1
|
Serrano-López EM, Coronado-Parra T, Marín-Vicente C, Szallasi Z, Gómez-Abellán V, López-Andreo MJ, Gragera M, Gómez-Fernández JC, López-Nicolás R, Corbalán-García S. Deciphering the Role and Signaling Pathways of PKCα in Luminal A Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232214023. [PMID: 36430510 PMCID: PMC9696894 DOI: 10.3390/ijms232214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of highly related serine/threonine protein kinases involved in multiple signaling pathways, which control cell proliferation, survival, and differentiation. The role of PKCα in cancer has been studied for many years. However, it has been impossible to establish whether PKCα acts as an oncogene or a tumor suppressor. Here, we analyzed the importance of PKCα in cellular processes such as proliferation, migration, or apoptosis by inhibiting its gene expression in a luminal A breast cancer cell line (MCF-7). Differential expression analysis and phospho-kinase arrays of PKCα-KD vs. PKCα-WT MCF-7 cells identified an essential set of proteins and oncogenic kinases of the JAK/STAT and PI3K/AKT pathways that were down-regulated, whereas IGF1R, ERK1/2, and p53 were up-regulated. In addition, unexpected genes related to the interferon pathway appeared down-regulated, while PLC, ERBB4, or PDGFA displayed up-regulated. The integration of this information clearly showed us the usefulness of inhibiting a multifunctional kinase-like PKCα in the first step to control the tumor phenotype. Then allowing us to design a possible selection of specific inhibitors for the unexpected up-regulated pathways to further provide a second step of treatment to inhibit the proliferation and migration of MCF-7 cells. The results of this study suggest that PKCα plays an oncogenic role in this type of breast cancer model. In addition, it reveals the signaling mode of PKCα at both gene expression and kinase activation. In this way, a wide range of proteins can implement a new strategy to fine-tune the control of crucial functions in these cells and pave the way for designing targeted cancer therapies.
Collapse
Affiliation(s)
- Emilio M. Serrano-López
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Teresa Coronado-Parra
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Microscopy Core Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Consuelo Marín-Vicente
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Cardiovascular Proteomics and Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioinformatics, Semmelweis University, H-1092 Budapest, Hungary
| | - Victoria Gómez-Abellán
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Department of Cellular Biology and Histology, Biology School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
| | - María José López-Andreo
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Molecular Biology Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Marcos Gragera
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Centro Nacional Biotecnología, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Juan C. Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Rubén López-Nicolás
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Department of Bromatology and Nutrition, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| |
Collapse
|
2
|
Inoue-Yamauchi A, Itagaki H, Oda H. Eicosapentaenoic acid attenuates obesity-related hepatocellular carcinogenesis. Carcinogenesis 2018; 39:28-35. [PMID: 29040439 PMCID: PMC5862334 DOI: 10.1093/carcin/bgx112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of obesity, is an emerging risk factor for hepatocellular carcinoma (HCC). Accumulating evidence has shown that chronic inflammation represents a plausible link between obesity and HCC and that the pro-inflammatory cytokine interleukin (IL)-6 contributes to the development of obesity-related HCC. In the present study, we aimed to examine the therapeutic potential of the omega-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA), which exerts anti-inflammatory effects. The results showed that the development of carcinogen-induced HCC was significantly less in mice fed a high-fat diet (HFD) supplemented with EPA than in those fed HFD only, suggesting that EPA attenuates the development of obesity-related HCC. Although EPA did not appear to affect obesity-linked inflammation, it suppressed the activation of the pro-tumorigenic IL-6 effector STAT3, contributing to the inhibition of tumor growth. These findings suggest a clinical implication of EPA as a treatment for obesity-related HCC.
Collapse
Affiliation(s)
| | - Hiroko Itagaki
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideaki Oda
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Iżykowska K, Przybylski GK, Gand C, Braun FC, Grabarczyk P, Kuss AW, Olek-Hrab K, Bastidas Torres AN, Vermeer MH, Zoutman WH, Tensen CP, Schmidt CA. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sézary syndrome. Oncotarget 2018; 8:39627-39639. [PMID: 28489605 PMCID: PMC5503638 DOI: 10.18632/oncotarget.17383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive, leukemic cutaneous T-cell lymphoma variant. Molecular pathogenesis of SS is still unclear despite many studies on genetic alterations, gene expression and epigenetic regulations. Through whole genome and transcriptome next generation sequencing nine Sézary syndrome patients were analyzed in terms of copy number variations and rearrangements affecting gene expression. Recurrent copy number variations were detected within 8q (MYC, TOX), 17p (TP53, NCOR1), 10q (PTEN, FAS), 2p (DNMT3A), 11q (USP28), 9p (CAAP1), but no recurrent rearrangements were identified. However, expression of five genes involved in rearrangements (TMEM244, EHD1, MTMR2, RNF123 and TOX) was altered in all patients. Fifteen rearrangements detected in Sézary syndrome patients and SeAx resulted in an expression of new fusion transcripts, nine of them were in frame (EHD1-CAPN12, TMEM66-BAIAP2, MBD4-PTPRC, PTPRC-CPN2, MYB-MBNL1, TFG-GPR128, MAP4K3-FIGLA, DCP1A-CCL27, MBNL1-KIAA2018) and five resulted in ectopic expression of fragments of genes not expressed in normal T-cells (BAIAP2, CPN2, GPR128, CAPN12, FIGLA). Our results not only underscored the genomic complexity of the Sézary cancer cell genome but also showed an unpreceded large variety of novel gene rearrangements resulting in fusions transcripts and ectopically expressed genes.
Collapse
Affiliation(s)
| | | | - Claudia Gand
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Floriane C Braun
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Andreas W Kuss
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karolina Olek-Hrab
- Department of Dermatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | | | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian A Schmidt
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Saint-Paul L, Nguyen CH, Buffière A, Pais de Barros JP, Hammann A, Landras-Guetta C, Filomenko R, Chrétien ML, Johnson P, Bastie JN, Delva L, Quéré R. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts. Oncotarget 2018; 7:64785-64797. [PMID: 27579617 PMCID: PMC5323116 DOI: 10.18632/oncotarget.11622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 01/19/2023] Open
Abstract
CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.
Collapse
Affiliation(s)
- Laetitia Saint-Paul
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR9187-U1196, CNRS-Institut Curie, Inserm, Centre Universitaire, Orsay, France
| | - Anne Buffière
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Jean-Paul Pais de Barros
- LipSTIC Labex, Dijon, France.,Plateforme de lipidomique, Université Bourgogne-Franche-Comté, Dijon, France
| | - Arlette Hammann
- Plateforme de cytométrie, Université Bourgogne-Franche-Comté, Dijon, France
| | - Corinne Landras-Guetta
- Institut Curie, PSL Research University, UMR9187-U1196, CNRS-Institut Curie, Inserm, Centre Universitaire, Orsay, France
| | | | - Marie-Lorraine Chrétien
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Hôpital Universitaire François-Mitterrand, Service d'Hématologie Clinique, Dijon, France
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Noël Bastie
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Hôpital Universitaire François-Mitterrand, Service d'Hématologie Clinique, Dijon, France
| | - Laurent Delva
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Ronan Quéré
- Inserm UMR866, Université Bourgogne-Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| |
Collapse
|
5
|
Sun X, Zhang J, Wang Z, Ji W, Tian R, Zhang F, Niu R. Shp2 Plays a Critical Role in IL-6-Induced EMT in Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18020395. [PMID: 28208810 PMCID: PMC5343930 DOI: 10.3390/ijms18020395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 01/05/2023] Open
Abstract
Accumulative evidence demonstrates that the protein tyrosine phosphatase Shp2 functions as a powerful tumor promoter in many types of cancers. Abnormal expression of Shp2 has been implicated in many human malignancies. Overexpression of Shp2 in cancer tissues is correlated with cancer metastasis, resistance to targeted therapy, and poor prognosis. The well-known function of Shp2 is its positive role in regulating cellular signaling initiated by growth factors and cytokines, including interleukin-6 (IL-6). Several recent studies have shown that Shp2 is required for epithelial-mesenchymal transition (EMT), triggered by growth factors. However, whether Shp2 is involved in IL-6-signaling-promoted breast cancer EMT and progression, remains undefined. In this study, we showed that exogenous and endogenous IL-6 can enhance breast cancer invasion and migration, through the promotion of EMT. IL-6 also induces the activation of Erk1/2 and the phosphorylation of Shp2. Knockdown of Shp2 attenuated the IL-6-induced downregulation of E-cadherin, as well as IL-6-promoted cell migration and invasion. Moreover, by using Shp2 phosphatase mutants, phosphor-tyrosine mimicking, and deficiency mutants, we provided evidence that the phosphatase activity of Shp2 and its tyrosine phosphorylation, are necessary for the IL-6-induced downregulation of E-cadherin and the phosphorylation of Erk1/2. Our findings uncover an important function that links Shp2 to IL-6-promoted breast cancer progression.
Collapse
Affiliation(s)
- Xuan Sun
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Jie Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
- Cambridge-Suda Genome Research Center; Soochow University, Suzhou 215123, China.
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| |
Collapse
|