1
|
Bhattacharjee S, Kashyap R, Udupa K, Bashir S, Venkatsubramanian G, Oishi K, Desmond JE, Rapp B, Chen SHA. Alignment of behaviour and tDCS stimulation site induces maximum response: evidence from online tDCS and ERP. Sci Rep 2024; 14:19715. [PMID: 39181919 PMCID: PMC11344783 DOI: 10.1038/s41598-024-68691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
tDCS modulates the activity of the neuronal networks to induce the desired behavioural changes. Two factors determine its effectiveness- (1) whether the network being stimulated is relevant to the task, and (2) if there is a scope for improvement in behavioral performance. To explore this, both dorsal (sub-lexical) and ventral (lexical) reading networks were stimulated (20 min, 2 mA) in 25 healthy young volunteers. Participants performed two reading tasks with different levels of lexical involvement: word fragment completion tasks (WCT) and word association tasks (WAT), while event-related potentials (ERPs) were recorded simultaneously. The study used a within-subject design over three sessions, comparing various electrode montages targeting the dorsal pathway's left inferior parietal lobule or the ventral reading pathway's left middle temporal lobule, as well as sham stimulation. The impact of tDCS sessions (dorsal, ventral, & sham) and task type (WCT & WAT) on priming effects (primed vs. unprimed) of behavioral performance (accuracy and reaction times), and ERP parameters (N400 amplitudes and latencies) were statistically analyzed.It was found that tDCS modulated the performance of WAT only (a task with a lower priming effect). The failure to modulate WCT (larger priming effect) indicated that tDCS was effective for conditions with room for improvement compared to a task where performance has reached the ceiling. Ventral stimulation enhanced accuracy in the WAT condition and shortened the N400 latency of the priming effect. In contrast, dorsal stimulation delayed the priming effect reaction time in the WAT condition and enhanced the N400 amplitude. To conclude, enhancement in performance due to tDCS occurs when the network (ventral) being stimulated aligns with the cognitive demands of the task and there is a scope for improvement.
Collapse
Affiliation(s)
- Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health And Neuro Sciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India.
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health And Neuro Sciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health And Neuro Sciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Ganesan Venkatsubramanian
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences (NIMHANS), Bengaluru, India
| | - Kenichi Oishi
- The Johns Hopkins University, School of Medicine, Baltimore, USA
| | - John E Desmond
- The Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Brenda Rapp
- Department of Cognitive Science, The Johns Hopkins University, Baltimore, USA
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Centre for Research in Child Development (CRCD), National Institute of Education, Singapore, Singapore
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Uehara K, Togo H, Hanakawa T. Precise motor rhythmicity relies on motor network responsivity. Cereb Cortex 2022; 33:4432-4447. [PMID: 36218995 DOI: 10.1093/cercor/bhac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
Rhythmic movements are the building blocks of human behavior. However, given that rhythmic movements are achieved through complex interactions between neural modules, it remains difficult to clarify how the central nervous system controls motor rhythmicity. Here, using a novel tempo-precision trade-off paradigm, we first modeled interindividual behavioral differences in tempo-dependent rhythmicity for various external tempi. We identified 2 behavioral extremes: conventional and paradoxical tempo-precision trade-off types. We then explored the neural substrates of these behavioral differences using task and resting-state functional magnetic resonance imaging. We found that the responsibility of interhemispheric motor network connectivity to tempi was a key to the behavioral repertoire. In the paradoxical trade-off type, interhemispheric connectivity was low at baseline but increased in response to increasing tempo; in the conventional trade-off type, strong baseline connectivity was coupled with low responsivity. These findings suggest that tunable interhemispheric connectivity underlies tempo-dependent rhythmicity control.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi 4448585, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 4448585, Japan
| | - Hiroki Togo
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| |
Collapse
|
3
|
Iwama S, Tsuchimoto S, Hayashi M, Mizuguchi N, Ushiba J. Scalp electroencephalograms over ipsilateral sensorimotor cortex reflect contraction patterns of unilateral finger muscles. Neuroimage 2020; 222:117249. [PMID: 32798684 DOI: 10.1016/j.neuroimage.2020.117249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
A variety of neural substrates are implicated in the initiation, coordination, and stabilization of voluntary movements underpinned by adaptive contraction and relaxation of agonist and antagonist muscles. To achieve such flexible and purposeful control of the human body, brain systems exhibit extensive modulation during the transition from resting state to motor execution and to maintain proper joint impedance. However, the neural structures contributing to such sensorimotor control under unconstrained and naturalistic conditions are not fully characterized. To elucidate which brain regions are implicated in generating and coordinating voluntary movements, we employed a physiologically inspired, two-stage method to decode relaxation and three patterns of contraction in unilateral finger muscles (i.e., extension, flexion, and co-contraction) from high-density scalp electroencephalograms (EEG). The decoder consisted of two parts employed in series. The first discriminated between relaxation and contraction. If the EEG data were discriminated as contraction, the second stage then discriminated among the three contraction patterns. Despite the difficulty in dissociating detailed contraction patterns of muscles within a limb from scalp EEG signals, the decoder performance was higher than chance-level by 2-fold in the four-class classification. Moreover, weighted features in the trained decoders revealed EEG features differentially contributing to decoding performance. During the first stage, consistent with previous reports, weighted features were localized around sensorimotor cortex (SM1) contralateral to the activated fingers, while those during the second stage were localized around ipsilateral SM1. The loci of these weighted features suggested that the coordination of unilateral finger muscles induced different signaling patterns in ipsilateral SM1 contributing to motor control. Weighted EEG features enabled a deeper understanding of human sensorimotor processing as well as of a more naturalistic control of brain-computer interfaces.
Collapse
Affiliation(s)
- Seitaro Iwama
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, Japan
| | - Shohei Tsuchimoto
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, Japan; Center of Assistive Robotics and Rehabilitation for Longevity and Good Health, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Masaaki Hayashi
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, Japan
| | - Nobuaki Mizuguchi
- Center of Assistive Robotics and Rehabilitation for Longevity and Good Health, National Center for Geriatrics and Gerontology, Aichi, Japan; Department of Biosciences and informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Junichi Ushiba
- Department of Biosciences and informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
4
|
Lee J, Jin Y, Yoon B. Bilateral Transcranial Direct Stimulation Over the Primary Motor Cortex Alters Motor Modularity of Multiple Muscles. J Mot Behav 2019; 52:474-488. [PMID: 31795875 DOI: 10.1080/00222895.2019.1646206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been demonstrated to modulate the motor performance of both healthy individuals and patients with neuromuscular disorders. However, the effect of tDCS on motor control of multiple muscles, which is a prerequisite to change in motor performance, is currently unknown. Using dimensionality reduction analysis, we investigated whether bilateral tDCS over M1 modulates the coordinated activity of 12 muscles. Fifteen healthy men participated in this randomized, double-blind crossover study. Each participant received a 20-min sham and 2-mA stimulation bilaterally over M1 (anode on the right M1 and cathode on the left M1), with a minimum washout period of 4 days. Muscle activation and end-point kinematics were evaluated during a task where participants reached out to a marked target with non-dominant hand as fast as possible, before and immediately after tDCS application. We found decreased similarity in motor modularity and significant changes in muscle activation in a specific motor module, particularly when reaching out to a target placed within arm's length and improved smoothness index of movement only following 2-mA stimulation. These findings indicate that clinicians and researchers need to consider the simultaneous effect of bilateral tDCS over M1 on multiple muscles when they establish tDCS protocol to change in motor performance of patients with neuromuscular deficits.
Collapse
Affiliation(s)
- JaeHyuk Lee
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea
| | - Yan Jin
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea
| | - BumChul Yoon
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea.,Department of Physical Therapy, College of Health Science, Korea University, Seoul, Korea
| |
Collapse
|
5
|
Mazzoleni S, Tran VD, Dario P, Posteraro F. Effects of Transcranial Direct Current Stimulation (tDCS) Combined With Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1458-1466. [PMID: 31170077 DOI: 10.1109/tnsre.2019.2920576] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both transcranial direct current stimulation (tDCS) and wrist robot-assisted training have demonstrated to be promising approaches for stroke rehabilitation. However, the effects of the combination of the two treatments in subacute stroke patients are not clear yet. To investigate the effectiveness of combining tDCS and wrist robot-assisted rehabilitation in subacute stroke patients in comparison with the wrist robotic training only, a single-blind, randomized, sham-controlled trial was performed with 40 subacute stroke patients (25 ± 7 days from stroke onset time). Patients were randomly assigned to experimental group (EG, n = 20 ) where patients receive real tDCS [2 mA, 20 min, and the anodal electrode on the primary motor cortex-M1-area of the affected hemisphere (C3/C4 in the 10-20 EEG system and the cathodal electrode on the contralateral orbit bone)] or control group (CG, n = 20 ) where patients receive sham tDCS (5 s) during wrist robotic rehabilitation training. The effects of the treatment were evaluated by means of the upper extremity, shoulder-elbow, and wrist subsections of the Fugl-Meyer assessment scale, Modified Ashworth Scale, Motricity Index and Box and Block Test together with kinematic parameters. One out of 20 patients in the CG did not complete the treatment. All the clinical outcome measures except the Modified Ashworth Scale showed a significant increase after the treatment in both groups. However, no significant difference in the average changes after treatment between groups was observed. The movement velocity and smoothness showed significant increases after the training, even though no significant difference between groups was observed. The combination of wrist robot-assisted training and tDCS did not show additional effects in comparison with wrist robot-assisted training only in subacute stroke patients. The negative results found in this paper are specific for the specific intervention. The timing of delivering the tDCS and the robot-assisted therapy has to be deeply investigated to enhance the effectiveness of the training.
Collapse
|
6
|
Different Brain Connectivity between Responders and Nonresponders to Dual-Mode Noninvasive Brain Stimulation over Bilateral Primary Motor Cortices in Stroke Patients. Neural Plast 2019; 2019:3826495. [PMID: 31093270 PMCID: PMC6476041 DOI: 10.1155/2019/3826495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Noninvasive brain stimulation (NBS), such as repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS), has been used in stroke patients with motor impairment. NBS can help recovery from brain damage by modulating cortical excitability. However, the efficacy of NBS varies among individuals. To obtain insights of responsiveness to the efficacy of NBS, we investigated characteristic changes of the motor network in responders and nonresponders of NBS over the primary motor cortex (M1). A total of 21 patients with subacute stroke (13 males, mean age 59.6 ± 11.5 years) received NBS in the same manner: 1 Hz rTMS on the contralesional M1 and anodal tDCS on the ipsilesional M1. Participants were classified into responders and nonresponders based on the functional improvement of the affected upper extremity after applying NBS. Twelve age-matched healthy controls (8 males, mean age 56.1 ± 14.3 years) were also recruited. Motor networks were constructed using resting-state functional magnetic resonance imaging. M1 intrahemispheric connectivity, interhemispheric connectivity, and network efficiency were measured to investigate differences in network characteristics between groups. The motor network characteristics were found to differ between both groups. Specifically, M1 intrahemispheric connectivity in responders showed a noticeable imbalance between affected and unaffected hemispheres, which was markedly restored after NBS. The responders also showed greater interhemispheric connectivity and higher efficiency of the motor network than the nonresponders. These results may provide insight on patient-specific NBS treatment based on the brain network characteristics in neurorehabilitation of patients with stroke. This trial is registered with trial registration number NCT03390192.
Collapse
|
7
|
Sánchez-Kuhn A, Pérez-Fernández C, Moreno M, Flores P, Sánchez-Santed F. Differential Effects of Transcranial Direct Current Stimulation (tDCS) Depending on Previous Musical Training. Front Psychol 2018; 9:1465. [PMID: 30250439 PMCID: PMC6139306 DOI: 10.3389/fpsyg.2018.01465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that transcranial direct current stimulation (tDCS) facilitates motor performance, but individual differences such as baseline performance seem to influence this effect. Accordingly, musicians offer an inter-individual differences model due to anatomical and functional variances displayed among the motor cortex regions. The aim of the present work was to study if the baseline motor skill predicts whether tDCS can enhance motor learning. For that objective, we administered anodal (n = 20) or sham (n = 20) tDCS on the right primary motor cortex region of 40 right-handed healthy participants, who were divided into four groups: musicians (tDCS/sham) and non-musicians (tDCS/sham). We measured the skill index (SI) presented in the sequential finger-tapping task (SEQTAP) at baseline, during three 20 min/2 mA stimulation sessions, and in follow-up tests after 20 min and 8 days. Depending on the normality of the data distribution, statistical differences were estimated by ANOVA and Bonferroni post hoc test or Kruskal-Wallis and U Mann-Whitney. Results showed that musicians scored higher in baseline performance than non-musicians. The non-musicians who received tDCS scored higher than the sham group in the first and second stimulation session. This effect was extended to the 20 min and 8 days follow-up test. In musicians, there was no effect of tDCS. The present method seems to be suitable for the achievement of positive and consolidated tDCS effects on motor learning in inexperienced participants, but not in musicians. These data may have an implication for the rehabilitation of motor impairments, contributing to more individualized stimulation protocols.
Collapse
Affiliation(s)
- Ana Sánchez-Kuhn
- Department of Psychology and CIAIMBITAL, CeiA3, University of Almería, Almería, Spain
| | | | - Margarita Moreno
- Department of Psychology and CIAIMBITAL, CeiA3, University of Almería, Almería, Spain
| | - Pilar Flores
- Department of Psychology and CIAIMBITAL, CeiA3, University of Almería, Almería, Spain
- Instituto de Neurorehabilitación Infantil InPaula, Almería, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and CIAIMBITAL, CeiA3, University of Almería, Almería, Spain
- Instituto de Neurorehabilitación Infantil InPaula, Almería, Spain
| |
Collapse
|
8
|
Novikov PA, Nazarova MA, Nikulin VV. TMSmap - Software for Quantitative Analysis of TMS Mapping Results. Front Hum Neurosci 2018; 12:239. [PMID: 30038562 PMCID: PMC6046372 DOI: 10.3389/fnhum.2018.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
The use of the MRI-navigation system ensures accurate targeting of TMS. This, in turn, results in TMS motor mapping becoming a routinely used procedure in neuroscience and neurosurgery. However, currently, there is no standardized methodology for assessment of TMS motor-mapping results. Therefore, we developed TMSmap—free standalone graphical interface software for the quantitative analysis of the TMS motor mapping results (http://tmsmap.ru/). In addition to the estimation of standard parameters (such as the size of cortical muscle representation and the center of gravity location), it allows estimation of the volume of cortical representations, excitability profile of the cortical surface map, and the overlap between cortical representations. The input data for the software includes the coordinates of the coil position (or electric field maximum) and the corresponding response in each stimulation point. TMSmap has been developed for versatile assessment and comparison of TMS maps relating to different experimental interventions including, but not limited to longitudinal, pharmacological and clinical studies (e.g., stroke recovery). To illustrate the use of TMSmap we provide examples of the actual TMS motor-mapping analysis of two healthy subjects and one chronic stroke patient.
Collapse
Affiliation(s)
- Pavel A Novikov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria A Nazarova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Vadim V Nikulin
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Norise C, Sacchetti D, Hamilton R. Transcranial Direct Current Stimulation in Post-stroke Chronic Aphasia: The Impact of Baseline Severity and Task Specificity in a Pilot Sample. Front Hum Neurosci 2017; 11:260. [PMID: 28611609 PMCID: PMC5447043 DOI: 10.3389/fnhum.2017.00260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that transcranial direct current stimulation (tDCS) can improve aspects of language production in persons with chronic non-fluent aphasia due to left hemisphere stroke. However, to date, studies exploring factors that predict response to tDCS in this or any patient population remain sparse, as are studies that investigate the specific aspects of language performance that are most responsive to stimulation. The current study explored factors that could predict recovery of language fluency and which aspects of language fluency could be expected to improve with the identified factor(s). We report nine patients who demonstrated deficits in fluency as assessed using the Cookie Theft picture description task of the Boston Diagnostic Aphasia Examination. In the treatment condition, subjects received a 2.0 mA current through 5 cm × 5 cm electrodes for 20 min at a site previously shown to elicit a patient-dependent optimal response to tDCS. They were then tested 2-weeks and 2-months after treatment. In the sham condition, a subset of these subjects were tested on the same protocol with sham instead of real tDCS. The current study assessed language fluency improvements in measures of production at the word-level and sentence level, grammatical accuracy, and lexical selection as a function of baseline aphasia severity. A more severe baseline language profile was associated with larger improvements in fluency at the word-level after real tDCS but not sham stimulation. These improvements were maintained at the 2-week follow-up. The results suggest that for at least some outcome measures, baseline severity may be an important factor in predicting the response to tDCS in patients with chronic non-fluent aphasia. Moving forward, the ability to identify patient factors that can predict response could help refine strategies for the administration of therapeutic tDCS, focusing attention on those patients most likely to benefit from stimulation.
Collapse
Affiliation(s)
- Catherine Norise
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Daniela Sacchetti
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| | - Roy Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, United States
| |
Collapse
|
10
|
Katz B, Au J, Buschkuehl M, Abagis T, Zabel C, Jaeggi SM, Jonides J. Individual Differences and Long-term Consequences of tDCS-augmented Cognitive Training. J Cogn Neurosci 2017; 29:1498-1508. [PMID: 28253083 DOI: 10.1162/jocn_a_01115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419-1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.
Collapse
Affiliation(s)
| | - Jacky Au
- University of California, Irvine.,MIND Research Institute, Irvine, CA
| | | | | | | | | | | |
Collapse
|
11
|
Goodwill AM, Teo WP, Morgan P, Daly RM, Kidgell DJ. Bihemispheric-tDCS and Upper Limb Rehabilitation Improves Retention of Motor Function in Chronic Stroke: A Pilot Study. Front Hum Neurosci 2016; 10:258. [PMID: 27375456 PMCID: PMC4899474 DOI: 10.3389/fnhum.2016.00258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Single sessions of bihemispheric transcranial direct-current stimulation (bihemispheric-tDCS) with concurrent rehabilitation improves motor function in stroke survivors, which outlasts the stimulation period. However few studies have investigated the behavioral and neurophysiological adaptations following a multi-session intervention of bihemispheric-tDCS concurrent with rehabilitation. Objective: This pilot study explored the immediate and lasting effects of 3-weeks of bihemispheric-tDCS and upper limb (UL) rehabilitation on motor function and corticospinal plasticity in chronic stroke survivors. Methods: Fifteen chronic stroke survivors underwent 3-weeks of UL rehabilitation with sham or real bihemispheric-tDCS. UL motor function was assessed via the Motor Assessment Scale (MAS), Tardieu Scale and grip strength. Corticospinal plasticity was indexed by motor evoked potentials (MEPs), cortical silent period (CSP) and short-interval intracortical inhibition (SICI) recorded from the paretic and non-paretic ULs, using transcranial magnetic stimulation (TMS). Measures were taken at baseline, 48 h post and 3-weeks following (follow-up) the intervention. Results: MAS improved following both real-tDCS (62%) and sham-tDCS (43%, P < 0.001), however at 3-weeks follow-up, the real-tDCS condition retained these newly regained motor skills to a greater degree than sham-tDCS (real-tDCS 64%, sham-tDCS 21%, P = 0.002). MEP amplitudes from the paretic UL increased for real-tDCS (46%: P < 0.001) and were maintained at 3-weeks follow-up (38%: P = 0.03), whereas no changes were observed with sham-tDCS. No changes in MEPs from the non-paretic nor SICI from the paretic UL were observed for either group. SICI from the non-paretic UL was greater at follow-up, for real-tDCS (27%: P = 0.04). CSP from the non-paretic UL increased by 33% following the intervention for real-tDCS compared with sham-tDCS (P = 0.04), which was maintained at 3-weeks follow-up (24%: P = 0.04). Conclusion: bihemispheric-tDCS improved retention of gains in motor function, which appears to be modulated through intracortical inhibitory pathways in the contralesional primary motor cortex (M1). The findings provide preliminary evidence for the benefits of bihemispheric-tDCS during rehabilitation. Larger clinical trials are warranted to examine long term benefits of bihemispheric-tDCS in a stroke affected population.
Collapse
Affiliation(s)
- Alicia M Goodwill
- Institute for Physical Activity and Nutrition, Deakin University Melbourne, VIC, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition, Deakin University Melbourne, VIC, Australia
| | - Prue Morgan
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University Frankston, VIC, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, Deakin University Melbourne, VIC, Australia
| | - Dawson J Kidgell
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University Melbourne, VIC, Australia
| |
Collapse
|
12
|
Runnalls KD, Anson G, Byblow WD. Partial weight support of the arm affects corticomotor selectivity of biceps brachii. J Neuroeng Rehabil 2015; 12:94. [PMID: 26502933 PMCID: PMC4623918 DOI: 10.1186/s12984-015-0085-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Weight support of the arm (WS) can be used in stroke rehabilitation to facilitate upper limb therapy, but the neurophysiological effects of this technique are not well understood. While an overall reduction in muscle activity is expected, the mechanism by which WS may alter the expression of muscle synergies has not been examined until now. We explored the neurophysiological effect of WS on the selectivity of biceps brachii (BB) activation in healthy adults. METHODS Thirteen participants completed counterbalanced movement tasks in a repeated measures design. Three levels of WS (0, 45, and 90 % of full support) were provided to the arm using a commercial device (Saebo Mobile Arm Support). At each level of WS, participants maintained a flexed shoulder posture while performing rhythmic isometric elbow flexion (BB agonist) or forearm pronation (BB antagonist). Single-pulse transcranial magnetic stimulation of primary motor cortex was used to elicit motor-evoked potentials (MEPs) in BB 100-300 ms before muscle contraction. Baseline muscle activity and MEP amplitude were the primary dependent measures. Effects of movement TASK and SUPPORT LEVEL were statistically analyzed using linear mixed effects models. RESULTS As expected, with increased support tonic activity was reduced across all muscles. This effect was greatest in the anti-gravity muscle anterior deltoid, and evident in biceps brachii and pronator teres as well. For BB MEP amplitude, TASK and SUPPORT LEVEL, interacted such that for elbow flexion, MEP amplitudes were smaller with incrementally greater WS whereas, for forearm pronation MEP amplitudes were smaller only at high WS. CONCLUSIONS Weight support of the arm influences corticomotor selectivity of biceps brachii. WS may impact coordination independently of a global reduction in muscle activity. The amount of supportive force applied to the arm influences the neuromechanical control profile for the limb. These findings may inform the application of WS in upper limb stroke rehabilitation.
Collapse
Affiliation(s)
- Keith D Runnalls
- Movement Neuroscience Laboratory, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Greg Anson
- Movement Neuroscience Laboratory, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, University of Auckland, Auckland, New Zealand. .,Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 2015; 9:181. [PMID: 26029052 PMCID: PMC4428123 DOI: 10.3389/fncel.2015.00181] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023] Open
Abstract
There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan ; Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Restorative Neurosciences, Imperial College London London, UK
| | - Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan ; Research Fellow of the Japan Society for the Promotion of Science Tokyo Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan
| |
Collapse
|