1
|
Chen J, Cui H, Huang H, Wei S, Liu Y, Yu H, Ma Y, Li X, Ma X. EST-SSR Markers' Development Based on RNA-Sequencing and Their Application in Population Genetic Structure and Diversity Analysis of Eleusine indica in China. Curr Issues Mol Biol 2022; 45:141-150. [PMID: 36661497 PMCID: PMC9856800 DOI: 10.3390/cimb45010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Goosegrass (Eleusine indica) is one of the worst agricultural weeds in China. Molecular markers were developed for genetic diversity and population structure analyses. In this study, we identified 8391 expressed sequence tag-simple sequence repeat (EST-SSR) markers from the de novo assembled unigenes of E. indica. Mononucleotides were the most abundant type of repeats (3591, 42.79%), followed by trinucleotides (3162, 37.68%). The most dominant mononucleotide and trinucleotide repeat motifs were A/T (3406, 40.59%) and AAT/ATT (103, 1.5%), respectively. Fourteen pairs of EST-SSR primers were verified and used to analyze the genetic diversity and population structure of 59 goosegrass populations. A total of 49 alleles were amplified, with the number of alleles (Na) ranging from two to eleven per locus, and the effective number of alleles (Ne) ranged from 1.07 to 4.53. The average polymorphic information content (PIC) was 0.36. Genetic structure analysis (K = 2) and principal coordinate analysis divided 59 E. indica populations into two groups in a manner similar to the unweighted pair-group method (Dice genetic similarity coefficient = 0.700). This study developed a set of EST-SSR markers in E. indica and successfully analyzed the diversity and population genetic structures of 59 E. indica populations in China.
Collapse
Affiliation(s)
- Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongjuan Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shouhui Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (X.L.); (X.M.); Tel.: +86-010-62813309 (X.L.); +86-372-2562294 (X.M.)
| | - Xiaoyan Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (X.L.); (X.M.); Tel.: +86-010-62813309 (X.L.); +86-372-2562294 (X.M.)
| |
Collapse
|
2
|
Song X, Li N, Guo Y, Bai Y, Wu T, Yu T, Feng S, Zhang Y, Wang Z, Liu Z, Lin H. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. FORESTRY RESEARCH 2021; 1:7. [PMID: 39524510 PMCID: PMC11524223 DOI: 10.48130/fr-2021-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2024]
Abstract
Simple sequence repeats (SSRs) are popular and important molecular markers that exist widely in plants. Here, we conducted a comprehensive identification and comparative analysis of SSRs in 14 tree species. A total of 16, 298 SSRs were identified from 429, 449 genes, and primers were successfully designed for 99.44% of the identified SSRs. Our analysis indicated that tri-nucleotide SSRs were the most abundant, with an average of ~834 per species. Functional enrichment analysis by combining SSR-containing genes in all species, revealed 50 significantly enriched terms, with most belonging to transcription factor families associated with plant development and abiotic stresses such as Myeloblastosis_DNA-bind_4 (Myb_DNA-bind_4), APETALA2 (AP2), and Fantastic Four meristem regulator (FAF). Further functional enrichment analysis showed that 48 terms related to abiotic stress regulation and floral development were significantly enriched in ten species, whereas no significantly enriched terms were found in four species. Interestingly, the largest number of enriched terms was detected in Citrus sinensis (L.) Osbeck, accounting for 54.17% of all significantly enriched functional terms. Finally, we analyzed AP2 and trihelix gene families (Myb_DNA-bind_4) due to their significant enrichment in SSR-containing genes. The results indicated that whole-genome duplication (WGD) and whole genome triplication (WGT) might have played major roles in the expansion of the AP2 gene family but only slightly affected the expansion of the trihelix gene family during evolution. In conclusion, the identification and comprehensive characterization of SSR markers will greatly facilitate future comparative genomics and functional genomics studies.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nan Li
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuanyuan Guo
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yun Bai
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Wu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shuyan Feng
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yu Zhang
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhiyuan Wang
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Wang D, Li S, Wei L, Li Z, Liu B, Cao D. Transcriptome analysis identifies key genes involved in carotenoid biosynthesis in the flesh of red pummelo (Citrus maxima). BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1792341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Dongxia Wang
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, Xining, PR China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining, PR China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Le Wei
- Department of Life Sciences, College of Biologic and Geographic Sciences, Qinghai Normal University, Qinghai, Xining, PR China
| | - Zongren Li
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, Xining, PR China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining, PR China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Laboratory of Wheat Quality Improvement, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Dong Cao
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, Xining, PR China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Laboratory of Wheat Quality Improvement, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, Qinghai, PR China
| |
Collapse
|
4
|
Niu J, Wang Y, Shi Y, Wang X, Sun Z, Huang K, Gong C, Luan M, Chen J. Development of SSR markers via de novo transcriptome assembly in Akebia trifoliata (Thunb.) Koidz. Genome 2019; 62:817-831. [PMID: 31491340 DOI: 10.1139/gen-2019-0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Owing to its high nutritive, economic, and medicinal values, Akebia trifoliata has received increased attention, making worthy of being used as a new fruit crop for further domestication and commercialization in China. However, molecular research of A. trifoliata has lagged as investigations of its genomic resources and molecular markers are rare. In this study, a cDNA library of A. trifoliata leaves was sequenced using the Illumina NovaSeq. 6000 sequencing system. In total, 101 417 transcripts, 63 757 unigenes, and 9494 simple sequence repeats were assembled and identified from the transcriptome datasets. The majority of the SSRs were di- and trinucleotide repeats. Length and number of SSR motifs ranged from 15 to 66, and 5 to 48 bp, respectively. Of which, the A/T mononucleotide motif and AG/TC and CT/GA dinucleotide motifs were the most abundant. Furthermore, 100 SSR primers were randomly selected to validate amplification and polymorphism, and 88 A. trifoliata accessions were definitively distinguished by 49 primers. With the Qinling mountains and Huaihe River line as the boundaries, the northern and southern accessions were clustered into different groups, but no clear geographical patterns (city or origin) were observed in the southern accessions. These newly identified molecular markers may provide a foundation for the genetic identification and diversity analysis and marker-assisted selection breeding in species of Akebia.
Collapse
Affiliation(s)
- Juan Niu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| | - Yujuan Wang
- Jiangxi Academy of Forestry of China, Nanchang 330033, P.R. China
| | - Yaliang Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| | - Kunyong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| | - Chun Gong
- Jiangxi Academy of Forestry of China, Nanchang 330033, P.R. China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| | - Jianhua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, P.R. China
| |
Collapse
|
5
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
6
|
Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, Sahebi M, Azizi P. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci Rep 2019; 9:3047. [PMID: 30816255 PMCID: PMC6395698 DOI: 10.1038/s41598-019-39944-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - M Y Rafii
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Stefaan P O Werbrouck
- Laboratory of Applied Science In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, University Ghent, Valentin Vaerwyckweg 1, BE-9000, Gent, Belgium
| | - Chee How Teo
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Xu F, Lei P, Jiang M, Sang L, Guan F, Meng F, Quan H. Genetic diversity of Herpetospermum caudigerum (Ser.) Baill using AFLP and chloroplast microsatellites. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1642798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Fuling Xu
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
| | - Pei Lei
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
| | - Mingquan Jiang
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, PR China
| | - Liqun Sang
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Linzhi, PR China
| | - Fachun Guan
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Linzhi, PR China
- Institute of Rural Energy and Ecology, Jilin Academy of Agricultural Science, Changchun, PR China
| | - Fanjuan Meng
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, PR China
| | - Hong Quan
- Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Linzhi, PR China
- Medicinal Plants Research Center, Tibet Agriculture and Animal Husbandry University, Nyingchi, PR China
| |
Collapse
|
8
|
Wang S, Li Z, Jin W, Fang Y, Yang Q, Xiang J. Transcriptome analysis and identification of genes associated with flower development in Rhododendron pulchrum Sweet (Ericaceae). Gene 2018; 679:108-118. [PMID: 30176315 DOI: 10.1016/j.gene.2018.08.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Flowering process is essential for plant development. However, the molecular mechanisms driving flower development of ornamental woody Rhododendron pulchrum Sweet are difficult to elucidate due to the lack of genomic data. In this research, high-throughput sequencing and comparative transcriptome analyses of R. pulchrum flowers collected at three key stages were performed: floral bud stage, early flowering stage, and full-flowering stage. Furthermore, expression of genes involved in flower development was also validated with quantitative real-time PCR (qRT-PCR). RNA-seq yielded 96,350,697 bp of clean reads, which were assembled into 98,610 unigenes with an average length of 717 bp. 58,279 (59.10%) unigenes could be annotated, including 324 major unigenes associated with floral development. In addition, ten modules (20,443 mRNAs) were dissected in the co-expression network. Especially, Flowering Locus (FLC) and Flowering Locus T (FT) were co-expressed. 9493 differentially expressed genes (DEGs) were scanned among three stages, and most DEGs existed between flower bud stage and early flowering stage. In particular, 79 DGEs associated with flowering process were enriched in 28 GO terms. Moreover, the expression levels of MYC2, EIN3, and ARR-B were all lowest at early flowering stage, while transcripts of MYC2, TIR1, CYCD3, COL-1, and EIN3 were all peaked at flower bud stage. Transcriptome profile presented here will benefit deep insights into molecular mechanism underlying R. pulchrum flowering process.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China.
| | - Zhiliang Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China
| | - Weibin Jin
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China
| | - Yuanping Fang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China
| | - Qiaofeng Yang
- College of food and Bioengineering, Henan University of Animal Husbandry and Ecomomy, Zhengzhou 450000, Henan Province, PR China.
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; College of Life Science, Huanggang Normal University, Huanggang 438000, Hubei Province, PR China.
| |
Collapse
|
9
|
Zhang S, Liang M, Wang N, Xu Q, Deng X, Chai L. Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility. PLANT REPRODUCTION 2018; 31:43-57. [PMID: 29457194 DOI: 10.1007/s00497-018-0327-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/14/2018] [Indexed: 05/22/2023]
Abstract
Review on citrus reproduction. Citrus is one of the most important and widely grown fruit crops. It possesses several special reproductive characteristics, such as nucellar embryony and self-incompatibility. The special phenomenon of nucellar embryony in citrus, also known as the polyembryony, is a kind of sporophytic apomixis. During the past decade, the emergence of novel technologies and the construction of multiple citrus reference genomes have facilitated rapid advances to our understanding of nucellar embryony. Indeed, several research teams have preliminarily determined the genetic basis of citrus apomixis. On the other hand, the phenomenon of self-incompatibility that promotes genetic diversity by rejecting self-pollen and accepting non-self-pollen is difficult to study in citrus because the long juvenile period of citrus presents challenges to identifying candidate genes that control this phenomenon. In this review, we focus on advances to our understanding of reproduction in citrus from the last decade and discuss priorities for the coming decade.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018; 23:E399. [PMID: 29438290 PMCID: PMC6017569 DOI: 10.3390/molecules23020399] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/17/2022] Open
Abstract
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed Musa Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Redmond Ramin Shamshiri
- Smart Farming Technology Research Center, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Feng S, Zhao L, Liu Z, Liu Y, Yang T, Wei A. De novo transcriptome assembly of Zanthoxylum bungeanum using Illumina sequencing for evolutionary analysis and simple sequence repeat marker development. Sci Rep 2017; 7:16754. [PMID: 29196697 PMCID: PMC5711952 DOI: 10.1038/s41598-017-15911-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/03/2017] [Indexed: 02/04/2023] Open
Abstract
Zanthoxylum, an ancient economic crop in Asia, has a satisfying aromatic taste and immense medicinal values. A lack of genomic information and genetic markers has limited the evolutionary analysis and genetic improvement of Zanthoxylum species and their close relatives. To better understand the evolution, domestication, and divergence of Zanthoxylum, we present a de novo transcriptome analysis of an elite cultivar of Z. bungeanum using Illumina sequencing; we then developed simple sequence repeat markers for identification of Zanthoxylum. In total, we predicted 45,057 unigenes and 22,212 protein coding sequences, approximately 90% of which showed significant similarities to known proteins in databases. Phylogenetic analysis indicated that Zanthoxylum is relatively recent and estimated to have diverged from Citrus ca. 36.5–37.7 million years ago. We also detected a whole-genome duplication event in Zanthoxylum that occurred 14 million years ago. We found no protein coding sequences that were significantly under positive selection by Ka/Ks. Simple sequence repeat analysis divided 31 Zanthoxylum cultivars and landraces into three major groups. This Zanthoxylum reference transcriptome provides crucial information for the evolutionary study of the Zanthoxylum genus and the Rutaceae family, and facilitates the establishment of more effective Zanthoxylum breeding programs.
Collapse
Affiliation(s)
- Shijing Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenshan Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tuxi Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics 2016; 292:325-341. [PMID: 27933381 DOI: 10.1007/s00438-016-1279-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
Abstract
S-RNase-based self-incompatibility is found in Solanaceae, Rosaceae, and Scrophulariaceae, and is the most widespread mechanism that prevents self-fertilization in plants. Although 'Shatian' pummelo (Citrus grandis), a traditional cultivated variety, possesses the self-incompatible trait, the role of S-RNases in the self-incompatibility of 'Shatian' pummelo is poorly understood. To identify genes associated with self-incompatibility in citrus, we identified 16 genes encoding homologs of ribonucleases in the genomes of sweet orange (Citrus sinensis) and clementine mandarin (Citrus clementine). We preliminarily distinguished S-RNases from S-like RNases with a phylogenetic analysis that classified these homologs into three groups, which is consistent with the previous reports. Expression analysis provided evidence that CsRNS1 and CsRNS6 are S-like RNase genes. The expression level of CsRNS1 was increased during fruit development. The expression of CsRNS6 was increased during the formation of embryogenic callus. In contrast, we found that CsRNS3 possessed several common characteristics of the pistil determinant of self-incompatibility: it has an alkaline isoelectric point (pI), harbors only one intron, and is specifically expressed in style. We obtained a cDNA encoding CgRNS3 from 'Shatian' pummelo and found that it is homolog to CsRNS3 and that CgRNS3 exhibited the same expression pattern as CsRNS3. In an in vitro culture system, the CgRNS3 protein significantly inhibited the growth of self-pollen tubes from 'Shatian' pummelo, but after a heat treatment, this protein did not significantly inhibit the elongation of self- or non-self-pollen tubes. In conclusion, an S-RNase gene, CgRNS3, was obtained by searching the genomes of sweet orange and clementine for genes exhibiting sequence similarity to ribonucleases followed by expression analyses. Using this approach, we identified a protein that significantly inhibited the growth of self-pollen tubes, which is the defining property of an S-RNase.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiying Su
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
13
|
Transcriptome Analysis of the Tadpole Shrimp (Triops longicaudatus) by Illumina Paired-End Sequencing: Assembly, Annotation, and Marker Discovery. Genes (Basel) 2016; 7:genes7120114. [PMID: 27918468 PMCID: PMC5192490 DOI: 10.3390/genes7120114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
The tadpole shrimp (Triops longicaudatus) is an aquatic crustacean that helps control pest populations. It inhabits freshwater ponds and pools and has been described as a living fossil. T. longicaudatus was officially declared an endangered species South Korea in 2005; however, through subsequent protection and conservation management, it was removed from the endangered species list in 2012. The limited number of available genetic resources on T. longicaudatus makes it difficult to obtain valuable genetic information for marker-aided selection programs. In this study, whole-transcriptome sequencing of T. longicaudatus generated 39.74 GB of clean data and a total of 269,822 contigs using the Illumina HiSeq 2500 platform. After clustering, a total of 208,813 unigenes with an N50 length of 1089 bp were generated. A total of 95,105 unigenes were successfully annotated against Protostome (PANM), Unigene, Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using BLASTX with a cut-off of 1E−5. A total of 57,731 unigenes were assigned to GO terms, and 7247 unigenes were mapped to 129 KEGG pathways. Furthermore, 1595 simple sequence repeats (SSRs) were detected from the unigenes with 1387 potential SSR markers. This is the first report of high-throughput transcriptome analysis of T. longicaudatus, and it provides valuable insights for genetic research and molecular-assisted breeding of this important species.
Collapse
|
14
|
Fu YP, Liang Y, Dai YT, Yang CT, Duan MZ, Zhang Z, Hu SN, Zhang ZW, Li Y. De Novo Sequencing and Transcriptome Analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) Mycelia in Response to Cold Stimulation. Molecules 2016; 21:molecules21050560. [PMID: 27196889 PMCID: PMC6273410 DOI: 10.3390/molecules21050560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
Cold stimulation of Bailinggu's mycelia is the main factor that triggers primordia initiation for successful production of fruiting bodies under commercial cultivation. Yet, the molecular-level mechanisms involved in mycelia response to cold stimulation are still unclear. Here, we performed comparative transcriptomic analysis using RNA-Seq technology to better understand the gene expression regulation during different temporal stages of cold stimulation in Bailinggu. A total of 21,558 Bailinggu mycelia unigenes were de novo assembled and annotated from four libraries (control at 25 °C, plus cold stimulation treatments at -3 °C for a duration of 1-2 days, 5-6 days, and 9-10 days). GO and KEGG pathway analysis indicated that functional groups of differentially expressed unigenes associated with cell wall and membrane stabilization, calcium signaling and mitogen-activated protein kinases (MAPK) pathways, and soluble sugars and protein biosynthesis and metabolism pathways play a vital role in Bailinggu's response to cold stimulation. Six hundred and seven potential EST-based SSRs loci were identified in these unigenes, and 100 EST-SSR primers were randomly selected for validation. The overall polymorphism rate was 92% by using 10 wild strains of Bailinggu. Therefore, these results can serve as a valuable resource for a better understanding of the molecular mechanisms associated with Bailinggu's response to cold stimulation.
Collapse
Affiliation(s)
- Yong-Ping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Agriculture, Jilin Agricultural University, Changchun 130118, China.
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA.
| | - Yuan Liang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yue-Ting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Agriculture, Jilin Agricultural University, Changchun 130118, China.
| | - Chen-Tao Yang
- China National GeneBank, Environmental Genomics, BGI, Shenzhen 518083, China.
| | - Ming-Zheng Duan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Agriculture, Jilin Agricultural University, Changchun 130118, China.
| | - Zhuo Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Agriculture, Jilin Agricultural University, Changchun 130118, China.
| | - Song-Nian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhi-Wu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Agriculture, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
15
|
Chen SF, Li MW, Jing HJ, Zhou RC, Yang GL, Wu W, Fan Q, Liao WB. De Novo Transcriptome Assembly in Firmiana danxiaensis, a Tree Species Endemic to the Danxia Landform. PLoS One 2015; 10:e0139373. [PMID: 26427005 PMCID: PMC4591120 DOI: 10.1371/journal.pone.0139373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Many Firmiana species are locally endemic, providing an interesting system for studying adaptation and speciation. Among these species, F. danxiaensis is a tree species endemic to Mount Danxia in Guangdong, China, which is an area known for presenting the Danxia landform. How F. danxiaensis could have adapted to the stressful environment of rocky cliffs covered with barren soils in the Danxia landform is still unknown. In this study, we performed de novo assembly of the transcriptome of F. danxiaensis, obtaining 47,221 unigenes with an N50 value of 987 bp. Homology analysis showed that 32,318 of the unigenes presented hits in the NCBI non-redundant database, and 31,857 exhibited significant matches with the protein database of Theobroma cacao. Gene Ontology (GO) annotation showed that hundreds of unigenes participated in responses to various stresses or nutritional starvation, which may help us to understand the adaptation of F. danxiaensis to Danxia landform. Additionally, we found 263 genes related to responses to Cd, partially explaining the high accumulation of Cd observed in Firmiana species. The EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed many genes playing roles in the biosynthesis of secondary metabolites and environmental adaptation, which may also contribute to the survivor and success of Firmiana species in extreme environments. Based on the obtained transcriptome, we further identified a Firmiana-specific whole-genome duplication event that occurred approximately 20 Mya, which may have provided raw materials for the diversification of Firmiana species.
Collapse
Affiliation(s)
- Su-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ming-Wan Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hui-Juan Jing
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ren-Chao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gui-Li Yang
- National Engineering Resarch Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wu
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- * E-mail: (QF); (WL)
| | - Wen-Bo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- * E-mail: (QF); (WL)
| |
Collapse
|