1
|
Wei Y, Xu X, Wang L, Chen Q, Li J, Liu X, Wei Z, Pang J, Peng Y, Guo X, Cheng Z, Wang Z, Zhang Y, Chen K, Lu X, Liang Q. A suitable and efficient optimization system for the culture of Chlamydia trachomatis in adult inclusion conjunctivitis. Pathog Dis 2024; 82:ftae020. [PMID: 39210513 PMCID: PMC11407439 DOI: 10.1093/femspd/ftae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of Chlamydia trachomatis infection in the genitourinary tract is increasing, with an annual rise of 9 million cases. Individuals afflicted with these infections are at a heightened risk of developing adult inclusive conjunctivitis (AIC), which is commonly recognized as the ocular manifestation of this sexually transmitted infection. Despite its significant clinical implications, the lack of distinctive symptoms and the overlap with other ocular conditions often lead to underdiagnosis or misdiagnosis of AIC associated with C. trachomatis infection. Here, we established six distinct C. trachomatis culture cell lines, specifically highlighting the MA104 N*V cell line that exhibited diminished expression of interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 1 (STAT1), resulting in reduced interferons. Infected MA104 N*V cells displayed the highest count of intracytoplasmic inclusions detected through immunofluorescence staining, peaking at 48 h postinfection. Subsequently, MA104 N*V cells were employed for clinical screening in adult patients diagnosed with AIC. Among the evaluated cohort of 20 patients, quantitative PCR (qPCR) testing revealed positive results in seven individuals, indicating the presence of C. trachomatis infection. Furthermore, the MA104 N*V cell cultures derived from these infected patients demonstrated successful cultivation and replication of the pathogen, confirming its viability and infectivity. Molecular genotyping identified four distinct urogenital serovars, with serovar D being the most prevalent (4/7), followed by E (1/7), F (1/7), and Ia (1/7). This novel cellular model contributes to studies on C. trachomatis pathogenesis, molecular mechanisms, and host-pathogen interactions both in vitro and in vivo. It also aids in acquiring clinically relevant strains critical for advancing diagnostics, treatments, and vaccines against C. trachomatis.
Collapse
Affiliation(s)
- Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jinsong Li
- Diarrhoeal Laboratory, Institute of Viral Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xiafei Liu
- Diarrhoeal Laboratory, Institute of Viral Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jinding Pang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yan Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiaoyan Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhen Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhiqun Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Kexin Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
2
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
3
|
The Chlamydia trachomatis Inclusion Membrane Protein CTL0390 Mediates Host Cell Exit via Lysis through STING Activation. Infect Immun 2022; 90:e0019022. [PMID: 35587198 DOI: 10.1128/iai.00190-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis is the causative agent of the most frequently reported bacterial sexually transmitted disease. Upon internalization into host cells, C. trachomatis remains within a membrane-bound compartment known as an inclusion, where it undergoes its developmental cycle. After completion of this cycle, bacteria exit the host cell. One mechanism of exit is lysis, whereby the inclusion and host cell rupture to release bacteria; however, the mechanism of lysis is not well characterized. A subset of C. trachomatis effectors, known as inclusion membrane proteins (Inc), are embedded within the inclusion membrane to facilitate host cell manipulation. The functions of many Inc proteins are unknown. We sought to characterize the Inc protein CTL0390. We determined that CTL0390 is expressed throughout the developmental cycle and that its C-terminal tail is exposed to the cytosol. To investigate the function of CTL0390, we generated a ctl0390 mutant complemented with ctl0390 on a plasmid. Loss of CTL0390 did not affect infectious progeny production but resulted in a reduction in lysis. Overexpression of CTL0390 induced premature lysis and host nuclear condensation, the latter of which could be reduced upon inhibition of the cGAS-STING DNA sensing pathway. Infection with the clt0390 mutant led to reduced Golgi translocation of STING, and chemical and genetic approaches to inactivate STING revealed that STING plays a role in lysis in a CTL0390-dependent manner. Together, these results reveal a role for CTL0390 in bacterial exit via lysis at late stages of the Chlamydia developmental cycle and through STING activation.
Collapse
|
4
|
Sherwani MA, Ahmad I, Lewis MJ, Abdelgawad A, Rashid H, Yang K, Chen CY, Raman C, Elmets CA, Yusuf N. Type I Interferons Enhance the Repair of Ultraviolet Radiation-Induced DNA Damage and Regulate Cutaneous Immune Suppression. Int J Mol Sci 2022; 23:1822. [PMID: 35163747 PMCID: PMC8836948 DOI: 10.3390/ijms23031822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Type I interferons (IFNs) are important enhancers of immune responses which are downregulated in human cancers, including skin cancer. Solar ultraviolet (UV) B radiation is a proven environmental carcinogen, and its exposure contributes to the high prevalence of skin cancer. The carcinogenic effects of UV light can be attributed to the formation of cyclobutane pyrimidine dimers (CPD) and errors in the repair and replication of DNA. Treatment with a single dose of UVB (100 mJ/cm2) upregulated IFNα and IFNβ in the skin of C57BL/6 mice. IFNα and IFNβ were predominantly produced by CD11b+ cells. In mice lacking the type I IFN receptor 1 (IFNAR1), the repair of CPD following cutaneous exposure to a single dose of UVB (100 mJ/cm2) was decreased. UVB induced the expression of the DNA repair gene xeroderma pigmentosum A (XPA) in wild-type (WT) mice. In contrast, such treatment in IFNAR1 (IFNAR1-/-) mice downregulated XPA. A local UVB regimen consisting of UVB radiation (150 mJ/cm2) for 4 days followed by sensitization with hapten 2,4, dinitrofluorobenzene (DNFB) resulted in significant suppression of immune responses in both WT and IFNAR1-/- mice. However, there were significantly higher CD4+CD25+Foxp3+ regulatory T-cells in the draining lymph nodes of IFNAR1-/- mice in comparison to WT mice. Overall, our studies reveal a previously unknown action of type I IFNs in the repair of photodamage and the prevention of UVB-induced immune suppression.
Collapse
Affiliation(s)
- Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Israr Ahmad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Monica J. Lewis
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Ahmed Abdelgawad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Harunur Rashid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Kevin Yang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chander Raman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.S.); (I.A.); (M.J.L.); (A.A.); (H.R.); (K.Y.); (C.A.E.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Hassanein EHM, Abdel-Wahab BA, Ali FEM, Abd El-Ghafar OAM, Kozman MR, Sharkawi SMZ. Trans-ferulic acid ameliorates cisplatin-induced testicular damage via suppression of TLR4, P38-MAPK, and ERK1/2 signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41948-41964. [PMID: 33792844 DOI: 10.1007/s11356-021-13544-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 12/31/2022]
Abstract
Testicular damage has been described as a common side effect of cisplatin (CDDP), which limits its clinical uses. Since oxidative injury and inflammatory response are the most pathological impact, estimation of natural antioxidant and anti-inflammatory agents like trans-ferulic acid (TFA) could protect against CDDP-induced testicular damage. In the current investigation, rats were assigned into four groups: normal, TFA (50 mg/kg/day, P.O), CDDP (10 mg/kg) as single intraperitoneal (I.P) injection at the end of the 5th day, and TFA+CDDP where TFA was administered 5 days before CDDP injection and 5 days after. Interestingly, TFA significantly restored testosterone levels and abrogated oxidative stress injury. Additionally, TFA effectively suppressed inflammatory cytokines. It also counteracted the inflammation via downregulation of TLR4 and IRF3, P38-MAPK, NF-κB-p65, JAK1, STAT3, ERK1, and ERK2. Besides, TFA can modulate AKT and p-AKT protein expressions. In parallel, TFA mitigated the histopathological aberration of the testis and prevented spermatogenesis disruption. On the other hand, TFA augmented the in vitro CDDP cytotoxicity on Caco-2 and MCF-7 cells. Interestingly, TFA enhanced the cytotoxic effect of CDDP via apoptosis induction in both the early and late stages of apoptosis. Collectively, TFA exhibited a potential protective effect against CDDP-induced testicular injury by inhibiting oxidative stress as well as TLR4/IRF3/INF-γ, P38-MAPK/NF-κB-p65/TNF-α, and JAK1/STAT-3/ERK1/2 inflammatory signaling pathways with enhancing its in vitro cytotoxic activity.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, School of Pharmacy, Najran University, P.O. 1988, Najran, Saudi Arabia
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Magy R Kozman
- Clinical Pharmacology Department, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One 2019; 14:e0207422. [PMID: 30625140 PMCID: PMC6326510 DOI: 10.1371/journal.pone.0207422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
Problem Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. Method of study We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. Results qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. Conclusion Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haoli Gong
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Luyao Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheikh I. Seye
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cumming HE, Bourke NM. Type I IFNs in the female reproductive tract: The first line of defense in an ever-changing battleground. J Leukoc Biol 2018; 105:353-361. [PMID: 30549324 DOI: 10.1002/jlb.mr0318-122rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
The primary function of the female reproductive tract (FRT) is to enable successful reproduction, yet the biologic mechanisms required to accomplish this, which include fluctuating sex hormones and tolerance of semen and a semi-allogeneic fetus, can leave this unique mucosal environment susceptible to pathogenic challenge. Consequently, the FRT has evolved specialized innate and adaptive immune responses tailored to protecting itself from infection without compromising reproductive success. A family of innate immune cytokines that has emerged as important regulators of these immune responses is the type I IFNs. Type I IFNs are typically rapidly produced in response to pathogenic stimulation and are capable of sculpting pleotropic biologic effects, including immunomodulation, antiproliferative effects, and inducing antiviral and bactericidal molecules. Here, we review what is currently known about type I IFN-mediated immunity in the FRT in human, primate, and murine models and explore their importance with respect to three highly relevant FRT infections: HIV, Zika, and Chlamydia.
Collapse
Affiliation(s)
- Helen E Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Nollaig M Bourke
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|