1
|
Cheng Y, Chan F, Kassis JA. The activity of engrailed imaginal disc enhancers is modulated epigenetically by chromatin and autoregulation. PLoS Genet 2023; 19:e1010826. [PMID: 37967127 PMCID: PMC10686433 DOI: 10.1371/journal.pgen.1010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/29/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes. In contrast, the en imaginal disc enhancers (IDEs) do not function correctly in small reporter transgenes. En is expressed in the posterior compartment of wing imaginal discs; in contrast, small IDE-reporter transgenes are expressed mainly in the anterior compartment. We found that En binds to the IDEs and suggest that it may directly repress IDE function and modulate En expression levels. We identified two en IDEs, O and S. Deletion of either of these IDEs from a 79kb HA-en rescue transgene (HAen79) caused a loss-of-function en phenotype when the HAen79 transgene was the sole source of En. In contrast, flies with a deletion of the same IDEs from an endogenous en gene had no phenotype, suggesting a resiliency not seen in the HAen79 rescue transgene. Inserting a gypsy insulator in HAen79 between en regulatory DNA and flanking sequences strengthened the activity of HAen79, giving better function in both the ON and OFF transcriptional states. Altogether our data suggest that the en IDEs stimulate expression in the entire imaginal disc, and that the ON/OFF state is set by epigenetic memory set by the embryonic enhancers. This epigenetic regulation is similar to that of the Ultrabithorax IDEs and we suggest that the activity of late-acting enhancers in other genes may be similarly regulated.
Collapse
Affiliation(s)
- Yuzhong Cheng
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fountane Chan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith A. Kassis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Cheng Y, Chan F, Kassis JA. The activity of engrailed imaginal disc enhancers is modulated epigenetically by chromatin and autoregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545191. [PMID: 37502849 PMCID: PMC10370174 DOI: 10.1101/2023.06.15.545191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
engrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes. In contrast, the en imaginal disc enhancers (IDEs) do not function correctly in small reporter transgenes. En is expressed in the posterior compartment of wing imaginal disks; small IDE-reporter transgenes are expressed in the anterior compartment, the opposite of what is expected. Our data show that the En protein binds to en IDEs, and we suggest that En directly represses IDE function. We identified two en IDEs, 'O' and 'S'. Deletion of either of these IDEs from a 79kb HA-en rescue transgene (HAen79) caused a loss-of-function en phenotype when the HAen79 transgene was the sole source of En. In contrast, flies with a deletion of the same IDEs from the endogenous en gene had no phenotype, suggesting a resiliency not seen in the HAen79 rescue transgene. Inserting a gypsy insulator in HAen79 between en regulatory DNA and flanking sequences strengthened the activity of HAen79, giving better function in both the ON and OFF transcriptional states. Altogether our data show that the en IDEs stimulate expression in the entire imaginal disc, and that the ON/OFF state is set by epigenetic regulators. Further, the endogenous locus imparts a stability to en function not seen even in a large transgene, reflecting the importance of both positive and negative epigenetic influences that act over relatively large distances in chromatin.
Collapse
Affiliation(s)
- Yuzhong Cheng
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Fountane Chan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Judith A Kassis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Chen M, Gao E, Lin G, Shen J, Wang D. The transcription factor optomotor-blind restricts apterous expression through TrxG and PcG genes. Dev Biol 2023; 497:59-67. [PMID: 36907311 DOI: 10.1016/j.ydbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
The establishment of body pattern is a fundamental process in developmental biology. In Drosophila, the wing disc is subdivided into dorsal (D) and ventral (V) compartments by the D/V boundary. The dorsal fate is adopted by expressing the selector gene apterous (ap). ap expression is regulated by three combinational cis-regulatory modules which are activated by EGFR pathway, Ap-Vg auto-regulatory and epigenetic mechanisms. Here, we found that the Tbx family transcription factor Optomotor-blind (Omb) restricted ap expression in the ventral compartment. Loss of omb induced autonomous initiation of ap expression in the middle third instar larvae in the ventral compartment. Oppositely, over-activation of omb inhibited ap in the medial pouch. All three enhancers apE, apDV and apP were upregulated in omb null mutants, indicating a combinational regulation of ap modulators. However, Omb affected ap expression neither by directly regulating EGFR signaling, nor via Vg regulation. Therefore, a genetic screen of epigenetic regulators, including the Trithorax group (TrxG) and Polycomb group (PcG) genes was performed. We found that knocking down the TrxG gene kohtalo (kto), domino (dom) or expressing the PcG gene grainy head (grh), the ectopic ap in omb mutants was repressed. The inhibition of apDV by kto knockdown and grh activation could contribute to ap repression. Moreover, Omb and the EGFR pathway are genetically parallel in ap regulation in the ventral compartment. Collectively, Omb is a repressive signal for ap expression in the ventral compartment, which requires TrxG and PcG genes.
Collapse
Affiliation(s)
- Min Chen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Erqing Gao
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
McKenna KZ, Wagner GP, Cooper KL. A developmental perspective of homology and evolutionary novelty. Curr Top Dev Biol 2021; 141:1-38. [PMID: 33602485 DOI: 10.1016/bs.ctdb.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
The microRNA-306/abrupt regulatory axis controls wing and haltere growth in Drosophila. Mech Dev 2019; 158:103555. [PMID: 31112748 DOI: 10.1016/j.mod.2019.103555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Growth control relies on extrinsic and intrinsic mechanisms that regulate and coordinate the size and pattern of organisms. This control is crucial for a homeostatic development and healthy physiology. The gene networks acting in this process are large and complex: factors involved in growth control are also important in diverse biological processes and these networks include multiple regulators that interact and respond to intra- and extra-cellular inputs that may ultimately converge in the control of the cell cycle. In this work we have studied the function of the Drosophila abrupt gene, coding for a BTB-ZF protein and previously reported to be required for wing vein pattern, in the control of haltere and wing growth. We have found that inactivation of abrupt reduces the size of the wing and haltere. We also found that the microRNA miR-306 controls abrupt expression and that miR-306 and abrupt genetically interact to control wing size. Moreover, the reduced appendage size due to abrupt inactivation is rescued by overexpression of Cyclin-E and by inactivation of dacapo. These findings define a miR-306-abrupt regulatory axis that controls wing and haltere size, whereby miR-306 maintains appropriate levels of abrupt expression which, in turn, regulates the cell cycle. Thus, our results uncover a novel function of abrupt in the regulation of the size of Drosophila appendages during development and contribute to the understanding of the coordination between growth and pattern as well as to the understanding of abrupt oncogenic function in flies.
Collapse
|
6
|
Gawne R, McKenna KZ, Nijhout HF. Unmodern Synthesis: Developmental Hierarchies and the Origin of Phenotypes. Bioessays 2017; 40. [PMID: 29178269 DOI: 10.1002/bies.201600265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 10/04/2017] [Indexed: 12/14/2022]
Abstract
The question of whether the modern evolutionary synthesis requires an extension has recently become a topic of discussion, and a source of controversy. We suggest that this debate is, for the most part, not about the modern synthesis at all. Rather, it is about the extent to which genetic mechanisms can be regarded as the primary determinants of phenotypic characters. The modern synthesis has been associated with the idea that phenotypes are the result of gene products, while supporters of the extended synthesis have suggested that environmental factors, along with processes such as epigenetic inheritance, and niche construction play an important role in character formation. We argue that the methodology of the modern evolutionary synthesis has been enormously successful, but does not provide an accurate characterization of the origin of phenotypes. For its part, the extended synthesis has yet to be transformed into a testable theory, and accordingly, has yielded few results. We conclude by suggesting that the origin of phenotypes can only be understood by integrating findings from all levels of the organismal hierarchy. In most cases, parts and processes from a single level fail to accurately explain the presence of a given phenotypic trait.
Collapse
Affiliation(s)
- Richard Gawne
- Department of Biology, Duke University 130 Science Dr., Durham, NC, 27708, USA
| | - Kenneth Z McKenna
- Department of Biology, Duke University 130 Science Dr., Durham, NC, 27708, USA
| | - H Frederik Nijhout
- Department of Biology, Duke University 130 Science Dr., Durham, NC, 27708, USA
| |
Collapse
|
7
|
Lu J, Wang D, Shen J. Hedgehog signalling is required for cell survival in Drosophila wing pouch cells. Sci Rep 2017; 7:11317. [PMID: 28900135 PMCID: PMC5595820 DOI: 10.1038/s41598-017-10550-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
An appropriate balance between cell survival and cell death is essential for correct pattern formation in the animal tissues and organs. Previous studies have shown that the short-range signalling molecule Hedgehog (Hh) is required for cell proliferation and pattern formation in the Drosophila central wing discs. Signal transduction by one of the Hh targets, the morphogen Decapentaplegic (Dpp), is required for not only cell proliferation, but also cell survival in the pouch cells. However, Hh function in cell survival and cell death has not been revealed. Here, we found that loss of Hh signal activity induces considerable Caspase-dependent cell death in the wing pouch cells, and this process was independent of both Dpp signalling and Jun-N-terminal kinase (JNK) signalling. Loss of Hh induced activation of the pro-apoptotic gene hid and inhibition of diap1. Therefore, we identified an important role of Hh signalling in cell survival during Drosophila wing development.
Collapse
Affiliation(s)
- Juan Lu
- Department of Entomology, MOA Key Laboratory for monitoring and green management of crop pests, China Agricultural University, 100193, Beijing, China
| | - Dan Wang
- Department of Entomology, MOA Key Laboratory for monitoring and green management of crop pests, China Agricultural University, 100193, Beijing, China
| | - Jie Shen
- Department of Entomology, MOA Key Laboratory for monitoring and green management of crop pests, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
8
|
Tomoyasu Y. Ultrabithorax and the evolution of insect forewing/hindwing differentiation. CURRENT OPINION IN INSECT SCIENCE 2017; 19:8-15. [PMID: 28521947 DOI: 10.1016/j.cois.2016.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Decades have passed since the stunning four-winged phenotype of the Drosophila Ultrabithorax (Ubx) mutant was reported, and accumulating knowledge obtained from studies on Ubx in Drosophila has provided a framework to investigate the role of Ubx during insect wing evolution. With several new insights emerging from recent studies in non-Drosophila insects, along with the outcomes of genomic studies focused on identifying Ubx targets, it appears to be an appropriate time to revisit the Drosophila paradigm regarding insect wing development and evolution. Here, I review the recent findings related to Ubx during wing development, and discuss the impact of these findings on the current view of how Ubx came to regulate wing differentiation in the evolution of insect flight structures.
Collapse
|
9
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|