1
|
Tomaszkiewicz M, Sahlin K, Medvedev P, Makova KD. Transcript Isoform Diversity of Ampliconic Genes on the Y Chromosome of Great Apes. Genome Biol Evol 2023; 15:evad205. [PMID: 37967251 PMCID: PMC10673640 DOI: 10.1093/gbe/evad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Y chromosomal ampliconic genes (YAGs) are important for male fertility, as they encode proteins functioning in spermatogenesis. The variation in copy number and expression levels of these multicopy gene families has been studied in great apes; however, the diversity of splicing variants remains unexplored. Here, we deciphered the sequences of polyadenylated transcripts of all nine YAG families (BPY2, CDY, DAZ, HSFY, PRY, RBMY, TSPY, VCY, and XKRY) from testis samples of six great ape species (human, chimpanzee, bonobo, gorilla, Bornean orangutan, and Sumatran orangutan). To achieve this, we enriched YAG transcripts with capture probe hybridization and sequenced them with long (Pacific Biosciences) reads. Our analysis of this data set resulted in several findings. First, we observed evolutionarily conserved alternative splicing patterns for most YAG families except for BPY2 and PRY. Second, our results suggest that BPY2 transcripts and proteins originate from separate genomic regions in bonobo versus human, which is possibly facilitated by acquiring new promoters. Third, our analysis indicates that the PRY gene family, having the highest representation of noncoding transcripts, has been undergoing pseudogenization. Fourth, we have not detected signatures of selection in the five YAG families shared among great apes, even though we identified many species-specific protein-coding transcripts. Fifth, we predicted consensus disorder regions across most gene families and species, which could be used for future investigations of male infertility. Overall, our work illuminates the YAG isoform landscape and provides a genomic resource for future functional studies focusing on infertility phenotypes in humans and critically endangered great apes.
Collapse
Affiliation(s)
- Marta Tomaszkiewicz
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Paul Medvedev
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kateryna D Makova
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Tomaszkiewicz M, Sahlin K, Medvedev P, Makova KD. Transcript Isoform Diversity of Ampliconic Genes on the Y Chromosome of Great Apes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530874. [PMID: 36993458 PMCID: PMC10054944 DOI: 10.1101/2023.03.02.530874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Y-chromosomal Ampliconic Genes (YAGs) are important for male fertility, as they encode proteins functioning in spermatogenesis. The variation in copy number and expression levels of these multicopy gene families has been recently studied in great apes, however, the diversity of splicing variants remains unexplored. Here we deciphered the sequences of polyadenylated transcripts of all nine YAG families (BPY2, CDY, DAZ, HSFY, PRY, RBMY, TSPY, VCY, and XKRY) from testis samples of six great ape species (human, chimpanzee, bonobo, gorilla, Bornean orangutan, and Sumatran orangutan). To achieve this, we enriched YAG transcripts with capture-probe hybridization and sequenced them with long (Pacific Biosciences) reads. Our analysis of this dataset resulted in several findings. First, we uncovered a high diversity of YAG transcripts across great apes. Second, we observed evolutionarily conserved alternative splicing patterns for most YAG families except for BPY2 and PRY. Our results suggest that BPY2 transcripts and predicted proteins in several great ape species (bonobo and the two orangutans) have independent evolutionary origins and are not homologous to human reference transcripts and proteins. In contrast, our results suggest that the PRY gene family, having the highest representation of transcripts without open reading frames, has been undergoing pseudogenization. Third, even though we have identified many species-specific protein-coding YAG transcripts, we have not detected any signatures of positive selection. Overall, our work illuminates the YAG isoform landscape and its evolutionary history, and provides a genomic resource for future functional studies focusing on infertility phenotypes in humans and critically endangered great apes.
Collapse
Affiliation(s)
- Marta Tomaszkiewicz
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Paul Medvedev
- Department of Computer Science and Engineering, The Pennsylvania State University
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kateryna D Makova
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Tsai KL, Evans JM, Noorai RE, Starr-Moss AN, Clark LA. Novel Y Chromosome Retrocopies in Canids Revealed through a Genome-Wide Association Study for Sex. Genes (Basel) 2019; 10:genes10040320. [PMID: 31027231 PMCID: PMC6523286 DOI: 10.3390/genes10040320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of an annotated reference sequence for the canine Y chromosome has limited evolutionary studies, as well as our understanding of the role of Y-linked sequences in phenotypes with a sex bias. In genome-wide association studies (GWASs), we observed spurious associations with autosomal SNPs when sex was unbalanced in case-control cohorts and hypothesized that a subset of SNPs mapped to autosomes are in fact sex-linked. Using the Illumina 230K CanineHD array in a GWAS for sex, we identified SNPs that amplify in both sexes but possess significant allele frequency differences between males and females. We found 48 SNPs mapping to 14 regions of eight autosomes and the X chromosome that are Y-linked, appearing heterozygous in males and monomorphic in females. Within these 14 regions are eight genes: three autosomal and five X-linked. We investigated the autosomal genes (MITF, PPP2CB, and WNK1) and determined that the SNPs are diverged nucleotides in retrocopies that have transposed to the Y chromosome. MITFY and WNK1Y are expressed and appeared recently in the Canidae lineage, whereas PPP2CBY represents a much older insertion with no evidence of expression in the dog. This work reveals novel canid Y chromosome sequences and provides evidence for gene transposition to the Y from autosomes and the X.
Collapse
Affiliation(s)
- Kate L Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Jacquelyn M Evans
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA.
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC 29634, USA.
| | - Alison N Starr-Moss
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
4
|
Spermatogenic failure and the Y chromosome. Hum Genet 2017; 136:637-655. [PMID: 28456834 DOI: 10.1007/s00439-017-1793-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Abstract
The Y chromosome harbors a number of genes essential for testis development and function. Its highly repetitive structure predisposes this chromosome to deletion/duplication events and is responsible for Y-linked copy-number variations (CNVs) with clinical relevance. The AZF deletions remove genes with predicted spermatogenic function en block and are the most frequent known molecular causes of impaired spermatogenesis (5-10% of azoospermic and 2-5% of severe oligozoospermic men). Testing for this deletion has both diagnostic and prognostic value for testicular sperm retrieval in azoospermic men. The most dynamic region on the Yq is the AZFc region, presenting numerous NAHR hotspots leading to partial losses or gains of the AZFc genes. The gr/gr deletion (a partial AZFc deletion) negatively affects spermatogenic efficiency and it is a validated, population-dependent risk factor for oligozoospermia. In certain populations, the Y background may play a role in the phenotypic expression of partial AZFc rearrangements and similarly it may affect the predisposition to specific deletions/duplication events. Also, the Yp contains a gene array, TSPY1, with potential effect on germ cell proliferation. Despite intensive investigations during the last 20 years on the role of this sex chromosome in spermatogenesis, a number of clinical and basic questions remain to be answered. This review is aimed at providing an overview of the role of Y chromosome-linked genes, CNVs, and Y background in spermatogenesis.
Collapse
|
5
|
Dhanoa JK, Mukhopadhyay CS, Arora JS. Y-chromosomal genes affecting male fertility: A review. Vet World 2016; 9:783-91. [PMID: 27536043 PMCID: PMC4983133 DOI: 10.14202/vetworld.2016.783-791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/23/2016] [Indexed: 12/30/2022] Open
Abstract
The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility.
Collapse
Affiliation(s)
- Jasdeep Kaur Dhanoa
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India
| | - Jaspreet Singh Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India
| |
Collapse
|