SNPs were genotyped to characterize LCT profiles of 630 Omani and Yemeni individuals to perform population structure, linkage disequilibrium, population differentiation-based and haplotype-based analyses. RESULTS Typical Arabian LP-related variation was found in Dhofaris and Yemenis, being characterized by private haplotypes carrying the -13,915 G allele, unusual differentiation with respect to northern groups and conserved homozygous haplotype-blocks, suggesting that the adaptive allele was likely introduced in the Arabian gene pool in southern populations and was then subjected to prolonged selective pressure. CONCLUSION By pointing to Yemen as one of the best candidate centers of diffusion of the Arabian-specific adaptive variant, obtained results indicate the spread of indigenous groups as the main process underlying dispersal of LP along the Arabian Peninsula, supporting a refugia model for Arabian demic movements occurred during the Terminal Pleistocene and Early Holocene.
Collapse
Affiliation(s)
- Riad Bayoumi
- Department of Basic Medical Sciences, Mohammed Bin Rashid University, Dubai Healthcare City, Dubai, UAE
| | - Sara De Fanti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| | - Andrea Quagliariello
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| | - Eugenio Bortolini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| | - Alessio Boattini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| | - Molham Al-Habori
- Department of Biochemistry & Molecular Biology, Sana'a University, Sana'a, Yemen
| | | | | | | | - Abdulrahim Al-Abri
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Donata Luiselli
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Italy
| |
Collapse
|
25
|
Gandini F, Achilli A, Pala M, Bodner M, Brandini S, Huber G, Egyed B, Ferretti L, Gómez-Carballa A, Salas A, Scozzari R, Cruciani F, Coppa A, Parson W, Semino O, Soares P, Torroni A, Richards MB, Olivieri A. Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes. Sci Rep 2016; 6:25472. [PMID: 27146119 PMCID: PMC4857117 DOI: 10.1038/srep25472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 01/29/2023] Open
Abstract
Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India.
Collapse
Affiliation(s)
- Francesca Gandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Maria Pala
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Balazs Egyed
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|
26
|
Černý V, Čížková M, Poloni ES, Al‐Meeri A, Mulligan CJ. Comprehensive view of the population history of
A
rabia as inferred by mt
DNA
variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:607-16. [DOI: 10.1002/ajpa.22920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human GeneticsFaculty of Science, Charles University in Prague Czech Republic
| | - Estella S. Poloni
- Department of Genetics and EvolutionAnthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of GenevaGeneva Switzerland
| | - Ali Al‐Meeri
- Department of Clinical BiochemistryFaculty of Medicine and Health Sciences, University of Sana'aSana'a Yemen
| | | |
Collapse
|
27
|
Vyas DN, Kitchen A, Miró‐Herrans AT, Pearson LN, Al‐Meeri A, Mulligan CJ. Bayesian analyses of Yemeni mitochondrial genomes suggest multiple migration events with Africa and Western Eurasia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:382-93. [DOI: 10.1002/ajpa.22890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/21/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Deven N. Vyas
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Andrew Kitchen
- Department of AnthropologyUniversity of IowaIowa City IA52242
| | - Aida T. Miró‐Herrans
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Laurel N. Pearson
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Ali Al‐Meeri
- Department of Clinical Biochemistry, Faculty of Medicine and Health SciencesUniversity of Sana'aSana'a Yemen
| | - Connie J. Mulligan
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| |
Collapse
|
28
|
Hernández CL, Soares P, Dugoujon JM, Novelletto A, Rodríguez JN, Rito T, Oliveira M, Melhaoui M, Baali A, Pereira L, Calderón R. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm. PLoS One 2015; 10:e0139784. [PMID: 26509580 PMCID: PMC4624789 DOI: 10.1371/journal.pone.0139784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, 31073 Toulouse, France
| | - Andrea Novelletto
- Dipartimento di Biologia, Università Tor Vergata di Rome, Rome, Italy
| | | | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Marisa Oliveira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | | | - Abdellatif Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - Luisa Pereira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Llorente MG, Jones ER, Eriksson A, Siska V, Arthur KW, Arthur JW, Curtis MC, Stock JT, Coltorti M, Pieruccini P, Stretton S, Brock F, Higham T, Park Y, Hofreiter M, Bradley DG, Bhak J, Pinhasi R, Manica A. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 2015; 350:820-2. [DOI: 10.1126/science.aad2879] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 12/26/2022]
|
30
|
Cavadas B, Soares P, Camacho R, Brandão A, Costa MD, Fernandes V, Pereira JB, Rito T, Samuels DC, Pereira L. Fine Time Scaling of Purifying Selection on Human Nonsynonymous mtDNA Mutations Based on the Worldwide Population Tree and Mother-Child Pairs. Hum Mutat 2015; 36:1100-11. [DOI: 10.1002/humu.22849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bruno Cavadas
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Department of Biology; CBMA (Centre of Molecular and Environmental Biology); University of Minho; Braga 4704-553 Portugal
| | - Rui Camacho
- INESC TEC; Porto 4200-465 Portugal
- Departamento de Engenharia Informática; Faculdade de Engenharia da Universidade do Porto; Porto 4200-465 Portugal
| | - Andreia Brandão
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS); Porto 4050-313 Portugal
| | - Marta D. Costa
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Joana B. Pereira
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - David C. Samuels
- Vanderbilt Genetics Institute; Department of Molecular Physiology and Biophysics; Vanderbilt University Medical Center; Nashville Tennessee 37232-0700
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Faculdade de Medicina da Universidade do Porto; Porto 4200-319 Portugal
| |
Collapse
|
31
|
60,000 years of interactions between Central and Eastern Africa documented by major African mitochondrial haplogroup L2. Sci Rep 2015. [PMID: 26211407 PMCID: PMC4515592 DOI: 10.1038/srep12526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70–50 ka into Eastern or Southern Africa, (2) postglacial movements (15–10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.
Collapse
|