1
|
Magnetomechanical Stress-Induced Colon Cancer Cell Growth Inhibition. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of magnetomechanical stress in cells using internalized magnetic nanoparticles (MNPs) actuated by low-frequency magnetic fields has been attracting considerable interest in the field of cancer research. Recent developments prove that magnetomechanical stress can inhibit cancer cells’ growth. However, the MNPs’ type and the magnetic field’s characteristics are crucial parameters. Their variability allows multiple combinations, which induce specific biological effects. We previously reported the antiproliferative effects induced in HT29 colon cancer cells by static-magnetic-field (200 mT)-actuated spherical MNPs (100 nm). Herein, we show that similar growth inhibitory effects are induced in other colon cancer cell lines. The effect of magnetomechanical stress was also examined in the growth rate of tumor spheroids. Moreover, we examined the biological mechanisms involved in the observed cell growth inhibition. Under the experimental conditions employed, no cell death was detected by PI (propidium iodide) staining analysis. Flow cytometry and Western blotting revealed that G2/M cell cycle arrest might mediate the antiproliferative effects. Furthermore, MNPs were found to locate in the lysosomes, and a decreased number of lysosomes was detected in cells that had undergone magnetomechanical stress, implying that the mechanical activation of the internalized MNPs could induce lysosome membrane disruption. Of note, the lysosomal acidic conditions were proven to affect the MNPs’ magnetic properties, evidenced by vibrating sample magnetometry (VSM) analysis. Further research on the combination of the described magnetomechanical stress with lysosome-targeting chemotherapeutic drugs could lay the groundwork for the development of novel anticancer combination treatment schemes.
Collapse
|
2
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
3
|
Abstract
The intestinal tract is the entry gate for nutrients and symbiotic organisms, being in constant contact with external environment. DNA methylation is one of the keys to how environmental conditions, diet and nutritional status included, shape functionality in the gut and systemically. This review aims to summarise findings on the importance of methylation to gut development, differentiation and function. Evidence to date on how external factors such as diet, dietary supplements, nutritional status and microbiota modifications modulate intestinal function through DNA methylation is also presented.
Collapse
|
4
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
5
|
Li L, Li F, Xia Y, Yang X, Lv Q, Fang F, Wang Q, Bu W, Wang Y, Zhang K, Wu Y, Shen J, Jiang M. UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes. EBioMedicine 2020; 57:102835. [PMID: 32574963 PMCID: PMC7317242 DOI: 10.1016/j.ebiom.2020.102835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about whether UVB can directly influence epigenetic regulatory pathways to induce cutaneous squamous cell carcinoma (CSCC). This study aimed to identify epigenetic-regulated signalling pathways through global methylation and gene expression profiling and to elucidate their function in CSCC development. METHODS Global DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) and genome-wide gene expression analysis by RNA sequencing (RNA-seq) in eight pairs of matched CSCC and adjacent normal skin tissues were used to investigate the potential candidate gene(s). Clinical samples, animal models, cell lines, and UVB irradiation were applied to validate the mechanism and function of the genes of interest. FINDINGS We identified the downregulation of the TGF-β/BMP-SMAD-ID4 signalling pathway in CSCC and increased methylation of inhibitor of DNA binding/differentiation 4 (ID4). In normal human and mouse skin tissues and cutaneous cell lines, UVB exposure induced ID4 DNA methylation, upregulated DNMT1 and downregulated ten-eleven translocation (TETs). Similarly, we detected the upregulation of DNMT1 and downregulation of TETs accompanying ID4 DNA methylation in CSCC tissues. Silencing of DNMT1 and overexpression of TET1 and TET2 in A431 and Colo16 cells led to increased ID4 expression. Finally, we showed that overexpression of ID4 reduced cell proliferation, migration, and invasion, and increased apoptosis in CSCC cell lines and reduced tumourigenesis in mouse models. INTERPRETATION The results indicate that ID4 is downregulated by UVB irradiation via DNA methylation. ID4 acts as a tumour suppressor gene in CSCC development. FUNDING CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-021, 2017-I2M-1-017), the Natural Science Foundation of Jiangsu Province (BK20191136), and the Fundamental Research Funds for the Central Universities (3332019104).
Collapse
Affiliation(s)
- Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fengjuan Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yudong Xia
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Xueyuan Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qun Lv
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fang Fang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qiang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Ke Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yi Wu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfang Shen
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Mingjun Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
6
|
Bruschi M, Garnier L, Cleroux E, Giordano A, Dumas M, Bardet AF, Kergrohen T, Quesada S, Cesses P, Weber M, Gerbe F, Jay P. Loss of Apc Rapidly Impairs DNA Methylation Programs and Cell Fate Decisions in Lgr5 + Intestinal Stem Cells. Cancer Res 2020; 80:2101-2113. [PMID: 32213541 DOI: 10.1158/0008-5472.can-19-2104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/13/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer initiation and progression result from the accumulation of genetic and epigenetic alterations. Although aberrant gene expression and DNA methylation profiles are considered hallmarks of colorectal cancer development, the precise timing at which these are produced during tumor establishment remains elusive. Here we investigated the early transcriptional and epigenetic changes induced by adenomatous polyposis coli (Apc) inactivation in intestinal crypts. Hyperactivation of the Wnt pathway via Apc inactivation in crypt base columnar intestinal stem cells (ISC) led to their rapid accumulation driven by an impaired molecular commitment to differentiation, which was associated with discrete alterations in DNA methylation. Importantly, inhibiting the enzymes responsible for de novo DNA methylation restored the responsiveness of Apc-deficient intestinal organoids to stimuli regulating the proliferation-to-differentiation transition in ISC. This work reveals that early DNA methylation changes play critical roles in the establishment of the impaired fate decision program consecutive to Apc loss of function. SIGNIFICANCE: This study demonstrates the functional impact of changes in DNA methylation to determine the colorectal cancer cell phenotype following loss of Apc function.
Collapse
Affiliation(s)
- Marco Bruschi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Laure Garnier
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Elouan Cleroux
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Alicia Giordano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Michael Dumas
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Anaïs F Bardet
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Thomas Kergrohen
- Département de Cancérologie de l'Enfant et de l'Adolescent, Institut de Cancérologie Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif Cedex, France
| | - Stanislas Quesada
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Pierre Cesses
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Michael Weber
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
| |
Collapse
|
7
|
Intestinal Epithelial Organoids as Tools to Study Epigenetics in Gut Health and Disease. Stem Cells Int 2019; 2019:7242415. [PMID: 30809264 PMCID: PMC6369455 DOI: 10.1155/2019/7242415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium forms the inner layer of the human intestine and serves a wide range of diverse functions. Its constant exposure to a vast amount of complex microbiota highlights the critical interface that this single-cell layer forms between the host and our environment. Importantly, the well-documented contribution of environmental factors towards the functional development of the human intestinal epithelium directly implies epigenetic mechanisms in orchestrating this complex interplay. The development of intestinal epithelial organoid culture systems that can be generated from human tissue provides researchers with unpresented opportunities to study functional aspects of human intestinal epithelial pathophysiology. In this brief review, we summarise existing evidence for the role of epigenetics in regulating intestinal epithelial cell function and highlight the great potential for human gut organoids as translational research tools to investigate these mechanisms in vitro.
Collapse
|
8
|
Riester M, Wu HJ, Zehir A, Gönen M, Moreira AL, Downey RJ, Michor F. Distance in cancer gene expression from stem cells predicts patient survival. PLoS One 2017; 12:e0173589. [PMID: 28333954 PMCID: PMC5363813 DOI: 10.1371/journal.pone.0173589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
The degree of histologic cellular differentiation of a cancer has been associated with prognosis but is subjectively assessed. We hypothesized that information about tumor differentiation of individual cancers could be derived objectively from cancer gene expression data, and would allow creation of a cancer phylogenetic framework that would correlate with clinical, histologic and molecular characteristics of the cancers, as well as predict prognosis. Here we utilized mRNA expression data from 4,413 patient samples with 7 diverse cancer histologies to explore the utility of ordering samples by their distance in gene expression from that of stem cells. A differentiation baseline was obtained by including expression data of human embryonic stem cells (hESC) and human mesenchymal stem cells (hMSC) for solid tumors, and of hESC and CD34+ cells for liquid tumors. We found that the correlation distance (the degree of similarity) between the gene expression profile of a tumor sample and that of stem cells orients cancers in a clinically coherent fashion. For all histologies analyzed (including carcinomas, sarcomas, and hematologic malignancies), patients with cancers with gene expression patterns most similar to that of stem cells had poorer overall survival. We also found that the genes in all undifferentiated cancers of diverse histologies that were most differentially expressed were associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes. Thus, a stem cell-oriented phylogeny of cancers allows for the derivation of a novel cancer gene expression signature found in all undifferentiated forms of diverse cancer histologies, that is competitive in predicting overall survival in cancer patients compared to previously published prediction models, and is coherent in that gene expression was associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes associated with regulation of the multicellular state.
Collapse
Affiliation(s)
- Markus Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Ahmet Zehir
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Andre L. Moreira
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Robert J. Downey
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
- * E-mail: (RJD); (FM)
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
- * E-mail: (RJD); (FM)
| |
Collapse
|
9
|
Escudero-Hernández C, Martínez-Abad B, Ruipérez V, Garrote JA, Arranz E. New IL-15 receptor-α splicing variants identified in intestinal epithelial Caco-2 cells. Innate Immun 2016; 23:44-53. [PMID: 27794069 DOI: 10.1177/1753425916674263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IL-15 is a pleiotropic cytokine related to IL-2 which acts at a broader level than its counterpart. It is presented through its specific high-affinity receptor, IL-15Rα. Both cytokine and receptor are tightly regulated at multiple levels and are widely distributed. Thus, deregulation of their expression leads to an inflammatory immune response. Variants of splicing of IL-15Rα have been described in immune and barrier cells; however, their presence has not been focused on intestinal epithelial cells. In this study, we describe five new alternative variants of splicing of IL-15Rα in Caco-2 cells. Four of them were expressed into proteins inside Caco-2 cells, but these were unable to bind IL-15 or to follow the secretory pathway. However, the expression of mRNA itself might be relevant to diseases such as celiac disease, inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Celia Escudero-Hernández
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Beatriz Martínez-Abad
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Violeta Ruipérez
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - José A Garrote
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain.,2 Laboratory of Molecular Genetics, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Eduardo Arranz
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
10
|
Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 2016; 15:443-453. [PMID: 27416614 DOI: 10.1093/bfgp/elw017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts, revealing a more dynamic regulation than originally thought, as active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. Recent data provide insights into the contribution of different epigenetic factors, and DNA methylation in particular, to the establishment of cellular memory during embryonic development and the modulation of cell type-specific gene regulation programs to ensure proper differentiation. This review summarizes published data regarding DNA methylation changes along lineage specification and differentiation programs. We also discuss the current knowledge about DNA methylation alterations occurring in physiological and pathological conditions such as aging and cancer.
Collapse
|
11
|
Selmin OI, Fang C, Lyon AM, Doetschman TC, Thompson PA, Martinez JD, Smith JW, Lance PM, Romagnolo DF. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells. J Nutr 2016; 146:236-42. [PMID: 26609171 PMCID: PMC6636391 DOI: 10.3945/jn.115.216580] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. OBJECTIVE We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. METHODS Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. RESULTS In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. CONCLUSIONS We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells, leading to reduced expression of downstream targets (SHP, IBABP) involved in BA homeostasis while increasing the expression of factors (COX-2, c-MYC) that contribute to inflammation and colon cancer.
Collapse
Affiliation(s)
- Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ,University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Changming Fang
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Adam M Lyon
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ
| | - Tom C Doetschman
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | | | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Jeffrey W Smith
- Sanford/Burnham Medical Research Institute, Cancer Center Division, La
Jolla, CA
| | - Peter M Lance
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Donato F Romagnolo
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| |
Collapse
|
12
|
Huang CZ, Yu T, Chen QK. DNA Methylation Dynamics During Differentiation, Proliferation, and Tumorigenesis in the Intestinal Tract. Stem Cells Dev 2015; 24:2733-9. [PMID: 26413818 DOI: 10.1089/scd.2015.0235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA methylation, an epigenetic control mechanism in mammals, is widely present in the intestinal tract during the differentiation and proliferation of epithelial cells. Cells in stem cell pools or villi have different patterns of DNA methylation. The process of DNA methylation is dynamic and occurs at many relevant regulatory elements during the rapid transition of stem cells into fully mature, differentiated epithelial cells. Changes in DNA methylation patterns most often take place in enhancer and promoter regions and are associated with transcription factor binding. During differentiation, enhancer regions associated with genes important to enterocyte differentiation are demethylated, activating gene expression. Abnormal patterns of DNA methylation during differentiation and proliferation in the intestinal tract can lead to the formation of aberrant crypt foci and destroy the barrier and absorptive functions of the intestinal epithelium. Accumulation of these epigenetic changes may even result in tumorigenesis. In the current review, we discuss recent findings on the association between DNA methylation and cell differentiation and proliferation in the small intestine and highlight the possible links between dysregulation of this process and tumorigenesis.
Collapse
Affiliation(s)
- Can-Ze Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Fu DG. Epigenetic alterations in gastric cancer (Review). Mol Med Rep 2015; 12:3223-3230. [PMID: 25997695 PMCID: PMC4526033 DOI: 10.3892/mmr.2015.3816] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer and the second most common cause of cancer-related mortality worldwide. An increasing number of recent studies have confirmed that gastric cancer is a multistage pathological state that arises from environmental factors; dietary factors in particulary are considered to play an important role in the etiology of gastric cancer. Improper dietary habits are one of the primary concerns as they influence key molecular events associated with the onset of gastric carcinogenesis. In the field of genetics, anticancer research has mainly focused on the various genetic markers and genetic molecular mechanisms responsible for the development of this of this disease. Some of this research has proven to be very fruitful, providing insight into the possible mechamisms repsonsible for this disease and into possible treatment modalities. However, the mortality rate associated with gastric cancer remains relatively high. Thus, epigenetics has become a hot topic for research, whereby genetic markers are bypassed and this research is directed towards reversible epigenetic events, such as methylation and histone modifications that play a crucial role in carcinogenesis. The present review focuses on the epigenetic events which play an important role in the development and progression of this deadly disease, gastric cancer.
Collapse
Affiliation(s)
- Du-Guan Fu
- Department of Cardiology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|