1
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
2
|
Wang ZJ, Dai ZZ, Hu MZ, Liu JN, Liang H, Shen MM, Zhu SJ, Sheng HJ, Gao J, Huang AL, Tang KF. Upregulation of TUBG1 expression promotes hepatocellular carcinoma development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:96. [PMID: 36792863 DOI: 10.1007/s12032-023-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Tubulin γ-1 (TUBG1) is a highly conserved component of the centrosome and its deregulation is involved in the development of several types of cancer. However, the role of TUBG1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we found that TUBG1 was upregulated in human HCC cells and tissues and that TUBG1 upregulation was associated with promoter hypomethylation in HCC tissues. TUBG1 knockdown suppressed the proliferation, invasion, and migration of HCC cells. While TUBG1 expression was positively correlated with CD4 + memory T lymphocyte infiltration, it was negatively correlated with CD4 + regulatory T-cell infiltration in human HCC tissues. Furthermore, TUBG1 expression was positively correlated with the expression of genes involved in cell division. Noticeably, high expression of TUBG1 was associated with poor prognosis in patients with HCC. Overall, our findings revealed that TUBG1 promotes hepatocarcinogenesis by increasing proliferation, invasion, and migration of HCC cells and may regulate T lymphocyte infiltration. The current findings provide important insights into TUBG1 regulation in HCC, which could provide new therapeutic targets for hepatocarcinoma which has a very high incidence and mortality rate worldwide.
Collapse
Affiliation(s)
- Zi-Jian Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,The First Clinical College, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhi-Zheng Dai
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei-Zhen Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun-Nan Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hang Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shu-Juan Zhu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hua-Jun Sheng
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jian Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
4
|
Wang Q, Wu G, Fu L, Li Z, Wu Y, Zhu T, Yu G. Tumor-promoting roles of HMMR in lung adenocarcinoma. Mutat Res 2022; 826:111811. [PMID: 36603370 DOI: 10.1016/j.mrfmmm.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022]
Abstract
Searching for differential genes in lung adenocarcinoma (LUAD) is vital for research. Hyaluronan mediated motility receptor (HMMR) promotes malignant progression of cancer patients. However, the molecular regulators of HMMR-mediated LUAD onset are unknown. This work aimed to study the relevance of HMMR to proliferation, migration and invasion of LUAD cells. Let-7c-5p and HMMR levels in LUAD cells and HLF-a cells were assessed, and their correlation was also detected. Their interaction was determined by dual-luciferase experiments and qRT-PCR. Cell proliferation, migration and invasion potentials in vitro were validated through cell counting kit-8 (CCK-8), colony formation, scratch healing, and transwell assays. The expression of HMMR was examined by qRT-PCR and western blot and the expression of let-7c-5p was assayed by qRT-PCR. It was found that HMMR level was increased in LUAD and negatively correlated with let-7c-5p level. Let-7c-5p directly targeted HMMR to repress LUAD cell proliferation, migration and invasion. The above data illustrated that the let-7c-5p/HMMR axis may provide certain therapeutic value for LUAD patients.
Collapse
Affiliation(s)
- Qihao Wang
- Shaoxing University School of Medicine, Shaoxing, Zhejiang Province 312000, China
| | - Guomin Wu
- Shaoxing University School of Medicine, Shaoxing, Zhejiang Province 312000, China
| | - Linhai Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Zhupeng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Ting Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Guangmao Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China.
| |
Collapse
|
5
|
Möller S, Saul N, Projahn E, Barrantes I, Gézsi A, Walter M, Antal P, Fuellen G. Gene co-expression analyses of health(span) across multiple species. NAR Genom Bioinform 2022; 4:lqac083. [PMID: 36458022 PMCID: PMC9706456 DOI: 10.1093/nargab/lqac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Health(span)-related gene clusters/modules were recently identified based on knowledge about the cross-species genetic basis of health, to interpret transcriptomic datasets describing health-related interventions. However, the cross-species comparison of health-related observations reveals a lot of heterogeneity, not least due to widely varying health(span) definitions and study designs, posing a challenge for the exploration of conserved healthspan modules and, specifically, their transfer across species. To improve the identification and exploration of conserved/transferable healthspan modules, here we apply an established workflow based on gene co-expression network analyses employing GEO/ArrayExpress data for human and animal models, and perform a comprehensive meta-study of the resulting modules related to health(span), yielding a small set of literature backed health(span) candidate genes. For each experiment, WGCNA (weighted gene correlation network analysis) was used to infer modules of genes which correlate in their expression with a 'health phenotype score' and to determine the most-connected (hub) genes (and their interactions) for each such module. After mapping these hub genes to their human orthologs, 12 health(span) genes were identified in at least two species (ACTN3, ANK1, MRPL18, MYL1, PAXIP1, PPP1CA, SCN3B, SDCBP, SKIV2L, TUBG1, TYROBP, WIPF1), for which enrichment analysis by g:profiler found an association with actin filament-based movement and associated organelles, as well as muscular structures. We conclude that a meta-study of hub genes from co-expression network analyses for the complex phenotype health(span), across multiple species, can yield molecular-mechanistic insights and can direct experimentalists to further investigate the contribution of individual genes and their interactions to health(span).
Collapse
Affiliation(s)
- Steffen Möller
- To whom correspondence should be addressed. Tel: +49 381 494 7361; Fax: +49 381 494 7203;
| | - Nadine Saul
- Humboldt-University of Berlin, Institute of Biology, Berlin, Germany
| | - Elias Projahn
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| | - Israel Barrantes
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| | - András Gézsi
- Budapest University of Technology and Economics, Department of Measurement and Information Systems, Budapest, Hungary
| | - Michael Walter
- Rostock University Medical Center, Institute for Clinical Chemistry and Laboratory Medicine, Rostock, Germany
| | - Péter Antal
- Budapest University of Technology and Economics, Department of Measurement and Information Systems, Budapest, Hungary
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| |
Collapse
|
6
|
Chen T, Zhang S, Zhou D, Lu P, Mo X, Tamrakar R, Yang X. Screening of co-pathogenic genes of non-alcoholic fatty liver disease and hepatocellular carcinoma. Front Oncol 2022; 12:911808. [PMID: 36033523 PMCID: PMC9410624 DOI: 10.3389/fonc.2022.911808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a risk factor for hepatocellular carcinoma (HCC). However, its carcinogenic mechanism is still unclear, looking for both diseases’ transcriptome levels, the same changes as we are looking for NAFLD may provide a potential mechanism of action of HCC. Thus, our study aimed to discover the coexisting pathogenic genes of NAFLD and HCC. Methods We performed a variance analysis with public data for both diseases. At the same time, weighted gene correlation network analysis (WGCNA) was used to find highly correlated gene modules in both diseases. The darkturquoise gene module was found to be highly correlated with both diseases. Based on the diagnosis related module genes and the differential genes of the two diseases, we constructed diagnostic and prognostic models by logistic regression, univariate Cox regression, and LASSO regression. Public datasets verified the results. Meanwhile, we built a competing endogenous RNA (ceRNA) network based on the model genes and explored the related pathways and immune correlation involved in the two diseases by using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analyses. Immunohistochemistry was used to verify the different expression of ABCC5 and TUBG1 among the normal liver, NAFLD, and HCC tissues. Sodium palmitate/sodium oleate was used to establish high-fat cell models, and Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify the messenger RNA (mRNA) expression of ABCC5 in lipidization cells. Results A total of 26 upregulated genes and 87 downregulated genes were found using limma package identification analysis. According to WGCNA, the darkturquoise gene module was highly correlated with the prognosis of both diseases. The coexisting genes acquired by the two groups were only three central genes, that is, ABCC5, DHODH and TUBG1. The results indicated that the diagnostic and prognostic models constructed by ABCC5 and TUBG1 genes had high accuracy in both diseases. The results of immunohistochemistry showed that ABCC5 and TUBG1 were significantly overexpressed in NAFLD and HCC tissues compared with normal liver tissues. The Oil Red O staining and triglyceride identified the successful construction of HepG2 and LO2 high-fat models using PA/OA. The results of RT-qPCR showed that the lipidization of LO2 and HepG2 increased the mRNA expression of ABCC5. Conclusions The gene model constructed by ABCC5 and TUBG1 has high sensibility and veracity in the diagnosis of NAFLD as well as the diagnosis and prognosis of HCC. ABCC5 and TUBG1 may play an important role in the development of NAFLD to HCC. In addition, lipidization could upregulate the mRNA expression of ABCC5 in HCC.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Siwen Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| | - Dongmei Zhou
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rashi Tamrakar
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| |
Collapse
|
7
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
8
|
Huang CH, Han W, Wu YZ, Shen GL. Identification of aberrantly methylated differentially expressed genes and pro-tumorigenic role of KIF2C in melanoma. Front Genet 2022; 13:817656. [PMID: 35991567 PMCID: PMC9387026 DOI: 10.3389/fgene.2022.817656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive malignant cancer, which could be directly derived from melanocytic nevi. However, the molecular mechanisms underlying the malignant transformation of melanocytes and melanoma tumor progression still remain unclear. Increasing research showed significant roles of epigenetic modifications, especially DNA methylation, in melanoma. This study focused on the identification and analysis of methylation-regulated differentially expressed genes (MeDEGs) between melanocytic nevus and malignant melanoma in genome-wide profiles.Methods: The gene expression profiling datasets (GSE3189 and GSE114445) and gene methylation profiling datasets (GSE86355 and GSE120878) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified via GEO2R. MeDEGs were obtained by integrating the DEGs and DMGs. Then, a functional enrichment analysis of MeDEGs was performed. STRING and Cytoscape were used to describe the protein-protein interaction (PPI) network. Furthermore, survival analysis was implemented to select the prognostic hub genes. Next, we conducted gene set enrichment analysis (GSEA) of hub genes. To validate, SKCM cell culture and lentivirus infection was performed to reveal the expression and behavior pattern of KIF2C. Patients and specimens were collected and then immunohistochemistry (IHC) staining was conducted.Results: We identified 237 hypomethylated, upregulated genes and 182 hypermethylated, downregulated genes. Hypomethylation-upregulated genes were enriched in biological processes of the oxidation-reduction process, cell proliferation, cell division, phosphorylation, extracellular matrix disassembly and protein sumoylation. Pathway enrichment showed selenocompound metabolism, small cell lung cancer and lysosome. Hypermethylation-downregulated genes were enriched in biological processes of positive regulation of transcription from RNA polymerase II promoter, cell adhesion, cell proliferation, positive regulation of transcription, DNA-templated and angiogenesis. The most significantly enriched pathways involved the transcriptional misregulation in cancer, circadian rhythm, tight junction, protein digestion and absorption and Hippo signaling pathway. After PPI establishment and survival analysis, seven prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F targets, G2M checkpoint and mitotic spindle. Importantly, among the 7 hub genes, we found that down-regulated level of KIF2C expression significantly inhibited the proliferative ability of SKCM cells and suppressed the metastasis capacity of SKCM cells.Conclusions: Our study identified potential aberrantly methylated-differentially expressed genes participating in the process of malignant transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and FBL provided clues of aberrantly methylation-based biomarkers, which might improve the development of precision medicine. KIF2C plays a pro-tumorigenic role and potentially inhibited the proliferative ability in SKCM.
Collapse
Affiliation(s)
- Chun-Hui Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgery, Soochow University, Suzhou, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yi-Zhu Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgery, Soochow University, Suzhou, China
| | - Guo-Liang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgery, Soochow University, Suzhou, China
- *Correspondence: Guo-Liang Shen,
| |
Collapse
|
9
|
Modification of BRCA1-associated breast cancer risk by HMMR overexpression. Nat Commun 2022; 13:1895. [PMID: 35393420 PMCID: PMC8989921 DOI: 10.1038/s41467-022-29335-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.
Collapse
|
10
|
Chengcheng L, Haidar Abbas Raza S, Shengchen Y, Mohammedsaleh ZM, Shater AF, Saleh FM, Alamoudi MO, Aloufi BH, Mohajja Alshammari A, Schreurs NM, Zan L. Bioinformatics role of the WGCNA analysis and Co-expression network identifies of prognostic marker in lung cancer. Saudi J Biol Sci 2022; 29:3519-3527. [PMID: 35844396 PMCID: PMC9280221 DOI: 10.1016/j.sjbs.2022.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/13/2022] [Indexed: 12/09/2022] Open
|
11
|
Kahl I, Mense J, Finke C, Boller AL, Lorber C, Győrffy B, Greve B, Götte M, Espinoza-Sánchez NA. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem 2022; 123:581-600. [PMID: 35014077 DOI: 10.1002/jcb.30205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)-mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptor-positive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triple-negative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation. Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival analysis of miR-34c-5p, miR-375, and miR-142-3p showed a different impact on the prognosis of breast cancer patients. Our study suggests that RHAMM, AURKA, TPX2, PLK1, and PLK4 can be used as potential targets for treatment or as a prognostic value in breast cancer patients.
Collapse
Affiliation(s)
- Iris Kahl
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Julian Mense
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Christopher Finke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Anna-Lena Boller
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Clara Lorber
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| |
Collapse
|
12
|
Yucer N, Ahdoot R, Workman MJ, Laperle AH, Recouvreux MS, Kurowski K, Naboulsi DJ, Liang V, Qu Y, Plummer JT, Gayther SA, Orsulic S, Karlan BY, Svendsen CN. Human iPSC-derived fallopian tube organoids with BRCA1 mutation recapitulate early-stage carcinogenesis. Cell Rep 2021; 37:110146. [PMID: 34965417 PMCID: PMC9000920 DOI: 10.1016/j.celrep.2021.110146] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022] Open
Abstract
Germline pathogenic mutations in BReast CAncer (BRCA1) genes are thought to drive normal fallopian tube epithelial (FTE) cell transformation to high-grade serous ovarian cancer. No human models capture the sequence of events for disease initiation and progression. Here, we generate induced pluripotent stem cells (iPSCs) from healthy individuals and young ovarian cancer patients with germline pathogenic BRCA1 mutations (BRCA1mut). Following differentiation into FTE organoids, BRCA1mut lines exhibit cellular abnormalities consistent with neoplastic transformation compared to controls. BRCA1mut organoids show an increased production of cancer-specific proteins and survival following transplantation into mice. Organoids from women with the most aggressive ovarian cancer show the greatest pathology, indicating the potential value to predict clinical severity prior to disease onset. These human FTE organoids from BRCA1mut carriers provide a faithful physiological in vitro model of FTE lesion generation and early carcinogenesis. This platform can be used for personalized mechanistic and drug screening studies. Yucer et al. generate a human BRCA1 mutant iPSC-derived fallopian tube organoid model, which recapitulates BRCA1 mutant ovarian carcinogenesis in vitro and shows tumors in vivo. This model provides a biologically relevant platform to validate drugs and a basis for personalized early detection and preventative strategies for women carrying BRCA1 mutations.
Collapse
|
13
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
14
|
Wu C, Qi X, Qiu Z, Deng G, Zhong L. Low expression of KIF20A suppresses cell proliferation, promotes chemosensitivity and is associated with better prognosis in HCC. Aging (Albany NY) 2021; 13:22148-22163. [PMID: 34491228 PMCID: PMC8507281 DOI: 10.18632/aging.203494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
This study analysed the microarray datasets from Gene Expression Omnibus (GEO) database, and aimed to identify novel potential hub genes associated with the progression of HCC via bioinformatics analysis and experimental validation. The common differentially expressed genes (DEGs) from five GEO datasets were screened using GEO2R tool. The expression and survival analysis of hub genes in HCC were performed using Gene Expression Profiling Interactive Analysis, UALCAN and Kaplan-Meier plotter tools. In vitro functional assays were used to determine the caspase-3, -9, cell proliferation and chemo-sensitivity of HCC cells. A total of 177 common DEGs were identified between normal liver and HCC tissues among these datasets. Functional enrichment and PPI network analysis identified 22 hub genes from the common DEGs. The mRNA expression of 22 hub genes was all significantly up-regulated in HCC tissues compared to that in normal liver tissues. Further survival analysis showed that 10 hub genes predicted poor prognosis of patients with HCC. More importantly, the in vitro functional studies demonstrated that KIF20A knockdown suppressed the HCC cell proliferation and promoted the chemosensitivity of HCC cells to cisplatin and sorafenib. In conclusion, the present study identified a total of 177 common DEGs among 5 GEO microarray datasets and found that 10 hub genes could predict the poor prognosis of patients with HCC using the comprehensive bioinformatics analysis. Furthermore, KIF20A silence suppressed cell proliferation and enhanced chemosensitivity in HCC cells. Further studies may be required to determine the mechanistic role of these hub genes in HCC progression.
Collapse
Affiliation(s)
- Chuanxing Wu
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaosheng Qi
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Guilong Deng
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Miralaei N, Majd A, Ghaedi K, Peymani M, Safaei M. Integrated pan-cancer of AURKA expression and drug sensitivity analysis reveals increased expression of AURKA is responsible for drug resistance. Cancer Med 2021; 10:6428-6441. [PMID: 34337875 PMCID: PMC8446408 DOI: 10.1002/cam4.4161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction The AURKA gene encodes a protein kinase involved in cell cycle regulation and plays an oncogenic role in many cancers. The main objective of this study is to analyze AURKA expression in 13 common cancers and its role in prognostic and drug resistance. Method Using the cancer genome atlas (TCGA) as well as CCLE and GDSC data, the level of AURKA gene expression and its role in prognosis and its association with drug resistance were evaluated, respectively. In addition, the expression level of AURKA was assessed in colorectal cancer (CRC) and gastric cancer (GC) samples. Besides, using Gene Expression Omnibus (GEO) data, drugs that could affect the expression level of this gene were also identified. Results The results indicated that the expression level of AURKA gene in 13 common cancers increased significantly compared to normal samples or it survived poorly (HR >1, p < 0.01) in lung, prostate, kidney, bladder, and uterine cancers. Also, the gene expression data showed increased expression in CRC and GC samples compared to normal ones. The level of AURKA was significantly associated with the resistance to SB 505124, NU‐7441, and irinotecan drugs (p < 0.01). Eventually, GEO data showed that JQ1, actinomycin D1, and camptothecin could reduce the expression of AURKA gene in different cancer cell lines (logFC < 1, p < 0.01). Conclusion Increased expression of AURKA is observed in prevalent cancers and associated with poor prognostic and the development of drug resistance. In addition, some chemotherapy drugs can reduce the expression of this gene.
Collapse
Affiliation(s)
- Noushin Miralaei
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Masoomeh Safaei
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, Yang D, Liu S, Zheng Y, Zhou C, Cheng Y. Prognostic Implication of a Novel Metabolism-Related Gene Signature in Hepatocellular Carcinoma. Front Oncol 2021; 11:666199. [PMID: 34150630 PMCID: PMC8213025 DOI: 10.3389/fonc.2021.666199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the main causes of cancer-associated deaths globally, accounts for 90% of primary liver cancers. However, further studies are needed to confirm the metabolism-related gene signature related to the prognosis of patients with HCC. Methods Using the “limma” R package and univariate Cox analysis, combined with LASSO regression analysis, a metabolism-related gene signature was established. The relationship between the gene signature and overall survival (OS) of HCC patients was analyzed. RT-qPCR was used to evaluate the expression of metabolism-related genes in clinical samples. GSEA and ssGSEA algorithms were used to evaluate differences in metabolism and immune status, respectively. Simultaneously, data downloaded from ICGC were used as an external verification set. Results From a total of 1,382 metabolism-related genes, a novel six-gene signature (G6PD, AKR1B15, HMMR, CSPG5, ELOVL3, FABP6) was constructed based on data from TCGA. Patients were divided into two risk groups based on risk scores calculated for these six genes. Survival analysis showed a significant correlation between high-risk patients and poor prognosis. ROC analysis demonstrated that the gene signature had good predictive capability, and the mRNA expression levels of the six genes were upregulated in HCC tissues than those in adjacent normal liver tissues. Independent prognosis analysis confirmed that the risk score and tumor grade were independent risk factors for HCC. Furthermore, a nomogram of the risk score combined with tumor stage was constructed. The calibration graph results demonstrated that the OS probability predicted by the nomogram had almost no deviation from the actual OS probability, especially for 3-year OS. Both the C-index and DCA curve indicated that the nomogram provides higher reliability than the tumor stage and risk scores. Moreover, the metabolic and immune infiltration statuses of the two risk groups were significantly different. In the high-risk group, the expression levels of immune checkpoints, TGF-β, and C-ECM genes, whose functions are related to immune escape and immunotherapy failure, were also upregulated. Conclusions In summary, we developed a novel metabolism-related gene signature to provide more powerful prognostic evaluation information with potential ability to predict the immunotherapy efficiency and guide early treatment for HCC.
Collapse
Affiliation(s)
- Chaoyan Yuan
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingqian Chen
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jinhua Ouyang
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenliang Zhou
- Department of Intensive Care Unit, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Zhang Y, Shi X, Zhang J, Chen X, Zhang P, Liu A, Zhu T. A comprehensive analysis of somatic alterations in Chinese ovarian cancer patients. Sci Rep 2021; 11:387. [PMID: 33432021 PMCID: PMC7801677 DOI: 10.1038/s41598-020-79694-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is one of the most common cancers in women and is often diagnosed as advanced stage because of the subtle symptoms of early ovarian cancer. To identify the somatic alterations and new biomarkers for the diagnosis and targeted therapy of Chinese ovarian cancer patients, a total of 65 Chinese ovarian cancer patients were enrolled for detection of genomic alterations. The most commonly mutated genes in ovarian cancers were TP53 (86.15%, 56/65), NF1 (13.85%, 9/65), NOTCH3 (10.77%, 7/65), and TERT (10.77%, 7/65). Statistical analysis showed that TP53 and LRP1B mutations were associated with the age of patients, KRAS, TP53, and PTEN mutations were significantly associated with tumor differentiation, and MED12, LRP2, PIK3R2, CCNE1, and LRP1B mutations were significantly associated with high tumor mutational burden. The mutation frequencies of LRP2 and NTRK3 in metastatic ovarian cancers were higher than those in primary tumors, but the difference was not significant (P = 0.072, for both). Molecular characteristics of three patients responding to olapanib supported that BRCA mutation and HRD related mutations is the target of olaparib in platinum sensitive patients. In conclusion we identified the somatic alterations and suggested a group of potential biomarkers for Chinese ovarian cancer patients. Our study provided a basis for further exploration of diagnosis and molecular targeted therapy for Chinese ovarian cancer patients.
Collapse
Affiliation(s)
- Yingli Zhang
- Department of Gynecologic Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Science, Hangzhou, People's Republic of China.,Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Gynecological Surgery, Zhejiang Cancer Hospital, No 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Xiaoliang Shi
- OrigiMed Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Jiejie Zhang
- Department of Gynecologic Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Science, Hangzhou, People's Republic of China.,Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Gynecological Surgery, Zhejiang Cancer Hospital, No 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Xi Chen
- Department of Gynecologic Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Science, Hangzhou, People's Republic of China.,Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Gynecological Surgery, Zhejiang Cancer Hospital, No 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Peng Zhang
- OrigiMed Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Angen Liu
- OrigiMed Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Tao Zhu
- Department of Gynecologic Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Science, Hangzhou, People's Republic of China. .,Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China. .,Department of Gynecological Surgery, Zhejiang Cancer Hospital, No 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
18
|
Guo L, Wang Z, Du Y, Mao J, Zhang J, Yu Z, Guo J, Zhao J, Zhou H, Wang H, Gu Y, Li Y. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int 2020; 20:251. [PMID: 32565735 PMCID: PMC7302385 DOI: 10.1186/s12935-020-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) one of the most common digestive system tumors, threatens the tens of thousands of people with high morbidity and mortality world widely. The purpose of our study was to investigate the related genes of HCC and discover their potential abilities to predict the prognosis of the patients. Methods We obtained RNA sequencing data of HCC from The Cancer Genome Atlas (TCGA) database and performed analysis on protein coding genes. Differentially expressed genes (DEGs) were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted to discover biological functions of DEGs. Protein and protein interaction (PPI) was performed to investigate hub genes. In addition, a method of supervised machine learning, recursive feature elimination (RFE) based on random forest (RF) classifier, was used to screen for significant biomarkers. And the basic experiment was conducted by lab, we constructe a clinical patients’ database, and obtained the data and results of immunohistochemistry. Results We identified five biomarkers with significantly high expression to predict survival risk of the HCC patients. These prognostic biomarkers included SPC25, NUF2, MCM2, BLM and AURKA. We also defined a risk score model with these biomarkers to identify the patients who is in high risk. In our single-center experiment, 95 pairs of clinical samples were used to explore the expression levels of NUF2 and BLM in HCC. Immunohistochemical staining results showed that NUF2 and BLM were significantly up-regulated in immunohistochemical staining. High expression levels of NUF2 and BLM indicated poor prognosis. Conclusion Our investigation provided novel prognostic biomarkers and model in HCC and aimed to improve the understanding of HCC. In the results obtained, we also conducted a part of experiments to verify the theory described earlier, The experimental results did verify our theory.
Collapse
Affiliation(s)
- Lingyun Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030 Gansu China
| | - Zhenjiang Wang
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Yuanyuan Du
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Jie Mao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Junqiang Zhang
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Jiwu Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Jun Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Haitao Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030 Gansu China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030 Gansu China
| | - Yumin Li
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030 Gansu China.,The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030 Gansu China
| |
Collapse
|
19
|
Li W, Pan T, Jiang W, Zhao H. HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Biomed Pharmacother 2020; 129:110217. [PMID: 32559619 DOI: 10.1016/j.biopha.2020.110217] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
As the most common subtype of lung cancer, lung adenocarcinoma (LUAD) is the frequently occurred cancers in human. Therefore, thorough investigation is necessary for understanding the progression of LUAD. HMMR has functioned as a regulator in some cancers, whereas its biological role still needs to be investigated in LUAD. By bioinformatics analysis, we found that HMMR was highly expressed in LUAD tissues and associated with patients' poor prognosis. Further, qRT-PCR demonstrated that HMMR was up-regulated in LUAD tissues and cells. Loss-of-function assays manifested that HMMR knockdown refrained cell proliferation, migration and invasion and enhanced cell apoptosis in LUAD. Later, HMMR was identified as a target gene of miR-34a-5p, which expressed at a low level in LUAD cell and played an anti-oncogenic role in LUAD. Simultaneously, we discovered that miR-34a-5p could directly bind to HCG18. Subsequent assays revealed that HCG18 mediated HMMR expression by sequestering miR-34a-5p. At last, rescue assays proved the carcinogenic role of HCG18/miR-34a-5p/HMMR axis in LUAD cells growth. Importantly, HCG18 was found to facilitate tumor growth in LUAD. Conclusively, HCG18 acted an oncogene in LUAD and enhanced LUAD progression by targeting miR-34a-5p/HMMR axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Thoracic Surgery, The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, PR China
| | - Tinghong Pan
- The Cardiothoracic Surgery of Weifang Yidu Central Hospital, Weifang, 262500, Shandong, PR China
| | - Wei Jiang
- The Pediatrics of Weifang Yidu Central Hospital, Weifang, 262500, Shandong, PR China
| | - Hongying Zhao
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, Jiangsu, PR China.
| |
Collapse
|
20
|
Wang L, Luo X, Cheng C, Amos CI, Cai G, Xiao F. A gene expression-based immune signature for lung adenocarcinoma prognosis. Cancer Immunol Immunother 2020; 69:1881-1890. [PMID: 32372138 DOI: 10.1007/s00262-020-02595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has become the most frequent histologic type of lung cancer in the past several decades. Recent successes with immune checkpoint blockade therapy have demonstrated that the manipulation of the immune system is a very potent treatment for LUAD. This study aims to explore the role of immune-related genes in the development of LUAD and establish a signature that can predict overall survival for LUAD patients. METHODS To identify the differential expression genes (DEGs) between normal and tumor tissues, we developed an analysis strategy to combine an independent-sample design and a paired-sample design using RNA-seq transcriptomic profiling data of The Cancer Genome Atlas LUAD samples. Further, we selected prognostic markers from DEGs and evaluated their prognostic value in a prediction model. RESULTS We identified and validated PD1, PDL1 and CTLA4 genes as prognostic markers, which are well-known immune checkpoints, and revealed two new potential prognostic immune checkpoints for LUAD, HHLA2 (logFC = 2.55, FDR = 1.89 × 10-6) and VTCN1 (logFC = -2.86, FDR = 1.72 × 10-11). Furthermore, we identified an 18-gene LUAD prognostic biomarker panel and observed that the classified high-risk group presented a significantly shorter overall survival time (HR = 3.57, p value = 4.07 × 10-10). The prediction model was validated in five independent high-throughput gene expression datasets. CONCLUSIONS The identified DEG features may serve as potential biomarkers for prognosis prediction of LUAD patients and immunotherapy. Based on that assumption, we identified a gene expression-based immune signature for lung adenocarcinoma prognosis.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.,Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xizhi Luo
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
21
|
He Z, Mei L, Connell M, Maxwell CA. Hyaluronan Mediated Motility Receptor (HMMR) Encodes an Evolutionarily Conserved Homeostasis, Mitosis, and Meiosis Regulator Rather than a Hyaluronan Receptor. Cells 2020; 9:cells9040819. [PMID: 32231069 PMCID: PMC7226759 DOI: 10.3390/cells9040819] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan is an extracellular matrix component that absorbs water in tissues and engages cell surface receptors, like Cluster of Differentiation 44 (CD44), to promote cellular growth and movement. Consequently, CD44 demarks stem cells in normal tissues and tumor-initiating cells isolated from neoplastic tissues. Hyaluronan mediated motility receptor (HMMR, also known as RHAMM) is another one of few defined hyaluronan receptors. HMMR is also associated with neoplastic processes and its role in cancer progression is often attributed to hyaluronan-mediated signaling. But, HMMR is an intracellular, microtubule-associated, spindle assembly factor that localizes protein complexes to augment the activities of mitotic kinases, like polo-like kinase 1 and Aurora kinase A, and control dynein and kinesin motor activities. Expression of HMMR is elevated in cells prior to and during mitosis and tissues with detectable HMMR expression tend to be highly proliferative, including neoplastic tissues. Moreover, HMMR is a breast cancer susceptibility gene product. Here, we briefly review the associations between HMMR and tumorigenesis as well as the structure and evolution of HMMR, which identifies Hmmr-like gene products in several insect species that do not produce hyaluronan. This review supports the designation of HMMR as a homeostasis, mitosis, and meiosis regulator, and clarifies how its dysfunction may promote the tumorigenic process and cancer progression.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
| | - Lin Mei
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
| | - Christopher A. Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: ; Tel.: +1-6048752000 (ext. 4691)
| |
Collapse
|
22
|
Zhao B, Wan Z, Zhang X, Zhao Y. Comprehensive analysis reveals a four-gene signature in colorectal cancer. Transl Cancer Res 2020; 9:1395-1405. [PMID: 35117487 PMCID: PMC8799256 DOI: 10.21037/tcr.2020.01.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the major malignant diseases of the gastrointestinal system around the world. However, the current therapeutic regimens were not always effective. This study was designed to identify and depict potential molecular biomarkers and correlated signal pathways in CRC. METHODS The gene expression profiles of GSE21510 were obtained on the Gene Expression Omnibus website, we filtered out 44 samples from the GSE21510 to identify different expression genes (DEGs) between CRC tissues and noncancerous tissues. Subsequently, the function and signal pathways enrichment analyses were implemented, the protein-protein interaction (PPI) networks of DEGs were to be carried out, and the hub genes were screened by MCODE built in Cytoscape software. Lastly, we have validated gene expressions and overall survival analyses of these hub genes in related datasets, such as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ), built in TCGA/GTEx database. RESULTS Results showed that a totally of 166 up-regulated genes and 260 down-regulated genes were identified and met the following criteria: |log2 fold change| ≥2 & adjusted P value <0.01. Here, we identified AURKA, BUB1, DLGAP5 and HMMR, which were associated with the regulation of mitotic cycle phase transition and oocyte meiosis pathways. CONCLUSIONS The findings of these four genes in this study may shed light on the mechanisms of these four genes as drug-sensitive therapeutic targets for the patients of CRC.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zheng Wan
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xiaohong Zhang
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
- School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Byrum AK, Vindigni A, Mosammaparast N. Defining and Modulating 'BRCAness'. Trends Cell Biol 2019; 29:740-751. [PMID: 31362850 DOI: 10.1016/j.tcb.2019.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
The concept of 'BRCAness' defines the pathogenesis and vulnerability of multiple cancers. The canonical definition of BRCAness is a defect in homologous recombination repair, mimicking BRCA1 or BRCA2 loss. In turn, BRCA-deficient cells utilize error-prone DNA-repair pathways, causing increased genomic instability, which may be responsible for their sensitivity to DNA damaging agents and poly-(ADP)-ribose polymerase inhibitors (PARPis). However, recent work has expanded the mechanistic basis of BRCAness, to include defects in replication fork protection (RFP). Here, we broaden the definition of BRCAness to include RFP and regulatory mechanisms that cause synthetic lethality with PARPis. We highlight these recent discoveries, which include mechanisms of RFP regulation, DNA damage checkpoint proteins, as well as kinases that regulate BRCA1/2 function. Importantly, many of these emerging mechanisms may be targeted for inhibition with small molecule inhibitors, thus inducing BRCAness in a much larger subset of BRCA-proficient tumors, with significant translational potential.
Collapse
Affiliation(s)
- Andrea K Byrum
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Yuan L, Huang DS. A Network-guided Association Mapping Approach from DNA Methylation to Disease. Sci Rep 2019; 9:5601. [PMID: 30944378 PMCID: PMC6447594 DOI: 10.1038/s41598-019-42010-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2019] [Indexed: 01/11/2023] Open
Abstract
Aberrant DNA methylation may contribute to development of cancer. However, understanding the associations between DNA methylation and cancer remains a challenge because of the complex mechanisms involved in the associations and insufficient sample sizes. The unprecedented wealth of DNA methylation, gene expression and disease status data give us a new opportunity to design machine learning methods to investigate the underlying associated mechanisms. In this paper, we propose a network-guided association mapping approach from DNA methylation to disease (NAMDD). Compared with existing methods, NAMDD finds methylation-disease path associations by integrating analysis of multiple data combined with a stability selection strategy, thereby mining more information in the datasets and improving the quality of resultant methylation sites. The experimental results on both synthetic and real ovarian cancer data show that NAMDD substantially outperforms former disease-related methylation site research methods (including NsRRR and PCLOGIT) under false positive control. Furthermore, we applied NAMDD to ovarian cancer data, identified significant path associations and provided hypothetical biological path associations to explain our findings.
Collapse
Affiliation(s)
- Lin Yuan
- Institute of Machine Learning and Systems Biology, College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, P.R. China.
| |
Collapse
|
25
|
Zhang H, Ren L, Ding Y, Li F, Chen X, Ouyang Y, Zhang Y, Zhang D. Hyaluronan-mediated motility receptor confers resistance to chemotherapy via TGFβ/Smad2-induced epithelial-mesenchymal transition in gastric cancer. FASEB J 2019; 33:6365-6377. [PMID: 30802150 DOI: 10.1096/fj.201802186r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy is one of the vital treatments for gastric cancer (GC) patients, especially those suffering advanced stages. Chemoresistance results in tumor relapse, leading to poor prognosis in GC patients; thus, identifying key regulators in this process might provide novel clues for GC therapy. Herein, we identify hyaluronan-mediated motility receptor (HMMR) as a key regulator of chemoresistance in GC. HMMR was found to be substantially up-regulated in 5-fluorouracil (5-Fu)-resistant GC biopsies and cell lines. High expression of HMMR significantly correlates with tumor relapse and predicts poorer prognosis in GC patients. Moreover, we observed that HMMR induced epithelial-mesenchymal transition and increased the cancer stem cell properties of GC, thus rendering resistance to chemotherapy. Importantly, silencing of HMMR effectively increased the susceptibility to 5-Fu therapy both in vitro and in vivo. Furthermore, we demonstrated that HMMR activates the TGF-β/Smad2 signaling pathway, which was required for the HMMR-mediated oncogenic effects and exhibited significant clinical relevance with HMMR expression. These findings reveal a critical role for HMMR in the chemoresistance of GC and suggest that HMMR might be a potential prognostic marker or therapeutic target against the disease.-Zhang, H., Ren, L., Ding, Y., Li, F., Chen, X., Ouyang, Y., Zhang, Y., Zhang, D. Hyaluronan-mediated motility receptor confers resistance to chemotherapy via TGFβ/Smad2-induced epithelial-mesenchymal transition in gastric cancer.
Collapse
Affiliation(s)
- Huizhong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangliang Ren
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ya Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fengyan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Zhang
- Department of Medicine Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongsheng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
26
|
van Gijn SE, Wierenga E, van den Tempel N, Kok YP, Heijink AM, Spierings DCJ, Foijer F, van Vugt MATM, Fehrmann RSN. TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene 2019; 38:852-867. [PMID: 30177840 PMCID: PMC6367211 DOI: 10.1038/s41388-018-0470-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/30/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
Genomic instability is a hallmark feature of cancer cells, and can be caused by defective DNA repair, for instance due to inactivation of BRCA2. Paradoxically, loss of Brca2 in mice results in embryonic lethality, whereas cancer cells can tolerate BRCA2 loss. This holds true for multiple DNA repair genes, and suggests that cancer cells are molecularly "rewired" to cope with defective DNA repair and the resulting high levels of genomic instability. In this study, we aim to identify genes that genomically unstable cancer cells rely on for their survival. Using functional genomic mRNA (FGmRNA) profiling, 16,172 cancer samples were previously ranked based on their degree of genomic instability. We analyzed the top 250 genes that showed a positive correlation between FGmRNA levels and the degree of genomic instability, in a co-functionality network. Within this co-functionality network, a strong cluster of 11 cell cycle-related genes was identified, including TPX2. We then assessed the dependency on these 11 genes in the context of survival of genomically unstable cancer cells, induced by BRCA2 inactivation. Depletion of TPX2 or its associated kinase Aurora-A preferentially reduced cell viability in a panel of BRCA2-deficient cancer cells. In line with these findings, BRCA2-depleted and BRCA2-mutant human cell lines, or tumor cell lines derived from Brca2-/-;p53-/- mice showed increased sensitivity to the Aurora-A kinase inhibitor alisertib, with delayed mitotic progression and frequent mitotic failure. Our findings reveal that BRCA2-deficient cancer cells show enhanced sensitivity to inactivation of TPX2 or its partner Aurora-A, which points at an actionable dependency of genomically unstable cancers.
Collapse
Affiliation(s)
- Stephanie E van Gijn
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elles Wierenga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Margriet Heijink
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Dawei H, Honggang D, Qian W. AURKA contributes to the progression of oral squamous cell carcinoma (OSCC) through modulating epithelial-to-mesenchymal transition (EMT) and apoptosis via the regulation of ROS. Biochem Biophys Res Commun 2018; 507:83-90. [PMID: 30454901 DOI: 10.1016/j.bbrc.2018.10.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/27/2018] [Indexed: 11/26/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is known as one of the most common cancer influencing the head and neck region. However, the molecular mechanisms revealing OSCC progression is largely unclear. Aurora kinase A (AURKA) is a serine-threonine kinase that functions in mitotic spindle formation and chromosome segregation, and is associated with the progression of human cancers. But its role in regulating OSCC development has not yet been investigated. In the study, we found that AURKA expression was up-regulated in OSCC cell lines and tumor specimens from patients. OSCC patients with high expression of AURKA exhibited a significant decreased overall survival rate. In vitro, AURKA knockdown markedly reduced the proliferation, migration and invasion of OSCC cells using cell counting kit-8 (CCK-8), EdU, colony formation and transwell analysis. EMT was suppressed by AURKA silence, as evidenced by the up-regulated expression of E-cadherin and down-regulated Vimentin in OSCC cells. In addition, apoptosis was markedly induced by AURKA inhibition through promoting the expression of cleaved Caspase-3 and poly (ADP)-ribose polymerase (PARP). Reactive oxygen species (ROS) production was also markedly enhanced in AURKA-knockdown OSCC cells. Importantly, we found that repressing ROS generation using its scavenger of n-acetylcysteine (NAC) significantly abolished AURKA silence-induced apoptosis, accompanied with restored proliferation and EMT. In vivo, AURKA knockdown notably inhibited tumor growth. Therefore, knockdown of AURKA suppressed cell proliferation, migration and invasion, and also induced apoptosis and ROS generation in OSCC possibly via the production of ROS, demonstrating that AURKA inhibition might represent a novel therapeutic target for the prevention of OSCC.
Collapse
Affiliation(s)
- Hou Dawei
- Department of Oral and Maxillofacial Surgery, Gansu Provincial People's Hospital, Lanzhou, 730000, China
| | - Dong Honggang
- Department of Stomatology, The Affiliated Hospital of Xi'an Medical College, Qindu Town, Xi'an, 710000, China
| | - Wang Qian
- Department of Oral and Maxillofacial Surgery, Gansu Provincial People's Hospital, Lanzhou, 730000, China.
| |
Collapse
|
28
|
Targeting of TRX2 by miR-330-3p in melanoma inhibits proliferation. Biomed Pharmacother 2018; 107:1020-1029. [PMID: 30257313 DOI: 10.1016/j.biopha.2018.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This study is intended to identify the key gene from gene expression profile and validate its role and regulatory mechanism in melanoma. METHODS Gene expression profile of GSE3189 from GEO database was selected among which 7 are normal skin samples, 18 are benign skin lesion samples, and 45 are melanoma samples. The present study examined the 7 normal skin samples and the 45 melanoma samples. Differentially expressed genes (DEGs) between melanoma patients and health people were performed using Morpheus online tool. The 100 most differentially expressed genes (50 upregulated genes and 50 downregulated genes) were selected as hub genes. Then, expression levels and survival analysis of hub genes were conducted via GEPIA tool to choose target gene. The expression of target gene in melanoma cell lines was examined by RT-qPCR and western blotting. The biological function of target gene on cell proliferation in melanoma was measured in vitro. The predicted target of target gene was validated by dual-luciferase reporter assay and rescue experiment. The gene expression in clinical samples were determined by RT-qPCR, immunohistochemistry (IHC) and in situ hybridization (ISH). The tumor formation study was conducted in vivo. RESULTS Targeting protein for Xklp2 (TPX2) was identified as key gene in melanoma. TPX2 could promote the proliferation of melanoma cells. The dual luciferase reporter assay confirmed that miR-330-3p targets TPX2. In rescue experiment, it was proved that miR-330-3p inhibits the proliferation of melanoma cells by negatively regulating the expression of TPX2. The results in vitro were also confirmed in vivo. miR-330-3p/TPX2 pathway expressed differently between melanoma patients and health people. These differences were statistically significant (P < 0.05). CONCLUSION Inhibiting TPX2 by miR-330-3p suppresses the proliferation of melanoma cell lines. miR-330-3p/TPX2 pathway could be a potential therapeutic target in melanoma.
Collapse
|
29
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
30
|
Nguyen N, Kumar A, Chacko S, Ouellette RJ, Ghosh A. Human hyaluronic acid synthase-1 promotes malignant transformation via epithelial-to-mesenchymal transition, micronucleation and centrosome abnormalities. Cell Commun Signal 2017; 15:48. [PMID: 29137675 PMCID: PMC5686803 DOI: 10.1186/s12964-017-0204-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
Background Human hyaluronic acid (HA) molecules are synthesized by three membrane spanning Hyaluronic Acid Synthases (HAS1, HAS2 and HAS3). Of the three, HAS1 is found to be localized more into the cytoplasmic space where it synthesizes intracellular HA. HA is a ubiquitous glycosaminoglycan, mainly present in the extracellular matrix (ECM) and on the cell surface, but are also detected intracellularly. Accumulation of HA in cancer cells, the cancer-surrounding stroma, and ECM is generally considered an independent prognostic factors for patients. Higher HA production also correlates with higher tumor grade and more genetic heterogeneity in multiple cancer types which is known to contribute to drug resistance and results in treatment failure. Tumor heterogeneity and intra-tumor clonal diversity are major challenges for diagnosis and treatment. Identification of the driver pathway(s) that initiate genomic instability, tumor heterogeneity and subsequent phenotypic/clinical manifestations, are fundamental for the diagnosis and treatment of cancer. Thus far, no evidence was shown to correlate intracellular HA status (produced by HAS1) and the generation of genetic diversity in tumors. Methods We tested different cell lines engineered to induce HAS1 expression. We measured the epithelial traits, centrosomal abnormalities, micronucleation and polynucleation of those HAS1-expressing cells. We performed real-time PCR, 3D cell culture assay, confocal microscopy, immunoblots and HA-capture methods. Results Our results demonstrate that overexpression of HAS1 induces loss of epithelial traits, increases centrosomal abnormalities, micronucleation and polynucleation, which together indicate manifestation of malignant transformation, intratumoral genetic heterogeneity, and possibly create suitable niche for cancer stem cells generation. Conclusions The intracellular HA produced by HAS1 can aggravate genomic instability and intratumor heterogeneity, pointing to a fundamental role of intracellular HA in cancer initiation and progression. Electronic supplementary material The online version of this article (10.1186/s12964-017-0204-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyet Nguyen
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Awanit Kumar
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada. .,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
31
|
Huang C, Han Z, Wu D. Effects of TPX2 gene on radiotherapy sensitization in breast cancer stem cells. Oncol Lett 2017; 14:1531-1535. [PMID: 28789376 PMCID: PMC5529734 DOI: 10.3892/ol.2017.6277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
The present study explored the link between the targeting protein for Xenopus kinesin-like protein 2 (TPX2) gene and breast tumor stem cells in order to screen novel radiosensitizers. Expression of TPX2 protein and gene in breast cancer cells was analyzed by western blot analysis and RT-PCR. Three kinds of broad-spectrum sensitizers were selected and their effects on radiotherapy were analyzed by immunohistochemistry in breast tumor stem cells. TPX2 gene and protein were expressed in breast tumor cells and increased gradually along with the expression of cancer cell differentiation; 25 mg/l lovastatin showed best radio-sensitizing effects on breast cancer cells. Furthermore, immunohistochemical results showed that the positive rate of breast cancer cells processed by 25 mg/l lovastatin were significantly decreased. In conclusion, TPX2 gene is closely related to the development of breast cancer stem cells. Moreover, the sensitizing effects of lovastatin on breast tumor stem cells are the result of its influence on the TPX2 gene.
Collapse
Affiliation(s)
- Chaoyou Huang
- Department of Breast and Thyroid Surgery, Hexian Memorial Hospital of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Zheng Han
- Department of Breast and Thyroid Surgery, Hexian Memorial Hospital of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Dehua Wu
- Department of Radiotherapy, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
32
|
Aurora Kinase A is a Biomarker for Bladder Cancer Detection and Contributes to its Aggressive Behavior. Sci Rep 2017; 7:40714. [PMID: 28102366 PMCID: PMC5244380 DOI: 10.1038/srep40714] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
The effects of AURKA overexpression associated with poor clinical outcomes have been attributed to increased cell cycle progression and the development of genomic instability with aneuploidy. We used RNA interference to examine the effects of AURKA overexpression in human bladder cancer cells. Knockdown had minimal effects on cell proliferation but blocked tumor cell invasion. Whole genome mRNA expression profiling identified nicotinamide N-methyltransferase (NNMT) as a downstream target that was repressed by AURKA. Chromatin immunoprecipitation and NNMT promoter luciferase assays revealed that AURKA’s effects on NNMT were caused by PAX3-mediated transcriptional repression and overexpression of NNMT blocked tumor cell invasion in vitro. Overexpression of AURKA and activation of its downstream pathway was enriched in the basal subtype in primary human tumors and was associated with poor clinical outcomes. We also show that the FISH test for the AURKA gene copy number in urine yielded a specificity of 79.7% (95% confidence interval [CI] = 74.2% to 84.1%), and a sensitivity of 79.6% (95% CI = 74.2% to 84.1%) with an AUC of 0.901 (95% CI = 0.872 to 0.928; P < 0.001). These results implicate AURKA as an effective biomarker for bladder cancer detection as well as therapeutic target especially for its basal type.
Collapse
|
33
|
Liu W, Ma J, Cheng Y, Zhang H, Luo W, Zhang H. HMMR antisense RNA 1, a novel long noncoding RNA, regulates the progression of basal-like breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2016; 8:223-229. [PMID: 27920576 PMCID: PMC5125767 DOI: 10.2147/bctt.s119997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, accumulating evidence has suggested that long noncoding RNAs (lncRNAs) play crucial roles in carcinogenesis and cancer progression. Hyaluronan-mediated motility receptor (HMMR) is an essential cancer-related gene in basal-like breast cancer (BLBC). In our study, HMMR antisense RNA 1 (HMMR-AS1) was analyzed in BLBC patients through polymerase chain reaction analysis. Here, we found that the expression of HMMR was positively correlated with HMMR-AS1 (RP11-80G.1). When HMMR-AS1 (RP11-80G.1) was knocked down, the expression of HMMR markedly reduced. Furthermore, in MDA-MB-231 and MDA-MB-468 breast cancer cells, the proliferation and migration abilities were remarkably suppressed via knocking down HMMR-AS1 (RP11-80G.1) in vitro. The results showed that lncRNA HMMR-AS1 (RP11-80G.1) influenced the progression of BLBCs through regulating HMMR, suggesting that HMMR-AS1 (RP11-80G.1) could be regarded as a novel biomarker and therapeutic target in the treatment of BLBCs in future.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Jun Ma
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Yong Cheng
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Hongbo Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Wengguang Luo
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Hongyan Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, People's Republic of China
| |
Collapse
|