1
|
Mannella C. In Silico Exploration of Alternative Conformational States of VDAC. Molecules 2023; 28:molecules28083309. [PMID: 37110543 PMCID: PMC10144127 DOI: 10.3390/molecules28083309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
VDAC (Voltage-Dependent Anion-selective Channel) is the primary metabolite pore in the mitochondrial outer membrane (OM). Atomic structures of VDAC, consistent with its physiological "open" state, are β-barrels formed by 19 transmembrane (TM) β-strands and an N-terminal segment (NTERM) that folds inside the pore lumen. However, structures are lacking for VDAC's partially "closed" states. To provide clues about possible VDAC conformers, we used the RoseTTAFold neural network to predict structures for human and fungal VDAC sequences modified to mimic removal from the pore wall or lumen of "cryptic" domains, i.e., segments buried in atomic models yet accessible to antibodies in OM-bound VDAC. Predicted in vacuo structures for full-length VDAC sequences are 19-strand β-barrels similar to atomic models, but with weaker H-bonding between TM strands and reduced interactions between NTERM and the pore wall. Excision of combinations of "cryptic" subregions yields β-barrels with smaller diameters, wide gaps between N- and C-terminal β-strands, and in some cases disruption of the β-sheet (associated with strained backbone H-bond registration). Tandem repeats of modified VDAC sequences also were explored, as was domain swapping in monomer constructs. Implications of the results for possible alternative conformational states of VDAC are discussed.
Collapse
Affiliation(s)
- Carmen Mannella
- Department of Physiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Rister AB, Gudermann T, Schredelseker J. E as in Enigma: The Mysterious Role of the Voltage-Dependent Anion Channel Glutamate E73. Int J Mol Sci 2022; 24:ijms24010269. [PMID: 36613710 PMCID: PMC9820230 DOI: 10.3390/ijms24010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the main passageway for ions and metabolites over the outer mitochondrial membrane. It was associated with many physiological processes, including apoptosis and modulation of intracellular Ca2+ signaling. The protein is formed by a barrel of 19 beta-sheets with an N-terminal helix lining the inner pore. Despite its large diameter, the channel can change its selectivity for ions and metabolites based on its open state to regulate transport into and out of mitochondria. VDAC was shown to be regulated by a variety of cellular factors and molecular partners including proteins, lipids and ions. Although the physiological importance of many of these modulatory effects are well described, the binding sites for molecular partners are still largely unknown. The highly symmetrical and sleek structure of the channel makes predictions of functional moieties difficult. However, one residue repeatedly sticks out when reviewing VDAC literature. A glutamate at position 73 (E73) located on the outside of the channel facing the hydrophobic membrane environment was repeatedly proposed to be involved in channel regulation on multiple levels. Here, we review the distinct hypothesized roles of E73 and summarize the open questions around this mysterious residue.
Collapse
Affiliation(s)
- Alexander Bernhard Rister
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
- Correspondence: ; Tel.: +49-(0)89-2180-73831
| |
Collapse
|
3
|
Homocysteine-Thiolactone Modulates Gating of Mitochondrial Voltage-Dependent Anion Channel (VDAC) and Protects It from Induced Oxidative Stress. J Membr Biol 2022; 255:79-97. [PMID: 35103807 DOI: 10.1007/s00232-022-00215-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
The gating of the Voltage-Dependent Anion Channel (VDAC) is linked to oxidative stress through increased generation of mitochondrial ROS with increasing mitochondrial membrane potential (ΔΨm). It has been already reported that H2O2 increases the single-channel conductance of VDAC on a bilayer lipid membrane. On the other hand, homocysteine (Hcy) has been reported to induce mitochondria-mediated cell death. It is argued that the thiol-form of homocysteine, HTL could be the plausible molecule responsible for the alteration in the function of proteins, such as VDAC. It is hypothesized that HTL interacts with VDAC that causes functional abnormalities. An investigation was undertaken to study the interaction of HTL with VDAC under H2O2 induced oxidative stress through biophysical and electrophysiological methods. Fluorescence spectroscopic studies indicate that HTL interacts with VDAC, but under induced oxidative stress the effect is prevented partially. Similarly, bilayer electrophysiology studies suggest that HTL shows a reduction in VDAC single-channel conductance, but the effects are partially prevented under an oxidative environment. Gly172 and His181 are predicted through bioinformatics tools to be the most plausible binding residues of HTL in Rat VDAC. The binding of HTL and H2O2 with VDAC appears to be cooperative as per our analysis of experimental data in the light of the Hill-Langmuir equation. The binding energies are estimated to be - 4.7 kcal mol-1 and - 2.8 kcal mol-1, respectively. The present in vitro studies suggest that when mitochondrial VDAC is under oxidative stress, the effects of amino acid metabolites like HTL are suppressed.
Collapse
|
4
|
The Molecular Mechanism of Human Voltage-Dependent Anion Channel 1 Blockade by the Metallofullerenol Gd@C82(OH)22: An In Silico Study. Biomolecules 2022; 12:biom12010123. [PMID: 35053271 PMCID: PMC8773804 DOI: 10.3390/biom12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
The endohedral metallofullerenol Gd@C82(OH)22 has been identified as a possible antineoplastic agent that can inhibit both the growth and metastasis of cancer cells. Despite these potentially important effects, our understanding of the interactions between Gd@C82(OH)22 and biomacromolecules remains incomplete. Here, we study the interaction between Gd@C82(OH)22 and the human voltage-dependent anion channel 1 (hVDAC1), the most abundant porin embedded in the mitochondrial outer membrane (MOM), and a potential druggable target for novel anticancer therapeutics. Using in silico approaches, we observe that Gd@C82(OH)22 molecules can permeate and form stable interactions with the pore of hVDAC1. Further, this penetration can occur from either side of the MOM to elicit blockage of the pore. The binding between Gd@C82(OH)22 and hVDAC1 is largely driven by long-range electrostatic interactions. Analysis of the binding free energies indicates that it is thermodynamically more favorable for Gd@C82(OH)22 to bind to the hVDAC1 pore when it enters the channel from inside the membrane rather than from the cytoplasmic side of the protein. Multiple factors contribute to the preferential penetration, including the surface electrostatic landscape of hVDAC1 and the unique physicochemical properties of Gd@C82(OH)22. Our findings provide insights into the potential molecular interactions of macromolecular biological systems with the Gd@C82(OH)22 nanodrug.
Collapse
|
5
|
Mallo N, Ovciarikova J, Martins-Duarte ES, Baehr SC, Biddau M, Wilde ML, Uboldi AD, Lemgruber L, Tonkin CJ, Wideman JG, Harding CR, Sheiner L. Depletion of a Toxoplasma porin leads to defects in mitochondrial morphology and contacts with the endoplasmic reticulum. J Cell Sci 2021; 134:272536. [PMID: 34523684 PMCID: PMC8572010 DOI: 10.1242/jcs.255299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/06/2021] [Indexed: 01/21/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper. Summary: Depletion of the Toxoplasma voltage-dependent anion channel highlights the importance of endoplasmic reticulum–mitochondria membrane contact sites in maintaining organelle morphology.
Collapse
Affiliation(s)
- Natalia Mallo
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Erica S Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 486 31270-901, Brazil
| | - Stephan C Baehr
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Mary-Louise Wilde
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alessandro D Uboldi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,Glasgow Imaging Facility, University of Glasgow, Glasgow G12 8TA, UK
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
6
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
7
|
Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:706-719. [PMID: 33570751 DOI: 10.1111/tpj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int J Mol Sci 2021; 22:ijms22063034. [PMID: 33809742 PMCID: PMC8002290 DOI: 10.3390/ijms22063034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.
Collapse
Affiliation(s)
- Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia
| | - Marc Léonetti
- Université de. Grenoble Alpes, CNRS, LRP, 38000 Grenoble, France;
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Correspondence: ; Tel.: +32-2-650-5383
| |
Collapse
|
9
|
Pieńko T, Trylska J. Computational Methods Used to Explore Transport Events in Biological Systems. J Chem Inf Model 2019; 59:1772-1781. [DOI: 10.1021/acs.jcim.8b00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, S. Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Van Liefferinge F, Krammer EM, Sengupta D, Prévost M. Lipid composition and salt concentration as regulatory factors of the anion selectivity of VDAC studied by coarse-grained molecular dynamics simulations. Chem Phys Lipids 2018; 220:66-76. [PMID: 30448398 DOI: 10.1016/j.chemphyslip.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a mitochondrial outer membrane protein whose fundamental function is to facilitate and regulate the flow of metabolites between the cytosol and the mitochondrial intermembrane space. Using coarse-grained molecular dynamics simulations, we investigated the dependence of VDAC selectivity towards small inorganic anions on two factors: the ionic strength and the lipid composition. In agreement with experimental data we found that VDAC becomes less anion selective with increasing salt concentration due to the screening of a few basic residues that point into the pore lumen. The molecular dynamics simulations provide insight into the regulation mechanism of VDAC selectivity by the composition in the lipid membrane and suggest that the ion distribution is differently modulated by POPE compared to the POPC bilayer. This occurs through the more persistent interactions of acidic residues located at both rims of the β-barrel with head groups of POPE which in turn impact the electrostatic potential and thereby the selectivity of the pore. This mechanism occurs not only in POPE single component membranes but also in a mixed POPE/POPC bilayer by an enrichment of POPE over POPC lipids on the surface of VDAC. Thus we show here that computationally-inexpensive coarse-grained simulations are able to capture, in a semi-quantitative way, essential features of VDAC anion selectivity and could pave the way toward a molecular level understanding of metabolite transport in natural membranes.
Collapse
Affiliation(s)
- F Van Liefferinge
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - E-M Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - D Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - M Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
11
|
Versaw WK, Garcia LR. Intracellular transport and compartmentation of phosphate in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:25-30. [PMID: 28570954 DOI: 10.1016/j.pbi.2017.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) is an essential macronutrient with structural and metabolic roles within every compartment of the plant cell. Intracellular Pi transporters direct Pi to each organelle and also control its exchange between subcellular compartments thereby providing the means to coordinate compartmented metabolic processes, including glycolysis, photosynthesis, and respiration. In this review we summarize recent advances in the identification and functional analysis of Pi transporters that localize to vacuoles, chloroplasts, non-photosynthetic plastids, mitochondria, and the Golgi apparatus. Electrical potentials across intracellular membranes and the pH of subcellular environments will also be highlighted as key factors influencing the energetics of Pi transport, and therefore pose limits for Pi compartmentation.
Collapse
Affiliation(s)
- Wayne K Versaw
- Texas A&M University, Department of Biology, College Station, TX 77843, USA.
| | - L Rene Garcia
- Texas A&M University, Department of Biology, College Station, TX 77843, USA
| |
Collapse
|
12
|
Gupta R. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise. Biochem Biophys Res Commun 2017; 490:1221-1225. [PMID: 28676395 DOI: 10.1016/j.bbrc.2017.06.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value < 0.5 for JNK3 phosphorylated VDAC at both positive and negative voltage. It is proposed that 1/f1 power law in native VDAC open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
14
|
Mlayeh L, Krammer EM, Léonetti M, Prévost M, Homblé F. The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:786-794. [PMID: 28666835 DOI: 10.1016/j.bbabio.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/28/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the main pathway for inorganic ions and metabolites through the mitochondrial outer membrane. Studies recently demonstrated that membrane lipids regulate its function. It remains, however, unclear how this regulation takes place. In this study, we show that phospholipids are key regulators of Phaseolus VDAC function and, furthermore, that the salt concentration modulates this regulation. Both selectivity and voltage dependence of Phaseolus VDAC are very sensitive to a change in the lipid polar head from PC to PE. Interestingly enough, this dependence is observed only at low salt concentration. Furthermore, significant changes in VDAC functional properties also occur with the gradual methylation of the PE group pointing to the role of subtle chemical variations in the lipid head group. The dependence of PcVDAC gating upon the introduction of a small mole fraction of PE in a PC bilayer has prompted us to propose the existence of a specific interaction site for PE on the outer surface of PcVDAC. Eventually, comparative modeling and molecular dynamics simulations suggest a potential mechanism to get insight into the anion selectivity enhancement of PcVDAC observed in PE relative to PC.
Collapse
Affiliation(s)
- Lamia Mlayeh
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | - Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Marc Léonetti
- I.R.P.H.E., Aix-Marseille Université, CNRS, Technopôle de Château-Gombert, F-13384, Marseille Cedex 13, France.
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| |
Collapse
|
15
|
Briones R, Weichbrodt C, Paltrinieri L, Mey I, Villinger S, Giller K, Lange A, Zweckstetter M, Griesinger C, Becker S, Steinem C, de Groot BL. Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1. Biophys J 2016; 111:1223-1234. [PMID: 27653481 PMCID: PMC5034351 DOI: 10.1016/j.bpj.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an "open" channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.
Collapse
Affiliation(s)
- Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Conrad Weichbrodt
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Licia Paltrinieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Saskia Villinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Adam Lange
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Markus Zweckstetter
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Neurology, University Medical Center, University of Goettingen, Goettingen, Germany
| | - Christian Griesinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
16
|
Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1778-90. [PMID: 26940625 PMCID: PMC4877207 DOI: 10.1016/j.bbamem.2016.02.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/04/2023]
Abstract
Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large β-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Sergei Yu Noskov
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada.
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Oscar Teijido
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Epigenetics, Institute of Medical Sciences and Genomic Medicine, EuroEspes Sta. Marta de Babío S/N, 15165 Bergondo, A Coruña, Spain
| | - Wei Jiang
- Leadership Computing Facility, Argonne National Laboratory, 9700S Cass Avenue, Lemont, IL 60439, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|