1
|
Nixon C, Lim SA, Sternke M, Barrick D, Harms MJ, Marqusee S. The importance of input sequence set to consensus-derived proteins and their relationship to reconstructed ancestral proteins. Protein Sci 2024; 33:e5011. [PMID: 38747388 PMCID: PMC11094778 DOI: 10.1002/pro.5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
A protein sequence encodes its energy landscape-all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs-questioning the differences between them and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the consensus protein derived from our full Ribonuclease H sequence alignment is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted set of sequences is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order sequence correlations using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.
Collapse
Affiliation(s)
- Charlotte Nixon
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Shion A. Lim
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Matt Sternke
- The T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Doug Barrick
- The T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael J. Harms
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Susan Marqusee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Department of ChemistryUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- California Institute for Quantitative Biosciences (QB3)BerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Kaur U, Kihn KC, Ke H, Kuo W, Gierasch LM, Hebert DN, Wintrode PL, Deredge D, Gershenson A. The conformational landscape of a serpin N-terminal subdomain facilitates folding and in-cell quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537978. [PMID: 37163105 PMCID: PMC10168285 DOI: 10.1101/2023.04.24.537978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many multi-domain proteins including the serpin family of serine protease inhibitors contain non-sequential domains composed of regions that are far apart in sequence. Because proteins are translated vectorially from N- to C-terminus, such domains pose a particular challenge: how to balance the conformational lability necessary to form productive interactions between early and late translated regions while avoiding aggregation. This balance is mediated by the protein sequence properties and the interactions of the folding protein with the cellular quality control machinery. For serpins, particularly α 1 -antitrypsin (AAT), mutations often lead to polymer accumulation in cells and consequent disease suggesting that the lability/aggregation balance is especially precarious. Therefore, we investigated the properties of progressively longer AAT N-terminal fragments in solution and in cells. The N-terminal subdomain, residues 1-190 (AAT190), is monomeric in solution and efficiently degraded in cells. More β -rich fragments, 1-290 and 1-323, form small oligomers in solution, but are still efficiently degraded, and even the polymerization promoting Siiyama (S53F) mutation did not significantly affect fragment degradation. In vitro, the AAT190 region is among the last regions incorporated into the final structure. Hydrogen-deuterium exchange mass spectrometry and enhanced sampling molecular dynamics simulations show that AAT190 has a broad, dynamic conformational ensemble that helps protect one particularly aggregation prone β -strand from solvent. These AAT190 dynamics result in transient exposure of sequences that are buried in folded, full-length AAT, which may provide important recognition sites for the cellular quality control machinery and facilitate degradation and, under favorable conditions, reduce the likelihood of polymerization.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Haiping Ke
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Weiwei Kuo
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Daniel N. Hebert
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Patrick L. Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
3
|
Lim SA, Bolin ER, Marqusee S. Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. eLife 2018; 7:38369. [PMID: 30204082 PMCID: PMC6158009 DOI: 10.7554/elife.38369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
The conformations populated during protein folding have been studied for decades; yet, their evolutionary importance remains largely unexplored. Ancestral sequence reconstruction allows access to proteins across evolutionary time, and new methods such as pulsed-labeling hydrogen exchange coupled with mass spectrometry allow determination of folding intermediate structures at near amino-acid resolution. Here, we combine these techniques to monitor the folding of the ribonuclease H family along the evolutionary lineages of T. thermophilus and E. coli RNase H. All homologs and ancestral proteins studied populate a similar folding intermediate despite being separated by billions of years of evolution. Even though this conformation is conserved, the pathway leading to it has diverged over evolutionary time, and rational mutations can alter this trajectory. Our results demonstrate that evolutionary processes can affect the energy landscape to preserve or alter specific features of a protein’s folding pathway.
Collapse
Affiliation(s)
- Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Eric Richard Bolin
- Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
4
|
Lim SA, Marqusee S. The burst-phase folding intermediate of ribonuclease H changes conformation over evolutionary history. Biopolymers 2018; 109:e23086. [PMID: 29152711 PMCID: PMC6047922 DOI: 10.1002/bip.23086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022]
Abstract
The amino acid sequence encodes the energy landscape of a protein. Therefore, we expect evolutionary mutations to change features of the protein energy landscape, including the conformations adopted by a polypeptide as it folds to its native state. Ribonucleases H (RNase H) from Escherichia coli and Thermus thermophilus both fold via a partially folded intermediate in which the core region of the protein (helices A-D and strands 4-5) is structured. Strand 1, however, uniquely contributes to the T. thermophilus RNase H folding intermediate (Icore+1 ), but not the E. coli RNase H intermediate (Icore ) (Rosen & Marqusee, PLoS One 2015). We explore the origin of this difference by characterizing the folding intermediate of seven ancestral RNases H spanning the evolutionary history of these two homologs. Using fragment models with or without strand 1 and FRET probes to characterize the folding intermediate of each ancestor, we find a distinct evolutionary trend across the family-the involvement of strand 1 in the folding intermediate is an ancestral feature that is maintained in the thermophilic lineage and is gradually lost in the mesophilic lineage. Evolutionary sequence changes indeed modulate the conformations present on the folding landscape and altered the folding trajectory of RNase H.
Collapse
Affiliation(s)
- Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H. Proc Natl Acad Sci U S A 2016; 113:13045-13050. [PMID: 27799545 DOI: 10.1073/pnas.1611781113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein's folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein's energy landscape is maintained or altered throughout evolution is unclear. To study how a protein's energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics.
Collapse
|