1
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Radford GA, Vrbanac L, de Nys RT, Worthley DL, Wright JA, Hasty J, Woods SL. Towards Understanding Tumour Colonisation by Probiotic Bacterium E. coli Nissle 1917. Cancers (Basel) 2024; 16:2971. [PMID: 39272829 PMCID: PMC11394440 DOI: 10.3390/cancers16172971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The last decade has seen a rapid increase in studies utilising a genetically modified probiotic, Escherichia coli Nissle 1917 (EcN), as a chassis for cancer treatment and detection. This approach relies on the ability of EcN to home to and selectively colonise tumours over normal tissue, a characteristic common to some bacteria that is thought to result from the low-oxygen, nutrient-rich and immune-privileged niche the tumour provides. Pre-clinical studies have used genetically modified EcN to deliver therapeutic payloads that show efficacy in reducing tumour burden as a result of high-tumour and low off-target colonisation. Most recently, the EcN chassis has been expanded into an effective tumour-detection tool. These advances provide strong justification for the movement of genetically modified EcN into clinical oncology trials. What is currently unknown in the field is a deep mechanistic understanding of how EcN distributes to and localises within tumours. This review summarises the existing EcN literature, with the inclusion of research undertaken with other tumour-homing and pathogenic bacteria, to provide insights into possible mechanisms of EcN tumour homing for future validation. Understanding exactly how and why EcN colonises neoplastic tissue will inform the design and testing of the next generation of EcN chassis strains to address biosafety and containment concerns and optimise the detection and treatment of cancer.
Collapse
Affiliation(s)
- Georgette A Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Rebekah T de Nys
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | | | - Josephine A Wright
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Jeff Hasty
- Synthetic Biology Institute, University of California, San Diego, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Hu S, Zhou S, Wang Y, Chen W, Yin G, Chen J, Du G, Kang Z. Coordinated optimization of the polymerization and transportation processes to enhance the yield of exopolysaccharide heparosan. Carbohydr Polym 2024; 333:121983. [PMID: 38494235 DOI: 10.1016/j.carbpol.2024.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Heparosan as the precursor for heparin biosynthesis has attracted intensive attention while Escherichia coli Nissle 1917 (EcN) has been applied as a chassis for heparosan biosynthesis. Here, after uncovering the pivotal role of KfiB in heparosan biosynthesis, we further demonstrate KfiB is involved in facilitating KpsT to translocate the nascent heparosan polysaccharide chain. As a result, an artificial expression cassette KfiACB was constructed with optimized RBS elements, resulting in 0.77 g/L heparosan in shake flask culture. Moreover, in view of the intracellular accumulation of heparosan, we further investigated the effects of overexpression of the ABC transport system proteins on heparosan biosynthesis. By co-overexpressing KfiACB with KpsTME, the heparosan production in flask cultures was increased to 1.03 g/L with an extracellular concentration of 0.96 g/L. Eventually, the engineered strain EcN/pET-kfiACB3-galU-kfiD-glmM/pCDF-kpsTME produced 12.2 g/L heparosan in 5-L fed-batch cultures while the extracellular heparosan was about 11.2 g/L. The results demonstrate the high-efficiency of the strategy for co-optimizing the polymerization and transportation for heparosan biosynthesis. Moreover, this strategy should be also available for enhancing the production of other polysaccharides.
Collapse
Affiliation(s)
- Shan Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Siyan Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wuxia Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
5
|
Clarke OE, Pelling H, Bennett V, Matsumoto T, Gregory GE, Nzakizwanayo J, Slate AJ, Preston A, Laabei M, Bock LJ, Wand ME, Ikebukuro K, Gebhard S, Sutton JM, Jones BV. Lipopolysaccharide structure modulates cationic biocide susceptibility and crystalline biofilm formation in Proteus mirabilis. Front Microbiol 2023; 14:1150625. [PMID: 37089543 PMCID: PMC10113676 DOI: 10.3389/fmicb.2023.1150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Chlorhexidine (CHD) is a cationic biocide used ubiquitously in healthcare settings. Proteus mirabilis, an important pathogen of the catheterized urinary tract, and isolates of this species are often described as "resistant" to CHD-containing products used for catheter infection control. To identify the mechanisms underlying reduced CHD susceptibility in P. mirabilis, we subjected the CHD tolerant clinical isolate RS47 to random transposon mutagenesis and screened for mutants with reduced CHD minimum inhibitory concentrations (MICs). One mutant recovered from these screens (designated RS47-2) exhibited ~ 8-fold reduction in CHD MIC. Complete genome sequencing of RS47-2 showed a single mini-Tn5 insert in the waaC gene involved in lipopolysaccharide (LPS) inner core biosynthesis. Phenotypic screening of RS47-2 revealed a significant increase in cell surface hydrophobicity and serum susceptibility compared to the wildtype, and confirmed defects in LPS production congruent with waaC inactivation. Disruption of waaC was also associated with increased susceptibility to a range of other cationic biocides but did not affect susceptibility to antibiotics tested. Complementation studies showed that repression of smvA efflux activity in RS47-2 further increased susceptibility to CHD and other cationic biocides, reducing CHD MICs to values comparable with the most CHD susceptible isolates characterized. The formation of crystalline biofilms and blockage of urethral catheters was also significantly attenuated in RS47-2. Taken together, these data show that aspects of LPS structure and upregulation of the smvA efflux system function in synergy to modulate susceptibility to CHD and other cationic biocides, and that LPS structure is also an important factor in P. mirabilis crystalline biofilm formation.
Collapse
Affiliation(s)
- O. E. Clarke
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - H. Pelling
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - V. Bennett
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - T. Matsumoto
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - G. E. Gregory
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. Nzakizwanayo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. J. Slate
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. Preston
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - M. Laabei
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - L. J. Bock
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - M. E. Wand
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - K. Ikebukuro
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - S. Gebhard
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. M. Sutton
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - B. V. Jones
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
6
|
Ramadevi S, Shelin R, Shanmugaraja M. Comprehensive Analysis of the Physiological Characterization of Escherichia coli Nissle 1917. Curr Microbiol 2023; 80:150. [PMID: 36976334 DOI: 10.1007/s00284-023-03253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023]
Abstract
Escherichia coli Nissle 1917 (EcN) is one of the probiotics that has drawn more attention from researchers in recent days as it extends many host beneficial effects. EcN is being used as a treatment regimen especially for gastrointestinal disorders for more than 100 years. Apart from its clinical applications in its original form, EcN is being genetically engineered to meet the therapeutic requirements which ultimately led to the gradual transformation of EcN from being a mere food supplement to a complex therapeutic agent. However, comprehensive analysis of physiological characterization of EcN is inadequate. In this study, we have systematically studied various physiological parameters and found that EcN grows very well at the normal as well as at stressful conditions such as temperature (30, 37 and 42 °C), nutritional (minimal and LB), pH (ranging from 3 to 7) and osmotic stress (0.4 M NaCl, 0.4 M KCl, 0.4 M Sucrose and salt conditions). However, EcN shows nearly onefold reduction in viability at extreme acidic conditions (pH 3 and 4). It produces biofilm and curlin very efficiently compared to the laboratory strain MG1655. Through genetic analysis we have also shown that EcN exhibits high level of transformation efficiency and greater ability to retain heterogenous plasmid. Very interestingly, we have found that EcN is highly resistant to P1 phage infection. Since, EcN is being exploited largely for its clinical and therapeutic applications, the results that we have reported here would add more value and further expand its scope in clinical and biotechnological research.
Collapse
Affiliation(s)
- S Ramadevi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Chennai, Tamil Nadu, India
| | - Ruby Shelin
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Chennai, Tamil Nadu, India
| | - Meenakshi Shanmugaraja
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Chennai, Tamil Nadu, India.
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India.
| |
Collapse
|
7
|
Chen H, Lei P, Ji H, Yang Q, Peng B, Ma J, Fang Y, Qu L, Li H, Wu W, Jin L, Sun D. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Mater Today Bio 2023; 18:100543. [PMID: 36647536 PMCID: PMC9840185 DOI: 10.1016/j.mtbio.2023.100543] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
With the in-depth and comprehensive study of bacteria and their related ecosystems in the human body, bacterial-based drug delivery system has become an emerging biomimetic platform that can retain the innate biological functions. Benefiting from its good biocompatibility and ideal targeting ability as a biological carrier, Escherichia coli Nissle 1917 (ECN) has been focused on the treatment strategies of inflammatory bowel disease and tumor. The advantage of a bacterial carrier is that it can express exogenous protein while also acting as a natural capsule by releasing drug slowly as a result of its own colonization impact. In order to survive in harsh environments such as the digestive tract and tumor microenvironment, ECN can be modified or genetically engineered to enhance its function and host adaptability. The adoption of ECN carries or expresses drugs which are essential for accurate diagnosis and treatment. This review briefly describes the properties of ECN, the relationship between ECN and inflammation and tumor, and the strategy of using surface modification and genetic engineering to modify ECN as a delivery carrier for disease treatment.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Hao Ji
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and WenZhouOuTai Medical Laboratory Co.,Ltd Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd., Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| |
Collapse
|
8
|
Sequestration of gut pathobionts in intraluminal casts, a mechanism to avoid dysregulated T cell activation by pathobionts. Proc Natl Acad Sci U S A 2022; 119:e2209624119. [PMID: 36201539 PMCID: PMC9565271 DOI: 10.1073/pnas.2209624119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially harmful microbes, favored by IgA binding, reduces the immune system's actual exposure, preserving host-microbe equilibrium. The variable immunostimulation by microbes that has been charted in recent years may not solely be conditioned by triggering molecules or metabolites but also by physical limits to immune system exposure.
Collapse
|
9
|
Feng Z, Wang Y, Xu H, Guo Y, Xia W, Zhao C, Zhao X, Wu J. Recent advances in bacterial therapeutics based on sense and response. Acta Pharm Sin B 2022; 13:1014-1027. [PMID: 36970195 PMCID: PMC10031265 DOI: 10.1016/j.apsb.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Intelligent drug delivery is a promising strategy for cancer therapies. In recent years, with the rapid development of synthetic biology, some properties of bacteria, such as gene operability, excellent tumor colonization ability, and host-independent structure, make them ideal intelligent drug carriers and have attracted extensive attention. By implanting condition-responsive elements or gene circuits into bacteria, they can synthesize or release drugs by sensing stimuli. Therefore, compared with traditional drug delivery, the usage of bacteria for drug loading has better targeting ability and controllability, and can cope with the complex delivery environment of the body to achieve the intelligent delivery of drugs. This review mainly introduces the development of bacterial-based drug delivery carriers, including mechanisms of bacterial targeting to tumor colonization, gene deletions or mutations, environment-responsive elements, and gene circuits. Meanwhile, we summarize the challenges and prospects faced by bacteria in clinical research, and hope to provide ideas for clinical translation.
Collapse
Affiliation(s)
- Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Wen Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
- Corresponding authors. Tel.: +025 83592629.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
- Corresponding authors. Tel.: +025 83592629.
| |
Collapse
|
10
|
Harimoto T, Hahn J, Chen YY, Im J, Zhang J, Hou N, Li F, Coker C, Gray K, Harr N, Chowdhury S, Pu K, Nimura C, Arpaia N, Leong KW, Danino T. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol 2022; 40:1259-1269. [PMID: 35301496 PMCID: PMC9371971 DOI: 10.1038/s41587-022-01244-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/28/2022] [Indexed: 01/27/2023]
Abstract
Living bacteria therapies have been proposed as an alternative approach to treating a broad array of cancers. In this study, we developed a genetically encoded microbial encapsulation system with tunable and dynamic expression of surface capsular polysaccharides that enhances systemic delivery. Based on a small RNA screen of capsular biosynthesis pathways, we constructed inducible synthetic gene circuits that regulate bacterial encapsulation in Escherichia coli Nissle 1917. These bacteria are capable of temporarily evading immune attack, whereas subsequent loss of encapsulation results in effective clearance in vivo. This dynamic delivery strategy enabled a ten-fold increase in maximum tolerated dose of bacteria and improved anti-tumor efficacy in murine models of cancer. Furthermore, in situ encapsulation increased the fraction of microbial translocation among mouse tumors, leading to efficacy in distal tumors. The programmable encapsulation system promises to enhance the therapeutic utility of living engineered bacteria for cancer. Transient capsule induction allows engineered bacteria to evade initial immune surveillance in a colorectal cancer model.
Collapse
Affiliation(s)
- Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yu-Yu Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanna Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kelsey Gray
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicole Harr
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sreyan Chowdhury
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kelly Pu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clare Nimura
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University Medical Center, New York, NY, USA.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA. .,Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
12
|
Jayashree S, Sivakumar R, Karthikeyan R, Gunasekaran P, Rajendhran J. Genome-wide identification of probiotic Escherichia coli Nissle 1917 (EcN) fitness genes during adhesion to the intestinal epithelial cells Caco-2. Gene 2021; 803:145890. [PMID: 34375634 DOI: 10.1016/j.gene.2021.145890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is an efficient probiotic strain extensively used worldwide because of its several health benefits. Adhesion to the intestinal cells is one of the prerequisites for a probiotic strain. To identify the genes essential for the adhesion of EcN on the intestinal cells, we utilized a quantitative genetic footprinting approach called transposon insertion sequencing (INSeq). A transposon insertion mutant library of EcN comprising of ~17,000 mutants was used to screen the adherence to the intestinal epithelial cells, Caco-2. The transposon insertion sites were identified from the input and output population by employing next-generation sequencing using the Ion torrent platform. Based on the relative abundance of reads in the input and output pools, we identified 113 candidate genes that are essential for the fitness of EcN during the adhesion and colonization on the Caco-2 cells. Functional categorization revealed that these fitness genes are associated with carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, post-translational modification, stress response, motility and adhesion, and signal transduction. To further validate the genes identified in our INSeq analysis, we constructed individual knock-out mutants in five genes (cyclic di-GMP phosphodiesterase (gmp), hda, uidC, leuO, and hypothetical protein-coding gene). We investigated their ability to adhere to Caco-2 cells. Evaluation of these mutants showed reduced adhesion on Caco-2 cells, confirming their role in adhesion. Understanding the functions of these genes may provide novel insights into molecular regulation during colonization of probiotic bacteria to the intestinal cells, and useful to develop designer probiotic strains.
Collapse
Affiliation(s)
| | - Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
13
|
Transcriptional Profiling of the Probiotic Escherichia coli Nissle 1917 Strain under Simulated Microgravity. Int J Mol Sci 2020; 21:ijms21082666. [PMID: 32290466 PMCID: PMC7215827 DOI: 10.3390/ijms21082666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term space missions affect the gut microbiome of astronauts, especially the viability of some pathogens. Probiotics may be an effective solution for the management of gut microbiomes, but there is a lack of studies regarding the physiology of probiotics in microgravity. Here, we investigated the effects of microgravity on the probiotic Escherichia coli Nissle 1917 (EcN) by comparing transcriptomic data during exponential and stationary growth phases under simulated microgravity and normal gravity. Microgravity conditions affected several physiological features of EcN, including its growth profile, biofilm formation, stress responses, metal ion transport/utilization, and response to carbon starvation. We found that some changes, such as decreased adhesion ability and acid resistance, may be disadvantageous to EcN relative to gut pathogens under microgravity, indicating the need to develop probiotics optimized for space flight.
Collapse
|
14
|
Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact 2020; 19:23. [PMID: 32024520 PMCID: PMC7003451 DOI: 10.1186/s12934-020-1289-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota can significantly affect the function of the intestinal barrier. Some intestinal probiotics (such as Lactobacillus, Bifidobacteria, a few Escherichia coli strains, and a new generation of probiotics including Bacteroides thetaiotaomicron and Akkermansia muciniphila) can maintain intestinal epithelial homeostasis and promote health. This review first summarizes probiotics' regulation of the intestinal epithelium via their surface compounds. Surface layer proteins, flagella, pili and capsular polysaccharides constitute microbial-associated molecular patterns and specifically bind to pattern recognition receptors, which can regulate signaling pathways to produce cytokines or inhibit apoptosis, thereby attenuating inflammation and enhancing the function of the gut epithelium. The review also explains the effects of metabolites (such as secreted proteins, organic acids, indole, extracellular vesicles and bacteriocins) of probiotics on host receptors and the mechanisms by which these metabolites regulate gut epithelial barrier function. Previous reviews summarized the role of the surface macromolecules or metabolites of gut microbes (including both probiotics and pathogens) in human health. However, these reviews were mostly focused on the interactions between these substances and the intestinal mucosal immune system. In the current review, we only focused on probiotics and discussed the molecular interaction between these bacteria and the gut epithelial barrier.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Yu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
15
|
Soundararajan M, von Bünau R, Oelschlaeger TA. K5 Capsule and Lipopolysaccharide Are Important in Resistance to T4 Phage Attack in Probiotic E. coli Strain Nissle 1917. Front Microbiol 2019; 10:2783. [PMID: 31849915 PMCID: PMC6895014 DOI: 10.3389/fmicb.2019.02783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Rapidly growing antibiotic resistance among gastrointestinal pathogens, and the ability of antibiotics to induce the virulence of these pathogens makes it increasingly difficult to rely on antibiotics to treat gastrointestinal infections. The probiotic Escherichia coli strain Nissle 1917 (EcN) is the active component of the pharmaceutical preparation Mutaflor® and has been successfully used in the treatment of gastrointestinal disorders. Gut bacteriophages are dominant players in maintaining the microbial homeostasis in the gut, however, their interaction with incoming probiotic bacteria remains to be at conception. The presence of bacteriophages in the gut makes it inevitable for any probiotic bacteria to be phage resistant, in order to survive and successfully colonize the gut. This study addresses the phage resistance of EcN, specifically against lytic T4 phage infection. From various experiments we could show that (i) EcN is resistant toward T4 phage infection, (ii) EcN's K5 polysaccharide capsule plays a crucial role in T4 phage resistance and (iii) EcN's lipopolysaccharide (LPS) inactivates T4 phages and notably, treatment with the antibiotic polymyxin B which neutralizes the LPS destroyed the phage inactivation ability of isolated LPS from EcN. Combination of these identified properties in EcN was not found in other tested commensal E. coli strains. Our results further indicated that N-acetylglucosamine at the distal end of O6 antigen in EcN's LPS could be the interacting partner with T4 phages. From our findings, we have reported for the first time, the role of EcN's K5 capsule and LPS in its defense against T4 phages. In addition, by inactivating the T4 phages, EcN also protects E. coli K-12 strains from phage infection in tri-culture experiments. Our research highlights phage resistance as an additional safety feature of EcN, a clinically successful probiotic E. coli strain.
Collapse
Affiliation(s)
- Manonmani Soundararajan
- Institute for Molecular Infection Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance. Sci Rep 2015; 5:17324. [PMID: 26616662 PMCID: PMC4663480 DOI: 10.1038/srep17324] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC). Exposure of tissue to EcN cells, but not MG1655 cells, was found to increase levels of extra-cellular 5-HT. These effects were not observed when tissues were treated with cell-free supernatant from bacterial cultures. In contrast, when supernatant recovered from untreated ileal tissue was pre-incubated with EcN, the derivative cell-free supernatant was able to elevate 5-HT overflow when used to treat fresh ileal tissue. Measurement of 5-HT precursors and metabolites indicated EcN also increases intracellular 5-HTP and reduces 5-HIAA. The former pointed to modulation of tryptophan hydroxylase-1 to enhance 5-HT synthesis, while the latter indicates an impact on clearance into enterocytes through SERT. Taken together, these findings show EcN is able to enhance 5-HT bioavailability in ileal tissues through interaction with compounds secreted from host tissues.
Collapse
|