1
|
Ferreira T, Miranda M, Pinto-Leite R, Mano JF, Medeiros R, Oliveira PA, Gama A. Integrated Study of Canine Mammary Tumors Histopathology, Immunohistochemistry, and Cytogenetic Findings. Vet Sci 2024; 11:409. [PMID: 39330788 PMCID: PMC11435489 DOI: 10.3390/vetsci11090409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer is a complex pathological condition associated with substantial rates of mortality and morbidity in both humans and animals. Mammary gland tumors in intact female dogs are the most prevalent neoplasms. Surgical intervention remains the primary treatment choice. Alternative therapeutic options have emerged, with histopathological examination being fundamental to confirm the diagnosis and to decide the best therapy. This research focused on the clinicopathological, immunohistochemical, and cytogenetic aspects of canine mammary tumors (CMTs). Most of the animals were mixed-breed, with the majority being older than seven years, and only 16.7% had been spayed before surgery. Caudal abdominal and inguinal mammary glands were the most affected, with regional mastectomy being the predominant treatment (75.0%). Of all the tumors, 29.1% were benign, while 70.9% were malignant. Complex adenoma was the most common benign tumor, whereas tubulopapillary carcinoma was the most common malignant type. Grade III tumors (17.6%) were the least encountered, while grades I and II exhibited a similar prevalence (41.2%). All the carcinomas were classified as luminal, and cytogenetics analysis demonstrated a high chromosomal instability with significant aneuploidy observed in all cases and polyploidy detected in 62.5%. This study holds significance as canine and human breast cancers share similar characteristics, suggesting that dogs could be a valuable model for human breast cancer research. Further studies with larger sample sizes are needed to enhance our understanding of CMTs.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Miranda
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rosário Pinto-Leite
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E., 5000-508 Vila Real, Portugal
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yague M, Diaz del Arco C, de Andrés PJ, Illera MJ, Caceres S. Bicalutamide Enhances Conventional Chemotherapy in In Vitro and In Vivo Assays Using Human and Canine Inflammatory Mammary Cancer Cell Lines. Int J Mol Sci 2024; 25:7923. [PMID: 39063165 PMCID: PMC11276844 DOI: 10.3390/ijms25147923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are highly aggressive neoplastic diseases that share numerous characteristics. In IBC and IMC, chemotherapy produces a limited pathological response and anti-androgen therapies have been of interest for breast cancer treatment. Therefore, the aim was to evaluate the effect of a therapy based on bicalutamide, a non-steroidal anti-androgen, with doxorubicin and docetaxel chemotherapy on cell proliferation, migration, tumor growth, and steroid-hormone secretion. An IMC-TN cell line, IPC-366, and an IBC-TN cell line, SUM149, were used. In vitro assays revealed that SUM149 exhibited greater sensitivity, reducing cell viability and migration with all tested drugs. In contrast, IPC-366 exhibited only significant in vitro reductions with docetaxel as a single agent or in different combinations. Decreased estrogen levels reduced in vitro tumor growth in both IMC and IBC. Curiously, doxorubicin resulted in low efficacy, especially in IMC. In addition, all drugs reduced the tumor volume in IBC and IMC by increasing intratumoral testosterone (T) levels, which have been related with reduced tumor progression. In conclusion, the addition of bicalutamide to doxorubicin and docetaxel combinations may represent a potential treatment for IMC and IBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yague
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Paloma Jimena de Andrés
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
3
|
Crespo B, Caceres S, Silvan G, Illera MJ, Illera JC. The inhibition of steroid hormones determines the fate of IPC-366 tumor cells, highlighting the crucial role of androgen production in tumor processes. Res Vet Sci 2023; 161:1-14. [PMID: 37290206 DOI: 10.1016/j.rvsc.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Inflammatory mammary cancer (IMC) is a disease that affects female dogs. It is characterized by poor treatment options and no efficient targets. However, anti-androgenic and anti-estrogenic therapies could be effective because IMC has a great endocrine influence, affecting tumor progression. IPC-366 is a triple negative IMC cell line that has been postulated as a useful model to study this disease. Therefore, the aim of this study was to inhibit steroid hormones production at different points of the steroid pathway in order to determine its effect in cell viability and migration in vitro and tumor growth in vivo. For this purpose, Dutasteride (anti-5αReductase), Anastrozole (anti-aromatase) and ASP9521 (anti-17βHSD) and their combinations have been used. Results revealed that this cell line is positive to estrogen receptor β (ERβ) and androgen receptor (AR) and endocrine therapies reduce cell viability. Our results enforced the hypothesis that estrogens promote cell viability and migration in vitro due to the function of E1SO4 as an estrogen reservoir for E2 production that promotes the IMC cells proliferation. Also, an increase in androgen secretion was associated with a reduction in cell viability. Finally, in vivo assays showed large tumor reduction. Hormone assays determined that high estrogen levels and the reduction of androgen levels promote tumor growth in Balb/SCID IMC mice. In conclusion, estrogen levels reduction may be associated with a good prognosis. Also, activation of AR by increasing androgen production could result in effective therapy for IMC because their anti-proliferative effect.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - J C Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| |
Collapse
|
4
|
Inglebert M, Dettwiler M, Hahn K, Letko A, Drogemuller C, Doench J, Brown A, Memari Y, Davies HR, Degasperi A, Nik-Zainal S, Rottenberg S. A living biobank of canine mammary tumor organoids as a comparative model for human breast cancer. Sci Rep 2022; 12:18051. [PMID: 36302863 PMCID: PMC9614008 DOI: 10.1038/s41598-022-21706-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 01/20/2023] Open
Abstract
Mammary tumors in dogs hold great potential as naturally occurring breast cancer models in translational oncology, as they share the same environmental risk factors, key histological features, hormone receptor expression patterns, prognostic factors, and genetic characteristics as their human counterparts. We aimed to develop in vitro tools that allow functional analysis of canine mammary tumors (CMT), as we have a poor understanding of the underlying biology that drives the growth of these heterogeneous tumors. We established the long-term culture of 24 organoid lines from 16 dogs, including organoids derived from normal mammary epithelium or benign lesions. CMT organoids recapitulated key morphological and immunohistological features of the primary tissue from which they were derived, including hormone receptor status. Furthermore, genetic characteristics (driver gene mutations, DNA copy number variations, and single-nucleotide variants) were conserved within tumor-organoid pairs. We show how CMT organoids are a suitable model for in vitro drug assays and can be used to investigate whether specific mutations predict therapy outcomes. Specifically, certain CMT subtypes, such as PIK3CA mutated, estrogen receptor-positive simple carcinomas, can be valuable in setting up a preclinical model highly relevant to human breast cancer research. In addition, we could genetically modify the CMT organoids and use them to perform pooled CRISPR/Cas9 screening, where library representation was accurately maintained. In summary, we present a robust 3D in vitro preclinical model that can be used in translational research, where organoids from normal, benign as well as malignant mammary tissues can be propagated from the same animal to study tumorigenesis.
Collapse
Affiliation(s)
- Marine Inglebert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Vetscope Pathologie Dettwiler, Lörracherstrasse 50, 4125, Riehen, Switzerland
| | - Kerstin Hahn
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, University of Bern, Bern, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Cord Drogemuller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - John Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Adam Brown
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Yasin Memari
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Helen R Davies
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland.
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Institute of Animal Pathology, COMPATH, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Gao H, Zhou H, Gao Y, He L, Li W, Xu M, Feng H, Feng X, Qiu C. Establishment of a new cell line of canine inflammatory mammary cancer: IMC-118. Vet Comp Oncol 2022; 20:679-687. [PMID: 35429113 DOI: 10.1111/vco.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Canine inflammatory mammary cancer (IMC) has long been regarded as an attractive animal model for research into human inflammatory breast cancer (IBC), Although some canine mammary tumour cell lines corresponding to human mammary cancer cell lines have been established, there is still a need to supplement the canine mammary tumour cell bank. The goal of this study was to create a new type of IMC cell line. The primary tumour, IMC-118, was identified as IMC by pathology examination. Immunohistochemistry analysis revealed negative immunoreactivity to oestrogen receptor (ER), but positive immunoreactivity to progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2). Immunofluorescence (IF) analysis revealed that the IMC-118 cell line from this primary tumour was negative for ER but positive for PR and HER-2, and was also positive for epithelial and mesenchymal cell markers. This cell line was cultured stably for more than 50 passages and grew well after cryopreservation. In vivo, tumour masses and metastases in the lungs were discovered after inoculating the IMC-118 cells into the nude mice model. As a result, a novel canine IMC cell line, IMC-118, was effectively established, and could be employed as a promising model for immunotherapy and epithelial-mesenchymal transition mechanism of IMC research in both dogs and humans.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yiming Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lixin He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxuan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meixia Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huili Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiujuan Feng
- Nanjing Police Dog Research Institute of the Ministry of the Public Security, Nanjing, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Alonso-Diez A, Affolter V, Sevane N, Dunner S, Valdivia G, Clemente M, De Andrés P, Illera J, Pérez-Alenza M, Peña L. Cell adhesion molecules E-cadherin and CADM1 are differently expressed in canine inflammatory mammary cancer. Res Vet Sci 2022; 152:307-313. [DOI: 10.1016/j.rvsc.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
|
7
|
Establishment of a new canine inflammatory mammary carcinoma cell line and analysis of its cystine-glutamate transporter subunit expression. J Vet Res 2022; 66:273-279. [PMID: 35892110 PMCID: PMC9281518 DOI: 10.2478/jvetres-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Inflammatory mammary carcinoma (IMC) is a rare disease with a poor prognosis and one affecting dogs. Inflammatory breast carcinoma (IBC) is a subtype of malignant breast cancer in humans with a high degree of malignancy and a similarly poor prognosis. Since the clinical symptoms and prognoses of both are similar, canine IMC has been considered as a model of human IBC. In this study, we newly established a stable IMC-derived cell line from a patient at the Yamaguchi University Animal Medical Center in Japan. Material and Methods The patient was a female toy poodle presenting with an inflamed mammary gland, which was diagnosed as IMC. The cell line was established from a tissue biopsy. Surface antigen marker (CD24 and CD44) expression was determined. Cystine/glutamate antiporter (xCT) expression was determined by Western blotting, flow cytometry and fluorescence immunostaining, and sulfasalazine was administered to ascertain if it suppressed xCT expression. Stem cell marker (Nanog, Sox2, Myc and Klf4) expression and aldehyde dehydrogenase (ALDH) activity were also investigated. Results The cultured cells showed xCT, and its suppression showed downregulation of stem cell markers and ALDH activity. Stable cell proliferation was verified. Conclusion A new canine IMC-derived cell line was established. In the future, we aim to study the effect of xCT on the maintenance of cancer stem cell properties in canine tumours, and propose a new therapeutic method for the treatment of canine IMC by targeting xCT.
Collapse
|
8
|
Damasceno KA, dos Santos-Conceição AM, Silva LP, Cardoso TMDS, Vieira-Filho CHDC, Figuerêdo SHS, Martins-Filho E, de Faria BGO, da Costa-Neto JM, Cassali GD, Estrela-Lima A. Factors related to the suppression of the antitumour immune response in female dogs with inflammatory mammary carcinoma. PLoS One 2022; 17:e0267648. [PMID: 35512031 PMCID: PMC9071162 DOI: 10.1371/journal.pone.0267648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory mammary carcinoma (IMC), a neoplasia affecting women and female dogs, is considered an aggressive cancer with high metastatic potential and a low survival rate. Studies focused on the tumour microenvironment indicate that the aggressive behaviour of this tumour is primarily correlated with immunological factors as well as inflammation. The objective of this study was to analyse the possible strategies used by the tumour cells to suppress the immune response in female dogs with IMC. Forty-six female dogs were divided into three groups: control (C, n = 10), IMC (n = 14) and mammary carcinoma (MC, n = 22). Clinical-pathological evaluations, survival at follow-up, immunophenotyping of leukocytes in peripheral blood and tumours, and immunohistochemical evaluation of CD4+, granzyme B, perforin and FAS-L were performed. Clinical and pathological results showed a higher frequency of the primary form of neoplasia, solid arrays of tumor cells and a lower survival rate in the IMC group (30 days). Morphometric analysis of inflammatory infiltrate revealed more lymphocytes and macrophages in the IMC group. Immunophenotyping analysis of peripheral blood revealed a higher frequency of CD8+ T-cells (p = 0.0017), a lower frequency of CD4+ T-cells (p <0.0001), and significantly higher mean MHCI and MHCII CD14+ fluorescence intensity in the IMC group (p = 0.038 and p = 0.0117, respectively). The immunohistochemical evaluation of tumour sections showed fewer FAS-L-positive inflammatory cells in the IMC group. These results suggest the important contribution of CD8+ T-cells, macrophages and FAS-L in the aggressiveness of IMC.
Collapse
Affiliation(s)
- Karine Araújo Damasceno
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Salvador, Bahia, Brazil
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail: (AE-L); (KAD)
| | - Aline Michelle dos Santos-Conceição
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Laís Pereira Silva
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | | | - Emanoel Martins-Filho
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - João Moreira da Costa-Neto
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Estrela-Lima
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail: (AE-L); (KAD)
| |
Collapse
|
9
|
Sahabi K, Selvarajah GT, Mokrish A, Rasedee A, Kqueen CY. Development and molecular characterization of doxorubicin-resistant canine mammary gland tumour cells. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2032719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Gayathri T. Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ajat Mokrish
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Cheah Y. Kqueen
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
10
|
Mei C, Xin L, Liu Y, Lin J, Xian H, Zhang X, Hu W, Xia Z, Wang H, Lyu Y. Establishment of a New Cell Line of Canine Mammary Tumor CMT-1026. Front Vet Sci 2021; 8:744032. [PMID: 34712723 PMCID: PMC8546253 DOI: 10.3389/fvets.2021.744032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023] Open
Abstract
Canine mammary tumors (CMTs) have histopathological, epidemiologic and clinical characteristics similar to those in humans and are known to be one of the best models for human breast cancer (HBC). This research aimed to describe a newly established canine cell line, CMT-1026. Tumor samples were collected from a female dog exhibiting clinical mammary neoplasm, and the adherent cells were cultured. Both the histology and immunohistochemistry (IHC) of tumor samples were estimated. Cell growth, ultrastructural, cytological and immunocytochemistry (ICC) features of CMT-1026 were examined. CMT-1026 cells were inoculated into 10 female BALB/c nude mice to evaluate oncogenicity and metastatic ability. Hematoxylin-eosin (H.E.) staining of the tumors revealed an epithelial morphology. Electron microscopy was used to detect histological and cytological of smears, and ultrathin sections showed that CMT-1026 cells were polygonal and characterized by atypia and high mitotic index in the tumor, with prominent nucleoli and multinucleated cells. IHC characterization of CMT-1026 indicated ER-, PR-, HER-2, p63+, CK5/6+, and α-SMA+ epithelial cells. ICC characterization of CMT-1026 showed high expression of Claudin-1, Delta-catenin, SOX-2, and KI-67. At 2 weeks after inoculation of the CMT-1026 cells, phyma was found in 100% of the mice. The xenograft cancers showed conservation of the original H.E. features of the female dog cancer. In conclusion, CMT-1026 may be a model of canine mammary cancer that can be used in research on the pathogenesis of both CMT and HBC.
Collapse
Affiliation(s)
- Chen Mei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Liang Xin
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Jiabao Lin
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Wei Hu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Zhaofei Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yanli Lyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
12
|
Tumor Growth Progression in Ectopic and Orthotopic Xenografts from Inflammatory Breast Cancer Cell Lines. Vet Sci 2021; 8:vetsci8090194. [PMID: 34564588 PMCID: PMC8470891 DOI: 10.3390/vetsci8090194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Xenografts can grow in immunosuppressed hosts, such as SCID mice, and tumor material can be injected into hosts either ectopically or orthotopically. Choosing the correct model to use is a crucial step in animal research. The aim of this study was to report the differences between ectopic and orthotopic xenografts in tumor progression, metastasis capacity, histological features, and steroid hormone profiles in xenografts from the cIMC (canine inflammatory mammary cancer) cell line IPC-366 and hIBC (human inflammatory breast cancer) cell line SUM149. To achieve this purpose, 40 female mice 6-8 weeks old were inoculated with IPC-366 and SUM149 cells subcutaneously (ectopic models) or into mammary fat pad (orthotopic models). Mice were monitored for tumor progression and appearance of metastases, and generated tumors were analyzed in terms of histological examination and steroid hormone production. The results revealed differences in tumor appearance and percentage of metastasis between ectopic and orthotopic models, which were higher in the ectopic xenografts from both cell lines. However, both models had similar characteristics of tumor progression, histological features, and steroid hormone secretion profiles. We show that the ectopic model can be validated as a good and useful model of tumor development in addition to, not contrary to, the orthotopic model in breast cancer research.
Collapse
|
13
|
Alonso-Diez Á, Cáceres S, Peña L, Crespo B, Illera JC. Anti-Angiogenic Treatments Interact with Steroid Secretion in Inflammatory Breast Cancer Triple Negative Cell Lines. Cancers (Basel) 2021; 13:3668. [PMID: 34359570 PMCID: PMC8345132 DOI: 10.3390/cancers13153668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Human inflammatory breast cancer (IBC) is a highly angiogenic disease for which antiangiogenic therapy has demonstrated only a modest response, and the reason for this remains unknown. Thus, the purpose of this study was to determine the influence of different antiangiogenic therapies on in vitro and in vivo steroid hormone and angiogenic growth factor production using canine and human inflammatory breast carcinoma cell lines as well as the possible involvement of sex steroid hormones in angiogenesis. IPC-366 and SUM149 cell lines and xenotransplanted mice were treated with different concentrations of VEGF, SU5416, bevacizumab and celecoxib. Steroid hormone (progesterone, dehydroepiandrostenedione, androstenedione, testosterone, dihydrotestosterone, estrone sulphate and 17β-oestradiol), angiogenic growth factors (VEGF-A, VEGF-C and VEGF-D) and IL-8 determinations in culture media, tumour homogenate and serum samples were assayed by EIA. In vitro, progesterone- and 17β-oestradiol-induced VEGF production promoting cell proliferation and androgens are involved in the formation of vascular-like structures. In vivo, intratumoural testosterone concentrations were augmented and possibly associated with decreased metastatic rates, whereas elevated E1SO4 concentrations could promote tumour progression after antiangiogenic therapies. In conclusion, sex steroid hormones could regulate the production of angiogenic factors. The intratumoural measurement of sex steroids and growth factors may be useful to develop preventive and individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Sara Cáceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Belén Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
14
|
Li R, Wu H, Sun Y, Zhu J, Tang J, Kuang Y, Li G. A Novel Canine Mammary Cancer Cell Line: Preliminary Identification and Utilization for Drug Screening Studies. Front Vet Sci 2021; 8:665906. [PMID: 34124226 PMCID: PMC8191460 DOI: 10.3389/fvets.2021.665906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Canine malignant mammary tumor is a dangerously fatal neoplastic disease with poor survival in female dogs. The aim of this study was to preliminary characterize a novel canine mammary cancer cell line, B-CMT, from canine primary mammary gland tumor, and to utilize it as a cell model for in vitro screening of possible therapeutic drugs. The successfully established cell line, B-CMT, was cultured over 50 passages. B-CMT has a fast proliferation rate, and a population doubling time (PDT) of 33.6 h. The B-CMT cell line lacked human epidermal growth factor receptor-2 (HER-2), estrogen receptors (ER) and progesterone receptors (PR) expression by qRT-PCR. Compared with MDCK cells, CDH1 expression of CMT cell line was significantly decreased or even absent, but GATA3 expression dramatically increased, while TGF-β expression was at a similar level. Interestingly, the B-CMT cell line from canine primary tumor also showed positive hypoxia inducible factor-1α (HIF-1α) results in immunofluorescence (IF), western blot, and qRT-PCR analysis. Ten days post inoculation with EGFP-B-CMT (B-CMT cells stably expressing EGFP), the experimental mice developed palpable soft tissue masses which histologically resembled the canine primary tumor, and was approved to be derived from B-CMT cell line through detection of EGFP by immunohistochemical (IHC) analysis. Moreover, we investigated the cytotoxicity of five drugs to B-CMT cells, and the results showed that rapamycin and imatinib significantly inhibited the proliferation of the cells in vitro within a certain range of concentration. They also induced cell cycle arrest of B-CMT cells at G1 and G2 phase, respectively. In summary, the results of this report showed that B-CMT cell line might serve as a tool for future studies on tumor microenvironment and drug resistance.
Collapse
Affiliation(s)
- Rifei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoxian Wu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yue Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingru Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Kuang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
de Faria Lainetti P, Brandi A, Leis Filho AF, Prado MCM, Kobayashi PE, Laufer-Amorim R, Fonseca-Alves CE. Establishment and Characterization of Canine Mammary Gland Carcinoma Cell Lines With Vasculogenic Mimicry Ability in vitro and in vivo. Front Vet Sci 2020; 7:583874. [PMID: 33195606 PMCID: PMC7655132 DOI: 10.3389/fvets.2020.583874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mammary tumors affect intact and elderly female dogs, and almost 50% of these cases are malignant. Cell culture offers a promising preclinical model to study this disease and creates the opportunity to deposit cell lines at a cell bank to allow greater assay reproducibility and more reliable validation of the results. Another important aspect is the possibility of establishing models and improving our understanding of tumor characteristics, such as vasculogenic mimicry. Because of the importance of cancer cell lines in preclinical models, the present study established and characterized primary cell lines from canine mammary gland tumors. Cell cultures were evaluated for morphology, phenotype, vasculogenic mimicry (VM), and tumorigenicity abilities. We collected 17 primary mammary carcinoma and three metastases and obtained satisfactory results from 10 samples. The cells were transplanted to a xenograft model. All cell lines exhibited a spindle-shaped or polygonal morphology and expressed concomitant pancytokeratin and cytokeratin 8/18. Four cell lines had vasculogenic mimicry ability in vitro, and two cell lines showed in vivo tumorigenicity and VM in the xenotransplanted tumor. Cellular characterization will help create a database to increase our knowledge of mammary carcinomas in dogs, including studies of tumor behavior and the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | - Andressa Brandi
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | | | | | - Priscila Emiko Kobayashi
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Carlos Eduardo Fonseca-Alves
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil.,Institute of Health Sciences, Universidade Paulista-UNIP, Bauru, Brazil
| |
Collapse
|
16
|
Borghesi J, Caceres S, Mario LC, Alonso-Diez A, Silveira Rabelo AC, Illera MJ, Silvan G, Miglino MA, Favaron PO, Carreira ACO, Illera JC. Effects of doxorubicin associated with amniotic membrane stem cells in the treatment of canine inflammatory breast carcinoma (IPC-366) cells. BMC Vet Res 2020; 16:353. [PMID: 32972410 PMCID: PMC7513323 DOI: 10.1186/s12917-020-02576-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tumours in mammary glands represent the most common neoplasia in bitches, as in humans. This high incidence results in part from the stimulation of sex hormones on these glands. Among mammary tumours, inflammatory carcinoma is the most aggressive, presenting a poor prognosis to surgical treatment and chemotherapy. One of the most widely used chemotherapy drugs for breast cancer treatment is doxorubicin (DOXO). Alternative therapies have been introduced in order to assist in these treatments; studies on treatments using stem cells have emerged, since they have anti-inflammatory and immunomodulatory properties. The aim of this study was to evaluate the effects of DOXO and canine amniotic membrane stem cells (AMCs) on the triple-negative canine inflammatory mammary carcinoma cell line IPC-366. METHODS Four experimental groups were analysed: a control group without treatment; Group I with DOXO, Group II with AMC and Group III with an association of DOXO and AMCs. We performed the MTT assay with DOXO in order to select the best concentration for the experiments. The growth curve was performed with all groups (I-III) in order to verify the potential of treatments to reduce the growth of IPC-366. For the cell cycle, all groups (I-III) were tested using propidium iodide. While in the flow cytometry, antibodies to progesterone receptor (PR), estrogen receptor (ER), PCNA, VEGF, IL-10 and TGF-β1 were used. For steroidogenic pathway hormones, an ELISA assay was performed. RESULTS The results showed that cells treated with 10 µg/mL DOXO showed a 71.64% reduction in cellular growth after 72 h of treatment. Reductions in the expression of VEGF and PCNA-3 were observed by flow cytometry in all treatments when compared to the control. The intracellular levels of ERs were also significantly increased in Group III (4.67% vs. 27.1%). Regarding to the levels of steroid hormones, significant increases in the levels of estradiol (E2) and estrone sulphate (S04E1) were observed in Groups I and III. On the other hand, Group II did not show differences in steroid hormone levels in relation to the control. We conclude that the association of DOXO with AMCs (Group III) promoted a reduction in cell growth and in the expression of proteins related to proliferation and angiogenesis in IPC-366 triple-negative cells. CONCLUSIONS This treatment promoted ER positive expression, suggesting that the accumulated oestrogen conducted these cells to a synergistic state, rendering these tumour cells responsive to ERs and susceptible to new hormonal cancer therapies.
Collapse
Affiliation(s)
- Jéssica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Sara Caceres
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Lara Carolina Mario
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria J Illera
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Gema Silvan
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Phelipe O Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil. .,NUCEL (Cell and Molecular Therapy Center), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - Juan Carlos Illera
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
17
|
Levi M, Peña L, Alonso-Díez A, Brunetti B, Muscatello LV, Benazzi C, Pérez-Alenza MD, Sarli G. P-Glycoprotein and Breast Cancer Resistance Protein in Canine Inflammatory and Noninflammatory Grade III Mammary Carcinomas. Vet Pathol 2019; 56:840-847. [PMID: 31526115 DOI: 10.1177/0300985819868647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) expression are frequently related to multidrug resistance (MDR) in neoplastic cells. Canine inflammatory and grade III noninflammatory mammary carcinomas (IMC and non-IMC) are aggressive tumors that could benefit from chemotherapy. This study describes the immunohistochemical detection of P-gp and BCRP in 20 IMCs and 18 non-IMCs from dogs that had not received chemotherapy. Our aim was to determine if P-gp and BCRP expression was related to the "inflammatory" phenotype, to establish a basis for future studies analyzing the response to chemotherapy in dogs with highly malignant mammary cancer. Immunolabeling was primarily membranous for P-gp with a more intense labeling in emboli, and immunolabeling was membranous and cytoplasmic for BCRP. P-gp was expressed in 17 of 20 (85%) IMCs compared to 7 of 18 (39%) non-IMCs (P = 0.006). BCRP was expressed within emboli in 15 of 19 (79%) emboli in IMC, 12 of 15 (80%) primary IMCs, and 12 of 18 (67%) non-IMCs, without statistically significant differences (P > .05). All IMCs and 67% of non-IMCs expressed at least 1 of the 2 transporters, and 63% (12/19) of IMCs and 39% (7/18) of non-IMCs expressed both P-gp and BCRP. P-gp and BCRP evaluation might help select patients for chemotherapy. P-gp, expressed in a significantly higher percentage of IMCs vs non-IMCs, might play a specific role in the chemoresistance of IMC.
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Angela Alonso-Díez
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Inflammatory Mammary Carcinoma in a Male Dog-Case Report. Top Companion Anim Med 2019; 37:100357. [PMID: 31837753 DOI: 10.1016/j.tcam.2019.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022]
Abstract
Inflammatory mammary carcinoma (IMC) is a rare and aggressive variant of a malignant mammary tumor. The present report describes the case of a male dog with clinical and histopathologic signs suggestive of IMC. The patient was presented to our clinic with painful and erythematous skin over the ventral abdomen, as well as preputial and left hind limb edema apparently associated with ill-defined nodules in the caudal mammary region. Cytologic examination of the nodules suggested the presence of a malignant epithelial tumor. Histopathology revealed anaplastic carcinoma with embolization in the dermal lymphatics. Immunohistochemistry showed cyclooxygenase-2 and E-cadherin expression in the neoplastic cells. The patient died 35 days after initial evaluation. To the best of our knowledge, this is the first published case describing IMC in a male dog.
Collapse
|
19
|
Barreno L, Cáceres S, Alonso-Diez Á, Vicente-Montaña A, García ML, Clemente M, Illera JC, Peña L. Vasculogenic mimicry-associated ultrastructural findings in human and canine inflammatory breast cancer cell lines. BMC Cancer 2019; 19:750. [PMID: 31362745 PMCID: PMC6668131 DOI: 10.1186/s12885-019-5955-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are the most lethal mammary cancers. An exacerbated angiogenesis and the existence of vasculogenic mimicry (VM) are hallmarks of these tumors. The information regarding VM and ultrastructural characteristics of mammary cell lines is scant. Methods In this study, IBC cell line SUM149 and IMC cell line IPC-366 in adherent (2D) and non-adherent (3D) (mammospheres, cancer stem cells) conditions were analyzed by transmission and scanning electron microscopy (TEM and SEM, respectively). Results The TEM revealed round to oval shape cells with microvilli on the surface, high numbers of peroxisomes in close apposition to lipid droplets and some extracellular derived vesicles. The TEM and the SEM mammospheres revealed group of cells clumping together with a central lumen (resembling a mammary acini). The cells joint are tight junctions and zonula adherens. By SEM two cell morphologies were observed: spherical and flattened cells. There was evidence endothelial-like cells (ELCs), which is characteristic for this disease, showing several or unique cytoplasmic empty space. ELCs were more frequent in 3D than in 2D culture conditions and contained Weibel-Palade cytoplasmic bodies, which are exclusive structures of endothelial cells. Conclusions Both cell lines, IPC-366 and SUM-149, shared ultrastructural characteristics, further supporting canine IMC as a model for the human disease. To the best of our knowledge, this is the first study that demonstrate the morphological differentiation of cultured cancer stem cells from cancer epithelial cell lines into endothelial-like cells, confirming the vasculogenic mimicry phenomenon from an ultrastructural point of view.
Collapse
Affiliation(s)
- Lucía Barreno
- Veterinary Clinical Hospital, Pathology Service, Complutense University of Madrid, Madrid, Spain
| | - Sara Cáceres
- Department of animal Physiology, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Veterinary Clinical Hospital, Pathology Service, Complutense University of Madrid, Madrid, Spain
| | - Ana Vicente-Montaña
- National Center of Electron Microscopy, Complutense University of Madrid, Madrid, Spain
| | - María Luisa García
- National Center of Electron Microscopy, Complutense University of Madrid, Madrid, Spain
| | - Mónica Clemente
- Veterinary Clinical Hospital, Pathology Service, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos Illera
- Department of animal Physiology, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Veterinary Clinical Hospital, Pathology Service, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Yoshimura H, Otsuka A, Michishita M, Yamamoto M, Ashizawa M, Zushi M, Moriya M, Azakami D, Ochiai K, Matsuda Y, Ishiwata T, Kamiya S, Takahashi K. Expression and Roles of S100A4 in Anaplastic Cells of Canine Mammary Carcinomas. Vet Pathol 2019; 56:389-398. [DOI: 10.1177/0300985818823772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S100A4 (metastasin), a member of the S100 protein family, was initially identified in metastatic cells and is well established as a marker of aggressive human cancer. However, expression and roles of S100A4 in canine mammary tumors have not been clarified. In this study, expression of S100A4 was examined immunohistochemically in normal, hyperplastic, and neoplastic mammary glands of dogs. In all normal and benign lesions, S100A4 was restricted to a few stromal fibroblasts and inflammatory cells. However, in 7 of 57 (12%) of the malignant tumors examined, cytoplasmic and nuclear expression of S100A4 was observed in epithelial tumor cells and stromal cells. Particularly, the frequency of S100A4-positive anaplastic carcinomas was high (4/8 cases, 50%). Next, we established a novel cell line, named NV-CML, from a S100A4-positive canine mammary carcinoma. The cultured NV-CML cells and the tumors that developed in the immunodeficient mice after subcutaneous injection of the cells maintained the immunophenotype of the original tumor, including S100A4 expression. Using this cell line, we examined the cellular functions of S100A4 using RNA interference. S100A4 expression level in NV-CML cells transfected with small interfering RNA (siRNA) targeting canine S100A4 (siS100A4) was reduced to about one-fifth of those with negative-control siRNA (siNeg). Cell proliferation in WST-8 assay and cell migration in Boyden chamber assay were significantly decreased in siS100A4-transfected cells compared with siNeg-transfected cells. These findings suggest that S100A4 may be related to progression of canine mammary carcinomas via its influence on cell growth and motility.
Collapse
Affiliation(s)
- Hisashi Yoshimura
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Aya Otsuka
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Minori Ashizawa
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Manami Zushi
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Maiko Moriya
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Daigo Azakami
- Department of Veterinary Nursing, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shinji Kamiya
- Division of Animal Higher Function, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
21
|
TiHo-0906: a new feline mammary cancer cell line with molecular, morphological, and immunocytological characteristics of epithelial to mesenchymal transition. Sci Rep 2018; 8:13231. [PMID: 30185896 PMCID: PMC6125410 DOI: 10.1038/s41598-018-31682-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Feline mammary carcinomas (FMCs) with anaplastic and malignant spindle cells histologically resemble the human metaplastic breast carcinoma (hMBC), spindle-cell subtype. hMBCs display epithelial-to-mesenchymal transition (EMT) characteristics. Herein we report the establishment and characterization of a cell line (TiHoCMglAdcar0906; TiHo-0906) exhibiting EMT-like properties derived from an FMC with anaplastic and malignant spindle cells. Copy-number variations (CNVs) by next-generation sequencing and immunohistochemical characteristics of the cell line and the tumour were compared. The absolute qPCR expression of EMT-related markers HMGA2 and CD44 was determined. The growth, migration, and sensitivity to doxorubicin were assessed. TiHo-0906 CNVs affect several genomic regions harbouring known EMT-, breast cancer-, and hMBCs-associated genes as AKT1, GATA3, CCND2, CDK4, ZEB1, KRAS, HMGA2, ESRP1, MTDH, YWHAZ, and MYC. Most of them were located in amplified regions of feline chromosomes (FCAs) B4 and F2. TiHo-0906 cells displayed an epithelial/mesenchymal phenotype, and high HMGA2 and CD44 expression. Growth and migration remained comparable during subculturing. Low-passaged cells were two-fold more resistant to doxorubicin than high-passaged cells (IC50: 99.97 nM, and 41.22 nM, respectively). The TiHo-0906 cell line was derived from a poorly differentiated cellular subpopulation of the tumour consistently displaying EMT traits. The cell line presents excellent opportunities for studying EMT on FMCs.
Collapse
|
22
|
Zhang H, Pei S, Zhou B, Wang H, Du H, Zhang D, Lin D. Establishment and characterization of a new triple-negative canine mammary cancer cell line. Tissue Cell 2018; 54:10-19. [PMID: 30309498 DOI: 10.1016/j.tice.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 01/11/2023]
Abstract
Canine mammary tumor (CMT) has always been an ideal animal model for human breast cancer (HBC) research, however, there is a lack of various established CMT cell lines corresponding to HBC cell lines. This study was designed to establish a new type of CMT cell line. The primary tumor, CMT-7364, was identified as the intraductal papillary carcinoma, and showed negative immunoreactivity to estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor-2 (HER-2) by immunohistochemistry (IHC) analysis. The CMT-7364 cell line from this primary tumor also shows a negative immunoreactivity to ER, PR, and HER-2, and was negative to epithelial cell markers and positive to mesenchymal cell markers by immunocytochemistry (ICC) analysis. This cell line, which has been stably cultured for more than 115 passages, and was characterized by epithelial origin with the expression of the epithelial antigen by ICC analysis and invasion ability by transwell analysis. In vivo, tumor mass and metastases in the lung were found after inoculating the CMT-7364 cells in the nude mice model, and the immune-complete mice model respectively. The tissues from the xenograft tumor were also negative to ER, PR, and HER-2 by IHC analysis. Thus, a novel triple negative canine mammary cancer cell line, CMT-7364, was successfully established, which could be used as a promising model for the research of immunotherapy and Epithelial-Mesenchymal Transition (EMT) mechanism of the triple-negative breast cancer both in canine and human.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Shimin Pei
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Bin Zhou
- The College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongchao Du
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Raposo TP, Arias-Pulido H, Chaher N, Fiering SN, Argyle DJ, Prada J, Pires I, Queiroga FL. Comparative aspects of canine and human inflammatory breast cancer. Semin Oncol 2018. [PMID: 29526258 DOI: 10.1053/j.seminoncol.2017.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory breast cancer (IBC) in humans is the most aggressive form of mammary gland cancer and shares clinical, pathologic, and molecular patterns of disease with canine inflammatory mammary carcinoma (CIMC). Despite the use of multimodal therapeutic approaches, including targeted therapies, the prognosis for IBC/CIMC remains poor. The aim of this review is to critically analyze IBC and CIMC in terms of biology and clinical features. While rodent cancer models have formed the basis of our understanding of cancer biology, the translation of this knowledge into improved outcomes has been limited. However, it is possible that a comparative "one health" approach to research, using a natural canine model of the disease, may help advance our knowledge on the biology of the disease. This will translate into better clinical outcomes for both species. We propose that CIMC has the potential to be a useful model for developing and testing novel therapies for IBC. Further, this strategy could significantly improve and accelerate the design and establishment of new clinical trials to identify novel and improved therapies for this devastating disease in a more predictable way.
Collapse
Affiliation(s)
- Teresa P Raposo
- Division of Cancer and Stem Cells, Faculty of Medicine, University of Nottingham, United Kingdom
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Nabila Chaher
- Department of Pathology, Centre Pierre et Marie Curie, 1, Avenue Battendier, Place May 1st, Algiers, Algeria
| | - Steven N Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush Campus, Midlothian, University of Edinburgh, United Kingdom
| | - Justina Prada
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Animal and Veterinary research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Animal and Veterinary research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Departament of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal; Center for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
24
|
Kabir FML, DeInnocentes P, Agarwal P, Mill CP, Riese Nd DJ, Bird RC. Estrogen receptor-α, progesterone receptor, and c- erbB/HER-family receptor mRNA detection and phenotype analysis in spontaneous canine models of breast cancer. J Vet Sci 2017; 18:149-158. [PMID: 27515268 PMCID: PMC5489461 DOI: 10.4142/jvs.2017.18.2.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 02/02/2023] Open
Abstract
Well characterized, stable, p16-defective canine mammary cancer (CMT) cell lines and normal canine mammary epithelial cells were used to investigate expression of the major breast cancer-specific hormone receptors estrogen receptor alpha (ER1) and progesterone receptor (PR) as well as luminal epithelial-specific proto-oncogenes encoding c-erbB-1 (epidermal growth factor receptor/EGFr), c-erbB-2/HER2, c-erbB-3, and c-erbB-4 receptors. The investigation developed and validated quantitative reverse transcriptase polymerase chain reaction assays for each transcript to provide rapid assessment of breast cancer phenotypes for canine cancers, based on ER1, PR, and c-erbB-2/HER2 expressions, similar to those in human disease. Roles for relatively underexplored c-erbB-3 and c-erbB-4 receptor expressions in each of these breast cancer phenotypes were also evaluated. Each quantitative assay was validated by assessment of amplicon size and DNA sequencing following amplification. Differential expression of ER1, PR, and c-erbB-2 in CMT cell lines clearly defined distinct human-like breast cancer phenotypes for a selection of CMT-derived cell lines. Expression profiles for EGFr family genes c-erbB-3 and c-erbB-4 in CMT models also provided an enriched classification of canine breast cancer identifying new extended phenotypes beyond the conventional luminal-basal characterization used in human breast cancer.
Collapse
Affiliation(s)
- Farruk M Lutful Kabir
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Patricia DeInnocentes
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - David J Riese Nd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - R Curtis Bird
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| |
Collapse
|
25
|
Caceres S, Monsalve B, Peña L, de Andres PJ, Alonso-Diez A, Illera MJ, Woodward WA, Reuben JM, Silvan G, Illera JC. In vitro and in vivo effect of flutamide on steroid hormone secretion in canine and human inflammatory breast cancer cell lines. Vet Comp Oncol 2017; 16:148-158. [PMID: 28589573 DOI: 10.1111/vco.12324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
The aim was to study the effects of flutamide on cell proliferation, in vivo tumour growth and steroid production in canine and human IBC cell lines. IPC-366 and SUM149 cell cultures were exposed to flutamide concentrations for 72 hours. Additionally, IPC-366 and SUM149 xenotransplanted mice were treated subcutaneously with flutamide 3 times a week for 2 weeks. Steroid hormones determination in culture media, serum and tumour homogenates (pregnenolone, progesterone, androstenedione, testosterone, dihydrotestosterone, 17β-oestradiol and oestrone sulphate) were assayed by EIA. in vitro cell proliferation percentages showed a decrease in all flutamide dosages in IPC-366 and SUM149. in vivo flutamide reduced tumour size by 55% to 65%, and metastasis rates decreased. In treated groups, androgen levels in culture media, serum and tumour homogenates were increased as oestrogen levels decreased. These results suggest that flutamide treatment inhibits cell proliferation and promotes tumour reduction by increasing androgen levels and also support future therapy approaches.
Collapse
Affiliation(s)
- S Caceres
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - B Monsalve
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - L Peña
- Department of Animal Medicine Surgery and Pathology, School of Veterinary Medicine. Complutense University of Madrid (UCM), Madrid, Spain
| | - P J de Andres
- Department of Animal Medicine Surgery and Pathology, School of Veterinary Medicine. Complutense University of Madrid (UCM), Madrid, Spain
| | - A Alonso-Diez
- Department of Animal Medicine Surgery and Pathology, School of Veterinary Medicine. Complutense University of Madrid (UCM), Madrid, Spain
| | - M J Illera
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - W A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G Silvan
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - J C Illera
- Department of Animal Physiology, School of Veterinary Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
26
|
Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines. Int J Mol Sci 2016; 17:ijms17101655. [PMID: 27690019 PMCID: PMC5085688 DOI: 10.3390/ijms17101655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.
Collapse
|
27
|
Caceres S, Peña L, Lacerda L, Illera MJ, de Andres PJ, Larson RA, Gao H, Debeb BG, Woodward WA, Reuben JM, Illera JC. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer. Vet Comp Oncol 2016; 15:980-995. [DOI: 10.1111/vco.12238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- S. Caceres
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| | - L. Peña
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine; Complutense University of Madrid (UCM); Madrid Spain
| | - L. Lacerda
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - M. J. Illera
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| | - P. J. de Andres
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine; Complutense University of Madrid (UCM); Madrid Spain
| | - R. A. Larson
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - H. Gao
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - B. G. Debeb
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - W. A. Woodward
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - J. M. Reuben
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - J. C. Illera
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| |
Collapse
|
28
|
Steroid Tumor Environment in Male and Female Mice Model of Canine and Human Inflammatory Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8909878. [PMID: 27195300 PMCID: PMC4852361 DOI: 10.1155/2016/8909878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023]
Abstract
Canine inflammatory mammary cancer (IMC) shares clinical and histopathological characteristics with human inflammatory breast cancer (IBC) and has been proposed as a good model for studying the human disease. The aim of this study was to evaluate the capacity of female and male mice to reproduce IMC and IBC tumors and identify the hormonal tumor environment. To perform the study sixty 6–8-week-old male and female mice were inoculated subcutaneously with a suspension of 106IPC-366 and SUM149 cells. Tumors and serum were collected and used for hormonal analysis. Results revealed that IPC-366 reproduced tumors in 90% of males inoculated after 2 weeks compared with 100% of females that reproduced tumor at the same time. SUM149 reproduced tumors in 40% of males instead of 80% of females that reproduced tumors after 4 weeks. Both cell lines produce distant metastasis in lungs being higher than the metastatic rates in females. EIA analysis revealed that male tumors had higher T and SO4E1 concentrations compared to female tumors. Serum steroid levels were lower than those found in tumors. In conclusion, IBC and IMC male mouse model is useful as a tool for IBC research and those circulating estrogens and intratumoral hormonal levels are crucial in the development and progression of tumors.
Collapse
|
29
|
De Andrés PJ, Cáceres S, Clemente M, Pérez-Alenza MD, Illera JC, Peña L. Profile of Steroid Receptors and Increased Aromatase Immunoexpression in Canine Inflammatory Mammary Cancer as a Potential Therapeutic Target. Reprod Domest Anim 2016; 51:269-75. [PMID: 26899138 DOI: 10.1111/rda.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 11/28/2022]
Abstract
Canine inflammatory mammary cancer (IMC) has been proposed as a model for the study of human inflammatory breast cancer (IBC). The aims of this study were to compare the immunohistochemical expression of aromatase (Arom) and several hormone receptors [estrogen receptor α (ERα), estrogen receptor β (ERβ), progesterone receptor (PR) and androgen receptor (AR)], in 21 IMC cases vs 19 non-IMC; and to study the possible effect of letrozole on canine IMC and human inflammatory breast cancer (IBC) in vitro using IPC-366 and SUM-149 cell lines. Significant elevations of the means of Arom Total Score (TS), ERβ TS and PR TS were found in the IMC group (p = 0.025, p = 0.038 and p = 0.037, respectively). Secondary IMC tumours expressed higher levels of Arom than primary IMC (p = 0.029). Non-IMC PR- tumours contained higher levels of Arom than non-IMC PR+ tumours (p = 0.007). After the addition of letrozole, the number of IMC and IBC cells dropped drastically. The overexpression of Arom found and the results obtained in vitro further support canine IMC as a model for the study of IBC and future approaches to the treatment of dogs with mammary cancer, and especially IMC, using Arom inhibitors.
Collapse
Affiliation(s)
- P J De Andrés
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - S Cáceres
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - M Clemente
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - M D Pérez-Alenza
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - J C Illera
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - L Peña
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
30
|
Visan S, Balacescu O, Berindan-Neagoe I, Catoi C. In vitro comparative models for canine and human breast cancers. ACTA ACUST UNITED AC 2016; 89:38-49. [PMID: 27004024 PMCID: PMC4777467 DOI: 10.15386/cjmed-519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
During the past four decades, an increased number of similarities between canine mammary tumors and human breast cancer have been reported: molecular, histological, morphological, clinical and epidemiological, which lead to comparative oncological studies. One of the most important goals in human and veterinary oncology is to discover potential molecular biomarkers that could detect breast cancer in an early stage and to develop new effective therapies. Recently, cancer cell lines have successfully been used as an in vitro model to study the biology of cancer, to investigate molecular pathways and to test the efficiency of anticancer drugs. Moreover, establishment of an experimental animal model for the study of human breast cancer will improve testing potential anti-cancer therapies and the discovery of effective therapeutic schemes suitable for human clinical trials. In this review, we collected data from previous studies that strengthen the value of canine mammary cancer cell lines as an in vitro model for the study of human breast cancer.
Collapse
Affiliation(s)
- Simona Visan
- Department of Pathological Anatomy, Necropsy and Veterinary Forensic Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania; Department of Functional Genomics, Proteomics and Experimental Pathology, Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics, Proteomics and Experimental Pathology, Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Cornel Catoi
- Department of Pathological Anatomy, Necropsy and Veterinary Forensic Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|