1
|
Le Tran N, Wang Y, Bilandzic M, Stephens A, Nie G. Podocalyxin promotes the formation of compact and chemoresistant cancer spheroids in high grade serous carcinoma. Sci Rep 2024; 14:7539. [PMID: 38553472 PMCID: PMC10980795 DOI: 10.1038/s41598-024-57053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
High grade serous carcinoma (HGSC) metastasises primarily intraperitoneally via cancer spheroids. Podocalyxin (PODXL), an anti-adhesive transmembrane protein, has been reported to promote cancer survival against chemotherapy, however its role in HGSC chemoresistance is unclear. This study investigated whether PODXL plays a role in promoting chemoresistance of HGSC spheroids. We first showed that PODXL was expressed variably in HGSC patient tissues (n = 17) as well as in ovarian cancer cell lines (n = 28) that are more likely categorised as HGSC. We next demonstrated that PODXL-knockout (KO) cells proliferated more slowly, formed less compact spheroids and were more fragile than control cells. Furthermore, when treated with carboplatin and examined for post-treatment recovery, PODXL-KO spheroids showed significantly poorer cell viability, lower number of live cells, and less Ki-67 staining than controls. A similar trend was also observed in ascites-derived primary HGSC cells (n = 6)-spheroids expressing lower PODXL formed looser spheroids, were more vulnerable to fragmentation and more sensitive to carboplatin than spheroids with higher PODXL. Our studies thus suggests that PODXL plays an important role in promoting the formation of compact/hardy HGSC spheroids which are more resilient to chemotherapy drugs; these characteristics may contribute to the chemoresistant nature of HGSC.
Collapse
Affiliation(s)
- Ngoc Le Tran
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Yao Wang
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Andrew Stephens
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Guiying Nie
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
2
|
Yen WC, Chang KP, Chen CY, Huang Y, Chen TW, Cheng HW, Yi JS, Cheng CC, Wu CC, Wang CI. MFI2 upregulation promotes malignant progression through EGF/FAK signaling in oral cavity squamous cell carcinoma. Cancer Cell Int 2023; 23:112. [PMID: 37309001 DOI: 10.1186/s12935-023-02956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the predominant histological type of the head and neck squamous cell carcinoma (HNSCC). By comparing the differentially expressed genes (DEGs) in OSCC-TCGA patients with copy number variations (CNVs) that we identify in OSCC-OncoScan dataset, we herein identified 37 dysregulated candidate genes. Among these potential candidate genes, 26 have been previously reported as dysregulated proteins or genes in HNSCC. Among 11 novel candidates, the overall survival analysis revealed that melanotransferrin (MFI2) is the most significant prognostic molecular in OSCC-TCGA patients. Another independent Taiwanese cohort confirmed that higher MFI2 transcript levels were significantly associated with poor prognosis. Mechanistically, we found that knockdown of MFI2 reduced cell viability, migration and invasion via modulating EGF/FAK signaling in OSCC cells. Collectively, our results support a mechanistic understanding of a novel role for MFI2 in promoting cell invasiveness in OSCC.
Collapse
Affiliation(s)
- Wei-Chen Yen
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yenlin Huang
- School of Medicine, National Tsing-Hua University, Hsinchu, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsing-Wen Cheng
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jui-Shan Yi
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-I Wang
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Hyytiäinen A, Mroueh R, Peltonen J, Wennerstrand P, Mäkitie A, Al-Samadi A, Ventelä S, Salo T. Prognostic histological markers in oral tongue squamous cell carcinoma patients treated with (chemo)radiotherapy. APMIS 2023; 131:142-151. [PMID: 36695633 DOI: 10.1111/apm.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Treatment of oral tongue squamous cell carcinoma (OTSCC) frequently includes surgery with postoperative radiotherapy (RT) or chemoradiotherapy (CRT). Resistance to RT or CRT remains a major clinical challenge and highlights the need to identify predictive markers for it. We included 71 OTSCC patients treated with surgery combined with RT or CRT. We evaluated the association between tumor budding, tumor-stroma ratio (TSR), depth of invasion (DOI), tumor-infiltrating lymphocytes (TILs), hypoxia-inducible factor-1alpha (HIF-1alpha) expression, octamer-binding transcription factor 4 (OCT4) expression, high-endothelial venules (HEVs), and disease-free survival (DFS) using uni- and multivariate analyses. No significant association was observed between the different histological and molecular markers (TSR, DOI, TILs, HEV, HIF-1alph, OCT4) and DFS. However, an associative trend between DOI, budding, and DFS was noted. Further studies with larger cohorts are needed to explore the prognostic value of DOI and budding for OTSCC patients treated with postoperative RT or CRT.
Collapse
Affiliation(s)
- Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rayan Mroueh
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer and Research, Helsinki, Finland
| | - Johanna Peltonen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Wennerstrand
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department for Otorhinolaryngology, Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Pathology, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
4
|
The role of BMI1 in endometrial cancer and other cancers. Gene 2023; 856:147129. [PMID: 36563713 DOI: 10.1016/j.gene.2022.147129] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Endometrial cancer (EC) is the third leading gynecological malignancy, and its treatment remains challenging. B cell-specific Moloney murine leukemia virus integration site-1 (BMI1) is one of the core members of the polycomb group (PcG) family, which plays a promoting role in the occurrence and development of various tumors. Notably, BMI1 has been found to be frequently upregulated in endometrial cancer (EC) and promote the occurrence of EC through promoting epithelial-mesenchymal transition (EMT) and AKT/PI3K pathways. This review summarizes the structure and upstream regulatory mechanisms of BMI1 and its role in EC. In addition, we focused on the role of BMI1 in chemoradiotherapy resistance and summarized the current drugs that target BMI1.
Collapse
|
5
|
Fu T, Chan TW, Bahn JH, Kim TH, Rowat AC, Xiao X. Multifaceted role of RNA editing in promoting loss-of-function of PODXL in cancer. iScience 2022; 25:104836. [PMID: 35992085 PMCID: PMC9382340 DOI: 10.1016/j.isci.2022.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
PODXL, a protein that is dysregulated in multiple cancers, plays an important role in promoting cancer metastasis. In this study, we report that RNA editing promotes the inclusion of a PODXL alternative exon. The resulting edited PODXL long isoform is more prone to protease digestion and has the strongest effects on reducing cell migration and cisplatin chemoresistance among the three PODXL isoforms (short, unedited long, and edited long isoforms). Importantly, the editing level of the PODXL recoding site and the inclusion level of the PODXL alternative exon are strongly associated with overall patient survival in Kidney Renal Clear Cell Carcinoma (KIRC). Supported by significant enrichment of exonic RNA editing sites in alternatively spliced exons, we hypothesize that exonic RNA editing sites may enhance proteomic diversity through alternative splicing, in addition to amino acid changes, a previously under-appreciated aspect of RNA editing function.
Collapse
Affiliation(s)
- Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracey W. Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C. Rowat
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Canals Hernaez D, Hughes MR, Li Y, Mainero Rocca I, Dean P, Brassard J, Bell EM, Samudio I, Mes-Masson AM, Narimatsu Y, Clausen H, Blixt O, Roskelley CD, McNagny KM. Targeting a Tumor-Specific Epitope on Podocalyxin Increases Survival in Human Tumor Preclinical Models. Front Oncol 2022; 12:856424. [PMID: 35600398 PMCID: PMC9115113 DOI: 10.3389/fonc.2022.856424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Podocalyxin (Podxl) is a CD34-related cell surface sialomucin that is normally highly expressed by adult vascular endothelia and kidney podocytes where it plays a key role in blocking adhesion. Importantly, it is also frequently upregulated on a wide array of human tumors and its expression often correlates with poor prognosis. We previously showed that, in xenograft studies, Podxl plays a key role in metastatic disease by making tumor initiating cells more mobile and invasive. Recently, we developed a novel antibody, PODO447, which shows exquisite specificity for a tumor-restricted glycoform of Podxl but does not react with Podxl expressed by normal adult tissue. Here we utilized an array of glycosylation defective cell lines to further define the PODO447 reactive epitope and reveal it as an O-linked core 1 glycan presented in the context of the Podxl peptide backbone. Further, we show that when coupled to monomethyl auristatin E (MMAE) toxic payload, PODO447 functions as a highly specific and effective antibody drug conjugate (ADC) in killing ovarian, pancreatic, glioblastoma and leukemia cell lines in vitro. Finally, we demonstrate PODO447-ADCs are highly effective in targeting human pancreatic and ovarian tumors in xenografted NSG and Nude mouse models. These data reveal PODO447-ADCs as exquisitely tumor-specific and highly efficacious immunotherapeutic reagents for the targeting of human tumors. Thus, PODO447 exhibits the appropriate characteristics for further development as a targeted clinical immunotherapy.
Collapse
Affiliation(s)
- Diana Canals Hernaez
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hughes
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Yicong Li
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ilaria Mainero Rocca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Julyanne Brassard
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Erin M Bell
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ismael Samudio
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark
| | - Ola Blixt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Podocalyxin in Normal Tissue and Epithelial Cancer. Cancers (Basel) 2021; 13:cancers13122863. [PMID: 34201212 PMCID: PMC8227556 DOI: 10.3390/cancers13122863] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Podocalyxin (PODXL), a glycosylated cell surface sialomucin of the CD34 family, is normally expressed in kidney podocytes, vascular endothelial cells, hematopoietic progenitors, mesothelium, as well as a subset of neurons. In the kidney, PODXL functions primarily as an antiadhesive molecule in podocyte epithelial cells, regulating adhesion and cell morphology, and playing an essential role in the development and function of the organ. Outside the kidney, PODXL plays subtle roles in tissue remodelling and development. Furthermore, many cancers, especially those that originated from the epithelium, have been reported to overexpress PODXL. Collective evidence suggests that PODXL overexpression is linked to poor prognosis, more aggressive tumour progression, unfavourable treatment outcomes, and possibly chemoresistance. This review summarises our current knowledge of PODXL in normal tissue function and epithelial cancer, with a particular focus on its underlying roles in cancer metastasis, likely involvement in chemoresistance, and potential use as a diagnostic and prognostic biomarker.
Collapse
|
8
|
Impact of histological response after neoadjuvant therapy on podocalyxin as a prognostic marker in pancreatic cancer. Sci Rep 2021; 11:9896. [PMID: 33972616 PMCID: PMC8110523 DOI: 10.1038/s41598-021-89134-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
Podocalyxin overexpression associates with poor survival in pancreatic cancer (PDAC). We investigated whether podocalyxin expression correlates with treatment response or survival in neoadjuvant-treated PDAC. Through immunohistochemistry, we evaluated podocalyxin expression in 88 neoadjuvant and 143 upfront surgery patients using two antibodies. We developed a six-tier grading scheme for neoadjuvant responses evaluating the remaining tumor cells in surgical specimens. Strong podocalyxin immunopositivity associated with poor survival in the patients responding poorly to the neoadjuvant treatment (HR 4.16, 95% CI 1.56–11.01, p = 0.004), although neoadjuvant patients exhibited generally low podocalyxin expression (p = 0.017). Strong podocalyxin expression associated with perineural invasion (p = 0.003) and lack of radiation (p = 0.036). Two patients exhibited a complete neoadjuvant response, while a strong neoadjuvant response (≤ 5% of residual tumor cells) significantly associated with lower stage, pT-class and grade, less spread to the regional lymph nodes, less perineural invasion, and podocalyxin negativity (p < 0.05, respectively). A strong response predicted better survival (HR 0.28, 95% CI 0.09–0.94, p = 0.039). In conclusion, strong podocalyxin expression associates with poor survival among poorly responding neoadjuvant patients. A good response associates with podocalyxin negativity. A strong response associates with better outcome.
Collapse
|
9
|
Canals Hernaez D, Hughes MR, Dean P, Bergqvist P, Samudio I, Blixt O, Wiedemeyer K, Li Y, Bond C, Cruz E, Köbel M, Gilks B, Roskelley CD, McNagny KM. PODO447: a novel antibody to a tumor-restricted epitope on the cancer antigen podocalyxin. J Immunother Cancer 2020; 8:jitc-2020-001128. [PMID: 33243933 PMCID: PMC7692987 DOI: 10.1136/jitc-2020-001128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The success of new targeted cancer therapies has been dependent on the identification of tumor-specific antigens. Podocalyxin (Podxl) is upregulated on tumors with high metastatic index and its presence is associated with poor outcome, thus emerging as an important prognostic and theragnostic marker in several human cancers. Moreover, in human tumor xenograft models, Podxl expression promotes tumor growth and metastasis. Although a promising target for immunotherapy, the expression of Podxl on normal vascular endothelia and kidney podocytes could hamper efforts to therapeutically target this molecule. Since pathways regulating post-translational modifications are frequently perturbed in cancer cells, we sought to produce novel anti-Podxl antibodies (Abs) that selectively recognize tumor-restricted glycoepitopes on the extracellular mucin domain of Podxl. Methods Splenic B cells were isolated from rabbits immunized with a Podxl-expressing human tumor cell line. Abs from these B cells were screened for potent reactivity to Podxl+ neoplastic cell lines but not Podxl+ primary endothelial cells. Transcripts encoding heavy and light chain variable regions from promising B cells were cloned and expressed as recombinant proteins. Tumor specificity was assessed using primary normal tissue and an ovarian cancer tissue microarray (TMA). Mapping of the tumor-restricted epitope was performed using enzyme-treated human tumor cell lines and a glycan array. Results One mAb (PODO447) showed strong reactivity with a variety of Podxl+ tumor cell lines but not with normal primary human tissue including Podxl+ kidney podocytes and most vascular endothelia. Screening of an ovarian carcinoma TMA (219 cases) revealed PODO447 reactivity with the majority of tumors, including 65% of the high-grade serous histotype. Subsequent biochemical analyses determined that PODO447 reacts with a highly unusual terminal N-acetylgalactosamine beta-1 (GalNAcβ1) motif predominantly found on the Podxl protein core. Finally, Ab–drug conjugates showed specific efficacy in killing tumor cells in vitro. Conclusions We have generated a novel and exquisitely tumor-restricted mAb, PODO447, that recognizes a glycoepitope on Podxl expressed at high levels by a variety of tumors including the majority of life-threatening high-grade serous ovarian tumors. Thus, tumor-restricted PODO447 exhibits the appropriate specificity for further development as a targeted immunotherapy.
Collapse
Affiliation(s)
- Diana Canals Hernaez
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hughes
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ismael Samudio
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ola Blixt
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Kobenhavn, Denmark
| | - Katharina Wiedemeyer
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yicong Li
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Bond
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Eric Cruz
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Zhang Y, Sun X. Role of Focal Adhesion Kinase in Head and Neck Squamous Cell Carcinoma and Its Therapeutic Prospect. Onco Targets Ther 2020; 13:10207-10220. [PMID: 33116602 PMCID: PMC7553669 DOI: 10.2147/ott.s270342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers are one of the most prevalent cancers globally. Among them, head and neck squamous cell carcinoma (HNSCC) accounts for approximately 90% of head and neck cancers, which occurs in the oral cavity, oral pharynx, hypopharynx and larynx. The 5-year survival rate of HNSCC patients is only 63%, mainly because about 80–90% of patients with advanced HNSCC tend to suffer from local recurrence or even distant metastasis. Despite the more in-depth understanding of the molecular mechanisms underlying the occurrence and progression of HNSCC in recent years, effective targeted therapies are unavailable for HNSCC, which emphasize the urgent demand for studies in this area. Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase that contributes to oncogenesis and tumor progression by its significant function in cell survival, proliferation, adhesion, invasion and migration. In addition, FAK exerts an effect on the tumor microenvironment, epithelial–mesenchymal transition, radiation (chemotherapy) resistance, tumor stem cells and regulation of inflammatory factors. Moreover, the overexpression and activation of FAK are detected in multiple types of tumors, including HNSCC. FAK inhibition can induce cell cycle arrest and apoptosis, significantly decrease cell growth, invasion and migration in HNSCC cell lines. In this article, we mainly review the research progress of FAK in the occurrence, development and metastasis of HNSCC, and put forward the prospects for the therapeutic targets of HNSCC.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Tamayo-Orbegozo E, Amo L, Díez-García J, Amutio E, Riñón M, Alonso M, Arana P, Maruri N, Larrucea S. Emerging Role of Podocalyxin in the Progression of Mature B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2020; 12:cancers12020396. [PMID: 32046309 PMCID: PMC7072361 DOI: 10.3390/cancers12020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mature B-cell non-Hodgkin lymphoma (B-NHL) constitutes a group of heterogeneous malignant lymphoproliferative diseases ranging from indolent to highly aggressive forms. Although the survival after chemo-immunotherapy treatment of mature B-NHL has increased over the last years, many patients relapse or remain refractory due to drug resistance, presenting an unfavorable prognosis. Hence, there is an urgent need to identify new prognostic markers and therapeutic targets. Podocalyxin (PODXL), a sialomucin overexpressed in a variety of tumor cell types and associated with their aggressiveness, has been implicated in multiple aspects of cancer progression, although its participation in hematological malignancies remains unexplored. New evidence points to a role for PODXL in mature B-NHL cell proliferation, survival, migration, drug resistance, and metabolic reprogramming, as well as enhanced levels of PODXL in mature B-NHL. Here, we review the current knowledge on the contribution of PODXL to tumorigenesis, highlighting and discussing its role in mature B-NHL progression.
Collapse
Affiliation(s)
- Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (E.T.-O.); (L.A.)
| | - Laura Amo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (E.T.-O.); (L.A.)
| | - Javier Díez-García
- Microscopy Facility, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain;
| | - Elena Amutio
- Blood Cancer Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain;
| | - Marta Riñón
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Marta Alonso
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Paula Arana
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Natalia Maruri
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Susana Larrucea
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
- Correspondence:
| |
Collapse
|
12
|
Zhang S, Cao R, Li Q, Yao M, Chen Y, Zhou H. Comprehensive analysis of lncRNA-associated competing endogenous RNA network in tongue squamous cell carcinoma. PeerJ 2019; 7:e6397. [PMID: 30755833 PMCID: PMC6368841 DOI: 10.7717/peerj.6397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play an important role in the competitive endogenous RNA (ceRNA) networks in that they regulate protein-coding gene expression by sponging microRNAs (miRNAs). However, the understanding of the ceRNA network in tongue squamous cell carcinoma (TSCC) remains limited. Methods Expression profile data regarding mRNAs, miRNAs and lncRNAs as well as clinical information on 122 TSCC tissues and 15 normal controls from The Cancer Genome Atlas (TCGA) database were collected. We used the edgR package to identify differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs) and miRNAs (DEmiRNAs) between TSCC samples and normal samples. In order to explore the functions of DEmRNAs, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed. Subsequently, a ceRNA network was established based on the identified DElncRNAs-DEmiRNAs and DEmiRNAs-DEmRNAs interactions. The RNAs within the ceRNA network were analyzed for their correlation with overall disease survival. Finally, lncRNAs were specifically analyzed for their correlation with clinical features in the included TSCC patient samples. Results A total of 1867 mRNAs, 828 lncRNAs and 81 miRNAs were identified as differentially expressed in TSCC tissues (-log 2fold change- ≥ 2; adjusted P value <0.01). The resulting ceRNA network included 16 mRNAs, 56 lncRNAs and 6 miRNAs. Ten out of the 56 lncRNAs were found to be associated with the overall survival in TSCC patients (P < 0.05); 10 lncRNAs were correlated with TSCC progression (P < 0.05). Conclusion Our study deepens the understanding of ceRNA network regulatory mechanisms in TSCC. Furthermore, we identified ten lncRNAs (PART1, LINC00261, AL163952.1, C2orf48, FAM87A, LINC00052, LINC00472, STEAP3-AS1, TSPEAR-AS1 and ERVH48-1) as novel, potential prognostic biomarkers and therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Shusen Zhang
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Stomatology, Hunan University of Medicine, Hunan, China
| | - Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiulan Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Chen
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Hongbo Zhou
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
13
|
Borg D, Larsson AH, Hedner C, Nodin B, Johnsson A, Jirström K. Podocalyxin-like protein as a predictive biomarker for benefit of neoadjuvant chemotherapy in resectable gastric and esophageal adenocarcinoma. J Transl Med 2018; 16:290. [PMID: 30355278 PMCID: PMC6201481 DOI: 10.1186/s12967-018-1668-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We have previously shown that podocalyxin-like protein (PODXL) is a prognostic biomarker for poor survival in gastric and esophageal adenocarcinoma treated with surgery up-front. The aim of the present study was to assess PODXL expression in tumors from patients treated with neoadjuvant ± adjuvant (i.e. preoperative with or without postoperative) chemotherapy, with regard to histopathologic response, time to recurrence (TTR) and overall survival (OS). METHODS The neoadjuvant cohort encompasses 148 consecutive patients who received neoadjuvant ± adjuvant chemotherapy for resectable gastric or esophageal adenocarcinoma between 2008 and 2014. Immunohistochemical expression of PODXL was assessed in pre-neoadjuvant biopsies, resected primary tumors and lymph node metastases. Histopathologic response was evaluated using the Chirieac grading. TTR and OS were estimated using Kaplan-Meier and Cox regression analyses. To investigate a potential predictive role for PODXL, the neoadjuvant cohort was pooled with the previously reported surgery up-front cohort. RESULTS The majority (> 95%) of the patients were treated with fluoropyrimidine- and oxaliplatin-based chemotherapy. Patients with high PODXL expression in their pre-neoadjuvant biopsies had a superior histopathologic response (notably 36% with no residual cancer cells) compared to those with negative or low PODXL expression, and were all recurrence-free at last follow-up. In the pooled cohort, no benefit of chemotherapy could be shown for PODXL negative cases, whereas PODXL positive (low or high) cases had a prolonged TTR and OS when treated with neoadjuvant ± adjuvant chemotherapy compared to surgery alone. The potential predictive role of PODXL was further strengthened for TTR in Cox regression analyses, especially for patients treated with neoadjuvant fluoropyrimidine and oxaliplatin for a minimum of 8 weeks, with a significant interaction term in both unadjusted (p = 0.006) and adjusted (p = 0.024) analyses. The interaction term was not statistically significant for overall survival. CONCLUSIONS Patients with resectable gastric or esophageal adenocarcinoma with high PODXL expression in their diagnostic biopsies have an excellent prognosis when treated with neoadjuvant ± adjuvant fluoropyrimidine- and oxaliplatin-based chemotherapy. If the suggested predictive role of PODXL for benefit of chemotherapy can be confirmed, patients with PODXL negative tumors could be spared chemotherapy and treated with surgery alone.
Collapse
Affiliation(s)
- David Borg
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Anna H. Larsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Anders Johnsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
14
|
Nikitakis NG, Gkouveris I, Aseervatham J, Barahona K, Ogbureke KUE. DSPP-MMP20 gene silencing downregulates cancer stem cell markers in human oral cancer cells. Cell Mol Biol Lett 2018; 23:30. [PMID: 30002682 PMCID: PMC6040065 DOI: 10.1186/s11658-018-0096-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent findings indicate that dentin sialophosphoprotein (DSPP) and matrix metalloproteinase (MMP) 20 interact in oral squamous cell carcinoma (OSCC). The objective of this study was to determine the effects of DSPP/MMP20 gene silencing on oral cancer stem cell (OCSC) markers. METHODS The expression of well-established OCSC markers: ABCG2; ALDH1; CD133; CD44; BMI1; LGR4, and Podoplanin in DSPP/MMP20-silenced OSCC cell line, OSC2, and controls were assayed by western blot (WB), and flow cytometry techniques. The sensitivity of OSC2 cells to cisplatin following DSPP/MMP20 silencing was also determined. RESULTS DSPP/MMP20 silencing resulted in downregulation of OCSC markers, more profoundly ABCG2 (84%) and CD44 (81%), following double silencing. Furthermore, while treatment of parent (pre-silenced) OSC2 cells with cisplatin resulted in upregulation of OCSC markers, DSPP/MMP20-silenced OSC2 cells similarly treated resulted in profound downregulation of OCSC markers (72 to 94% at 50 μM of cisplatin), and a marked reduction in the proportion of ABCG2 and ALDH1 positive cells (~ 1%). CONCLUSIONS We conclude that the downregulation of OCSC markers may signal a reduction in OCSC population following MMP20/DSPP silencing in OSCC cells, while also increasing their sensitivity to cisplatin. Thus, our findings suggest a potential role for DSPP and MMP20 in sustaining OCSC population in OSCCs, possibly, through mechanism(s) that alter OCSC sensitivity to treatment with chemotherapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Nikolaos G. Nikitakis
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
- Department of Oral Pathology and Medicine, School of Dentistry, University of Athens, Athens, Greece
| | - Ioannis Gkouveris
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Kelvin Barahona
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Kalu U. E. Ogbureke
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| |
Collapse
|
15
|
Decreased miR-320a promotes invasion and metastasis of tumor budding cells in tongue squamous cell carcinoma. Oncotarget 2018; 7:65744-65757. [PMID: 27582550 PMCID: PMC5323189 DOI: 10.18632/oncotarget.11612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022] Open
Abstract
We aimed to determine the specific miRNA profile of tumor budding cells and investigate the potential role of miR-320a in invasion and metastasis of tongue squamous cell carcinoma (TSCC). We collected tumor budding cells and paired central tumor samples from five TSCC specimens with laser capture microdissection and examined the specimens using a miRNA microarray. The specific miRNA signature of tumor budding cells was identified. We found that miR-320a was dramatically decreased in tumor budding cells. Knockdown of miR-320a significantly enhanced migration and invasion of TSCC cell lines. Suz12 was shown to be a direct target of miR-320a. Similar results were also observed in nude mouse models. Multivariate analysis indicated that miR-320a was an independent prognostic factor. Kaplan–Meier analysis demonstrated that decreased miR-320a and high intensity of tumor budding were correlated with poor survival rate, especially in the subgroup with high-intensity tumor budding and low expression of miR-320a. We concluded that decreased expression of miR-320a could promote invasion and metastasis of tumor budding cells by targeting Suz12 in TSCC. A combination of tumor budding and miR-320a may serve as an index to identify an aggressive sub-population of TSCC cells with high metastatic potential.
Collapse
|
16
|
Podocalyxin promotes proliferation and survival in mature B-cell non-Hodgkin lymphoma cells. Oncotarget 2017; 8:99722-99739. [PMID: 29245936 PMCID: PMC5725127 DOI: 10.18632/oncotarget.21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Podocalyxin (PCLP1) is a CD34-related sialomucin expressed by some normal cells and a variety of malignant tumors, including leukemia, and associated with the most aggressive cancers and poor clinical outcome. PCLP1 increases breast tumor growth, migration and invasion; however, its role in hematologic malignancies still remains undetermined. The purpose of this study was to investigate the expression and function of PCLP1 in mature B-cell lymphoma cells. We found that overexpression of PCLP1 significantly increases proliferation, cell-to-cell interaction, clonogenicity, and migration of B-cell lymphoma cells. Furthermore, PCLP1 overexpression results in higher resistance to death induced by dexamethasone, reactive oxygen species and type II anti-CD20 monoclonal antibody obinutuzumab. Strikingly, enforced expression of PCLP1 enhances lipid droplet formation as well as pentose phosphate pathway and glutamine dependence, indicative of metabolic reprogramming necessary to support the abnormal proliferation rate of tumor cells. Flow cytometry analysis revealed augmented levels of PCLP1 in malignant cells from some patients with mature B-cell lymphoma compared to their normal B-cell counterparts. In summary, our results demonstrate that PCLP1 contributes to proliferation and survival of mature B-cell lymphoma cells, suggesting that PCLP1 may promote lymphomagenesis and represents a therapeutic target for the treatment of B-cell lymphomas.
Collapse
|
17
|
Zhou J, Dai W, Song J. miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT. Biochem Biophys Res Commun 2016; 470:445-452. [DOI: 10.1016/j.bbrc.2016.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 12/20/2022]
|
18
|
Lingual Epithelial Stem Cells and Organoid Culture of Them. Int J Mol Sci 2016; 17:ijms17020168. [PMID: 26828484 PMCID: PMC4783902 DOI: 10.3390/ijms17020168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 12/19/2022] Open
Abstract
As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.
Collapse
|
19
|
Zhang L, Wang CQ, Liu F, Dong ZQ, Zhao P, Dong XN, Wei F, Qu X, Xiang FG. Effects of human Dachshund homolog 1 on the proliferation, migration, and adhesion of squamous cell carcinoma of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 121:58-66. [PMID: 26577501 DOI: 10.1016/j.oooo.2015.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/16/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the expression and role of human Dachshund homolog 1 (DACH1) in the tongue squamous cell carcinoma (TSCC). STUDY DESIGN To explore the expression, regulation, and mechanism of DACH1 in TSCC, nine samples of fresh tumor and adjacent tissues, 51 samples of paraffin-embedded TSCC and paired adjacent tissues, and TSCC cell line SCC-25 were examined. Immunohistochemistry, real-time polymerase chain reaction, Western blot, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, Transwell, adhesion assays, and flow cytometry were used. RESULTS The DACH1 expression level was significantly lower in tumors than in the adjacent tissues, and such low expression was associated with poor differentiation of tumors, late clinical stage, and lymph node metastasis. Moreover, overexpression of DACH1 might promote apoptosis and inhibit the proliferation, migration, and adhesion of SCC-25 cells. CONCLUSIONS DACH1 may be a potential molecular target for the therapy of recurrent and metastatic TSCC.
Collapse
Affiliation(s)
- Li Zhang
- Professor/Lecturer, Department of Pathology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Cheng-Qin Wang
- Professor/Lecturer, Department of Pathology, Medical College of Qingdao University, Qingdao, Shandong, China; Professor/Attending Physician, Department of Pathology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China.
| | - Fen Liu
- Professor/Lecturer, Department of Pathology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Zuo-Qing Dong
- Professor, Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Peng Zhao
- Professor/Attending Physician, Department of Pathology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xian-Ning Dong
- Professor/Attending Physician, Department of Pathology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Fengcai Wei
- Professor, Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Professor, Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Feng-Gang Xiang
- Professor/Lecturer, Department of Pathology, Medical College of Qingdao University, Qingdao, Shandong, China; Professor/Attending Physician, Department of Pathology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Bottoni P, Isgrò MA, Scatena R. The epithelial-mesenchymal transition in cancer: a potential critical topic for translational proteomic research. Expert Rev Proteomics 2015; 13:115-33. [PMID: 26567562 DOI: 10.1586/14789450.2016.1112742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.
Collapse
Affiliation(s)
- Patrizia Bottoni
- a Institute of Biochemistry and Clinical Biochemistry , School of Medicine - Catholic University , Rome , Italy
| | - Maria Antonietta Isgrò
- b Department of Diagnostic and Molecular Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Roberto Scatena
- a Institute of Biochemistry and Clinical Biochemistry , School of Medicine - Catholic University , Rome , Italy
| |
Collapse
|