1
|
Biase FH, Schettini G. Protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. STAR Protoc 2024; 5:102940. [PMID: 38460133 PMCID: PMC10941008 DOI: 10.1016/j.xpro.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The use of CRISPR-Cas9 ribonucleoproteins has revolutionized manipulation of genomes. Here, we present a protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. First, we describe steps for production and preparation of presumptive zygotes for electroporation. The first electroporation introduces ribonucleoproteins formed by Cas9D10A with two guide RNAs to target DNA, and the second introduces the same ribonucleoprotein complex to target DNA plus Cas13a with one guide RNA to target RNAs. For complete details on the use and execution of this protocol, please refer to Nix et al.1.
Collapse
Affiliation(s)
- Fernando H Biase
- Virginia Polytechnique Institute and State University, Blacksburg, VA 24061, USA.
| | - Gustavo Schettini
- Virginia Polytechnique Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Nix JL, Schettini GP, Speckhart SL, Ealy AD, Biase FH. Ablation of OCT4 function in cattle embryos by double electroporation of CRISPR-Cas for DNA and RNA targeting (CRISPR-DART). PNAS NEXUS 2023; 2:pgad343. [PMID: 37954164 PMCID: PMC10637268 DOI: 10.1093/pnasnexus/pgad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
CRISPR-Cas ribonucleoproteins (RNPs) are important tools for gene editing in preimplantation embryos. However, the inefficient production of biallelic deletions in cattle zygotes has hindered mechanistic studies of gene function. In addition, the presence of maternal RNAs that support embryo development until embryonic genome activation may cause confounding phenotypes. Here, we aimed to improve the efficiency of biallelic deletions and deplete specific maternal RNAs in cattle zygotes using CRISPR-Cas editing technology. Two electroporation sessions with Cas9D10A RNPs targeting exon 1 and the promoter of OCT4 produced biallelic deletions in 91% of the embryos tested. In most cases, the deletions were longer than 1,000 nucleotides long. Electroporation of Cas13a RNPs prevents the production of the corresponding proteins. We electroporated Cas9D10A RNPs targeting exon 1, including the promoter region, of OCT4 in two sessions with inclusion of Cas13a RNPs targeting OCT4 mRNAs in the second session to ablate OCT4 function in cattle embryos. A lack of OCT4 resulted in embryos arresting development prior to blastocyst formation at a greater proportion (13%) than controls (31.6%, P < 0.001). The few embryos that developed past the morula stage did not form a normal inner cell mass. Transcriptome analysis of single blastocysts, confirmed to lack exon 1 and promoter region of OCT4, revealed a significant (False Discovery Rate, FDR < 0.1) reduction in transcript abundance of many genes functionally connected to stemness, including markers of pluripotency (CADHD1, DPPA4, GNL3, RRM2). The results confirm that OCT4 is a key regulator of genes that modulate pluripotency and is required to form a functional blastocyst in cattle.
Collapse
Affiliation(s)
- Jada L Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Nie ZW, Niu YJ, Zhou W, Zhou DJ, Kim JY, Cui XS. AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos. J Cell Sci 2020; 133:jcs.243238. [PMID: 33148610 DOI: 10.1242/jcs.243238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) regulates the trans-Golgi network. The AGS3 GoLoco motif binds to Gαi and thereby regulates the transport of proteins to the plasma membrane. Compaction of early embryos is based on the accumulation of E-cadherin (Cdh1) at cell-contacted membranes. However, how AGS3 regulates the transport of Cdh1 to the plasma membrane remains undetermined. To investigate this, AGS3 was knocked out using the Cas9-sgRNA system. Both trans-Golgi network protein 46 (TGN46, also known as TGOLN2) and transmembrane p24-trafficking protein 7 (TMED7) were tracked in early mouse embryos by tagging these proteins with a fluorescent protein label. We observed that the majority of the AGS3-edited embryos were developmentally arrested and were fragmented after the four-cell stage, exhibiting decreased accumulation of Cdh1 at the membrane. The trans-Golgi network and TMED7-positive vesicles were also dispersed and were not polarized near the membrane. Additionally, increased Gαi1 (encoded by GNAI1) expression could rescue AGS3-overexpressed embryos. In conclusion, AGS3 reinforces the dynamics of the trans-Golgi network and the transport of TMED7-positive cargo containing Cdh1 to the cell-contact surface during early mouse embryo development.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ying-Jie Niu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Wenjun Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Dong-Jie Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ju-Yeon Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| |
Collapse
|
4
|
Gao W, Jin Y, Hao J, Huang S, Wang D, Quan F, Ren W, Zhang J, Zhang M, Yu X. Procyanidin B1 promotes in vitro maturation of pig oocytes by reducing oxidative stress. Mol Reprod Dev 2020; 88:55-66. [PMID: 33241626 PMCID: PMC7894521 DOI: 10.1002/mrd.23440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes.
Collapse
Affiliation(s)
- Wei Gao
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yongxun Jin
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jindong Hao
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Siyi Huang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Dongxu Wang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Fushi Quan
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Wenzhi Ren
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Mingjun Zhang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Xianfeng Yu
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| |
Collapse
|
5
|
Livestock Gene Editing by One-step Embryo Manipulation. J Equine Vet Sci 2020; 89:103025. [PMID: 32563448 DOI: 10.1016/j.jevs.2020.103025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The breakthrough and rapid advance of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has enabled the efficient generation of gene-edited animals by one-step embryo manipulation. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 delivery to the livestock embryos has been typically achieved by intracytoplasmic microinjection; however, recent studies show that electroporation may be a reliable, efficient, and practical method for CRISPR/Cas9 delivery. The source of embryos used to generate gene-edited animals varies from in vivo to in vitro produced, depending mostly on the species of interest. In addition, different Cas9 and gRNA reagents can be used for embryo editing, ranging from Cas9-coding plasmid or messenger RNA to Cas9 recombinant protein, which can be combined with in vitro transcribed or synthetic guide RNAs. Mosaicism is reported as one of the main problems with generation of animals by embryo editing. On the other hand, off-target mutations are rarely found in livestock derived from one-step editing. In this review, we discussed these and other aspects of generating gene-edited animals by single-step embryo manipulation.
Collapse
|
6
|
Daigneault BW, Vilarino M, Rajput SK, Frum T, Smith GW, Ross PJ. CRISPR editing validation, immunostaining and DNA sequencing of individual fixed bovine embryos. Biotechniques 2019; 65:281-283. [PMID: 30394131 DOI: 10.2144/btn-2018-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CRISPR technologies used for mammalian embryology have wide implications from basic research to applications in agriculture and biomedicine. Confirmation of successful gene editing following CRISPR/Cas9 delivery is often limited to either protein expression or sequencing analyses of embryos but not both, due to technical challenges. Herein we report an integrative approach for evaluating both protein expression and genotype of single embryos from fixed bovine embryos previously subjected to CRISPR/Cas9 microinjection. The techniques described facilitate investigation of functional genomics in bovine embryos compatible with gene editing in livestock after zygotic CRISPR microinjection. These methods avoid traditional avenues that necessitate the use of gene-edited cell lines followed by nuclear transfer that hinder efficiency, limit physiological relevance and contribute to technical challenges.
Collapse
Affiliation(s)
- Bradford W Daigneault
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Marcela Vilarino
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Sandeep K Rajput
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Tristan Frum
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - George W Smith
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Pablo J Ross
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| |
Collapse
|
7
|
Daigneault BW, Rajput S, Smith GW, Ross PJ. Embryonic POU5F1 is Required for Expanded Bovine Blastocyst Formation. Sci Rep 2018; 8:7753. [PMID: 29773834 PMCID: PMC5958112 DOI: 10.1038/s41598-018-25964-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
POU5F1 is a transcription factor and master regulator of cell pluripotency with indispensable roles in early embryo development and cell lineage specification. The role of embryonic POU5F1 in blastocyst formation and cell lineage specification differs between mammalian species but remains completely unknown in cattle. The CRISPR/Cas9 system was utilized for targeted disruption of the POU5F1 gene by direct injection into zygotes. Disruption of the bovine POU5F1 locus prevented blastocyst formation and was associated with embryonic arrest at the morula stage. POU5F1 knockout morulas developed at a similar rate as control embryos and presented a similar number of blastomeres by day 5 of development. Initiation of SOX2 expression by day 5 of development was not affected by lack of POU5F1. On the other hand, CDX2 expression was aberrant in embryos lacking POU5F1. Notably, the phenotype observed in bovine POU5F1 knockout embryos reveals conserved functions associated with loss of human embryonic POU5F1 that differ from Pou5f1- null mice. The similarity observed in transcriptional regulation of early embryo development between cattle and humans combined with highly efficient gene editing techniques make the bovine a valuable model for human embryo biology with expanded applications in agriculture and assisted reproductive technologies.
Collapse
Affiliation(s)
- Bradford W Daigneault
- Department of Animal Science, Michigan State University, East-Lansing, Michigan, USA
| | - Sandeep Rajput
- Department of Animal Science, Michigan State University, East-Lansing, Michigan, USA
| | - George W Smith
- Department of Animal Science, Michigan State University, East-Lansing, Michigan, USA
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Guo J, Niu Y, Shin K, Kwon J, Kim N, Cui X. Fatty acid synthase knockout impairs early embryonic development via induction of endoplasmic reticulum stress in pigs. J Cell Physiol 2017; 233:4225-4234. [DOI: 10.1002/jcp.26241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Guo
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative MedicineHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbinChina
| | - Ying‐Jie Niu
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Kyung‐Tae Shin
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Jeong‐Woo Kwon
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Xiang‐Shun Cui
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbukRepublic of Korea
| |
Collapse
|
9
|
Whitworth KM, Benne JA, Spate LD, Murphy SL, Samuel MS, Murphy CN, Richt JA, Walters E, Prather RS, Wells KD. Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs. Transgenic Res 2017; 26:97-107. [PMID: 27744533 PMCID: PMC5247313 DOI: 10.1007/s11248-016-9989-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
The CRISPR/Cas9 genome editing tool has increased the efficiency of creating genetically modified pigs for use as biomedical or agricultural models. The objectives were to determine if DNA editing resulted in a delay in development to the blastocyst stage or in a skewing of the sex ratio. Six DNA templates (gBlocks) that were designed to express guide RNAs that target the transmembrane protease, serine S1, member 2 (TMPRSS2) gene were in vitro transcribed. Pairs of CRISPR guide RNAs that flanked the start codon and polyadenylated Cas9 were co-injected into the cytoplasm of zygotes and cultured in vitro to the blastocyst stage. Blastocysts were collected as they formed on days 5, 6 or 7. PCR was performed to determine genotype and sex of each embryo. Separately, embryos were surgically transferred into recipient gilts on day 4 of estrus. The rate of blastocyst development was not significantly different between CRISPR injection embryos or the non-injected controls at day 5, 6 or 7 (p = 0.36, 0.09, 0.63, respectively). Injection of three CRISPR sets of guides resulted in a detectable INDEL in 92-100 % of the embryos analyzed. There was not a difference in the number of edits or sex ratio of male to female embryos when compared between days 5, 6 and 7 to the controls (p > 0.22, >0.85). There were 12 resulting piglets and all 12 had biallelic edits of TMRPSS2. Zygote injection with CRISPR/Cas9 continues to be a highly efficient tool to genetically modify pig embryos.
Collapse
Affiliation(s)
- Kristin M Whitworth
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Stephanie L Murphy
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Clifton N Murphy
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Jürgen A Richt
- College of Veterinary Medicine, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Eric Walters
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA.
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA.
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
- National Swine Research and Resource Center, University of Missouri, 920 East Campus Dr., E125D ASRC, Columbia, MO, 65211, USA
| |
Collapse
|
10
|
Yuan B, Liang S, Jin YX, Kwon JW, Zhang JB, Kim NH. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro. PeerJ 2016; 4:e2454. [PMID: 27672508 PMCID: PMC5028735 DOI: 10.7717/peerj.2454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022] Open
Abstract
Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression.
Collapse
Affiliation(s)
- Bao Yuan
- Department of Laboratory Animal, College of Animal Sciences, Jilin university, Changchun, Jilin, P.R.China.,Department of Animal Sciences, Molecular Embryology Laboratory, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Shuang Liang
- Department of Animal Sciences, Molecular Embryology Laboratory, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yong-Xun Jin
- Department of Laboratory Animal, College of Animal Sciences, Jilin university, Changchun, Jilin, P.R.China.,Department of Animal Sciences, Molecular Embryology Laboratory, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jeong-Woo Kwon
- Department of Animal Sciences, Molecular Embryology Laboratory, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jia-Bao Zhang
- Department of Laboratory Animal, College of Animal Sciences, Jilin university, Changchun, Jilin, P.R.China
| | - Nam-Hyung Kim
- Department of Laboratory Animal, College of Animal Sciences, Jilin university, Changchun, Jilin, P.R.China.,Department of Animal Sciences, Molecular Embryology Laboratory, Chungbuk National University, Cheongju, Chungbuk, Korea
| |
Collapse
|
11
|
Emura N, Sakurai N, Takahashi K, Hashizume T, Sawai K. OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos. J Reprod Dev 2016; 62:401-8. [PMID: 27210587 PMCID: PMC5004796 DOI: 10.1262/jrd.2016-040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oct-4, a member of the POU family of transcription factors, is a key factor that
regulates the segregation of the inner cell mass (ICM) and the trophectoderm (TE)
during the transition from morula to blastocyst in mice. However, little is known
about its role in porcine early embryogenesis. To determine the function of OCT-4 in
the ICM and TE segregation of porcine embryos, we studied the developmental
morphology of porcine embryos using RNA interference technology. Our experiments
demonstrated that when 1-cell stage embryos were co-injected with the small
interfering RNA (siRNA)for targeted knockdown of OCT-4 (OCT-4-siRNA)
and tetramethylrhodamine isothiocyanate (TRITC)-dextran conjugate (Dx), they failed
to form blastocysts. Therefore, in this study, we constructed chimeric embryos
comprising blastomeres that either expressed OCT-4 normally or
showed downregulated OCT-4 expression by co-injection of OCT-4-siRNA
and Dx into one blastomere in 2- to 4-cell stage embryos. In control embryos, which
were co-injected with control siRNA and Dx, Dx-positive cells contributed to the TE
lineage in almost all the blastocysts examined. In contrast, Dx-positive cells
derived from a blastomere co-injected with OCT-4-siRNA and Dx were degenerated in
almost half the blastocysts. This was probably due to the inability of these cells to
differentiate into the TE lineage. Real-time RT-PCR analysis revealed no difference
in the levels of SOX2, TEAD4, FGF4
and FGFR1-IIIc, all of which are known to be regulated by OCT-4,
between the OCT-4-siRNA-injected morulae and the control ones. However, the level of
CDX2, a molecule specifically expressed in the TE lineage, was
significantly higher in the former than in the latter. Our results indicate that
continuous expression of OCT-4 in blastomeres is essential for TE formation of
porcine embryos.
Collapse
Affiliation(s)
- Natsuko Emura
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|