1
|
Liang J, Li Y, Wan P, Zhang W, Han J, Zhang M, Li B, Jin T. CYP19A1 polymorphisms and bladder cancer risk in the Chinese Han population. Expert Rev Mol Diagn 2024; 24:743-752. [PMID: 39086208 DOI: 10.1080/14737159.2024.2387652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The expression of CYP19A1 has implications for the prognosis of female bladder cancer. However, this study aimed to explore the association between single nucleotide polymorphisms (SNPs) in CYP19A1 and bladder cancer risk, as no prior research has addressed this association. RESEARCH DESIGN AND METHODS We selected and genotyped five CYP19A1 SNPs (rs4646, rs6493487, rs1062033, rs17601876, and rs3751599) in 217 patients and 550 controls using the Agena MassARRAY system. Logistic regression analysis was employed to calculate the odds ratio (OR) and 95% confidence intervals (CIs). Bioinformatics predicted SNP functions and CYP19A1 involving pathways. RESULTS Our study revealed a significant association between bladder cancer risk and four SNPs (rs4646 (AC vs. CC: OR = 1.71, FDR-p = 0.005), rs6493487 (G vs. A: OR = 0.68, FDR-p = 0.011), rs1062033 (G vs. C: OR = 0.36, FDR-p < 0.001), and rs17601876 (GA vs. GG: OR = 1.66, FDR-p = 0.008)) in CYP19A1. The three SNPs (rs4646, rs1062033, and rs17601876) were significantly correlated with CYP19A1 expression levels in normal whole blood (p < 0.05). Moreover, CYP19A1 was found to primarily participate in the steroid hormone biosynthesis and metabolic pathways. CONCLUSIONS Consequently, CYP19A1 gene polymorphisms may play a crucial role in the genetic susceptibility to bladder cancer.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yongfei Li
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Panpan Wan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenjing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Chen Q, Cai J, Zhang W, Xiao L, Liu G, Li H, Wu F, Song Q, Li K, Zhang J. Expression analysis of the NR5A2 gene and associations between its polymorphisms and reproductive traits in Jiaxing Black sows. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.2020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wei Zhang
- Institute of Translation Medicine, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lixia Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Guoliang Liu
- Zhejiang Qinglian Food Company Limited, Jiaxing, People’s Republic of China
| | - Haihong Li
- Zhejiang Qinglian Food Company Limited, Jiaxing, People’s Republic of China
| | - Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qianqian Song
- School of Life Sciences, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Kui Li
- Zhejiang General Station of Animal Husbandry Technology Promotion and Breeding Livestock Monitoring, People’s Republic of China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Hlaváč V, Holý P, Souček P. Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450. J Pers Med 2020; 10:jpm10030108. [PMID: 32872162 PMCID: PMC7565825 DOI: 10.3390/jpm10030108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacogenomics is an evolving tool of precision medicine. Recently, due to the introduction of next-generation sequencing and projects generating "Big Data", a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies. Although the evidence needs further substantiation, somatic and copy number variants as well as rare variants and common polymorphisms in these genes could all affect response to cancer therapy. Regulation by long noncoding RNAs has also been shown to play a role. However, in all these areas, more comprehensive studies on larger sets of patients are needed.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267082681; Fax: +420-267311236
| | - Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| |
Collapse
|