1
|
Jiang JH, Wang YF, Zheng J, Lei YM, Chen ZY, Guo Y, Guo YJ, Guo BQ, Lv YF, Wang HH, Xie JJ, Liu YX, Jin TW, Li BQ, Zhu XS, Jiang YH, Mo ZN. Human-like adrenal features in Chinese tree shrews revealed by multi-omics analysis of adrenal cell populations and steroid synthesis. Zool Res 2024; 45:617-632. [PMID: 38766745 PMCID: PMC11188597 DOI: 10.24272/j.issn.2095-8137.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 05/22/2024] Open
Abstract
The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.
Collapse
Affiliation(s)
- Jing-Hang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Reproductive Medicine Center, Jingmen People's Hospital, JingChu University of Technology Affiliated Central Hospital, Jingmen, Hubei 448000, China
| | - Yi-Fu Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jie Zheng
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi-Ming Lei
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Zhong-Yuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Guo
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ya-Jie Guo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bing-Qian Guo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu-Fang Lv
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hong-Hong Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Juan-Juan Xie
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi-Xuan Liu
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ting-Wei Jin
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bi-Qi Li
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Xiao-Shu Zhu
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi 537000, China. E-mail:
| | - Yong-Hua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China. E-mail:
| | - Zeng-Nan Mo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China. E-mail:
| |
Collapse
|
2
|
Giri P, Bhimani R, Patil S, Dwivedi M. Genetic association of Nuclear factor of activated T cells' 3'UTR and structural polymorphisms with susceptibility to generalized vitiligo in Gujarat population. Gene 2023:147629. [PMID: 37429370 DOI: 10.1016/j.gene.2023.147629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Generalized vitiligo(GV) is an autoimmune skin depigmenting disease characterized by loss of functional melanocytes. Nuclear factor of activated T cells(NFATs) play a key role in regulatory T cells' (Tregs) activation and function. Our previous studies have highlighted the role of reduced NFATs expression and activity in impaired Tregs suppressive capacity, leading to GV pathogenesis. 3'UTR region and structural single nucleotide polymorphisms(SNPs) could lead to reduced NFAT expression and activity. Therefore, we studied the association of NFATs 3'UTR [NFATC2 rs4811198(T>G) &NFATC4 rs11848279(A>G)] and structural [NFATC1 rs754093(T>G) &NFATC2 rs12479626(T>C)] SNPs in 427 GV patients and 415 controls from Gujarat population by Polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP). Additionally, we carried out genotype-phenotype correlation and in silico analysis to assess the effect of NFATs SNPs on NFATs expression and structure. NFATC2 rs4811198(T>G) 3' UTR &NFATC2 rs12479626(T>C) structural SNPs were significantly associated with GV(p<0.0001). Interestingly, for NFATC2 rs4811198(T>G) SNP, there was a significant difference in the TT vs GG genotypes' frequencies (p=0.0034; Table 2), and for NFATC2 rs12479626(T>C) SNP there was a significant difference between TT vs TC and CC genotypes' frequencies(p<0.0001 & p=0.0002) between GV patients and controls. Furthermore, Odds ratio suggested that the susceptible alleles for NFATC2 rs4811198(T>G) &NFATC2 rs12479626(T>C) SNPs increased the risk of GV by 1.38 & 3.043 fold. However, the NFAT 3' UTR [NFATC2 rs4811198 (T>G)] and structural [NFATC1 rs754093(T>G)] SNPs were not significantly associated with GV. Interestingly, the genotype-phenotype correlation suggested that the susceptible 'G' allele of NFATC2 rs4811198(T>G) &NFATC4 rs11848279(A>G) 3' UTR SNPs lead to reduced NFATC2 and NFATC4 expression(p<0.0001). Furthermore, in silico analysis suggested that hsa-miR-3183 & hsa-miR-6720-3p miRNAs specifically bound to 'G' allele of NFATC2 rs4811198 SNP and has-miR-4652-3p miRNA specifically bound to 'G' allele of NFATC4 rs11848279 SNP. Overall, our study suggests that NFATC2 rs4811198(T>G) 3' UTR &NFATC2 rs12479626(T>C) structural SNPs may be associated with GV susceptibility in Gujarat population. Moreover, the susceptible alleles for the 3' UTR SNPs could lead to reduced NFATs levels, which may further possibly, affect the Treg suppressive function leading to GV.
Collapse
Affiliation(s)
- Prashant Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat- 394 350, Gujarat, India
| | - Radhika Bhimani
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat- 394 350, Gujarat, India
| | - Siddhika Patil
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat- 394 350, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat- 394 350, Gujarat, India.
| |
Collapse
|
3
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Betterle C, Presotto F, Furmaniak J. Epidemiology, pathogenesis, and diagnosis of Addison's disease in adults. J Endocrinol Invest 2019; 42:1407-1433. [PMID: 31321757 DOI: 10.1007/s40618-019-01079-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Addison's disease (AD) is a rare disorder and among adult population in developed countries is most commonly caused by autoimmunity. In contrast, in children genetic causes are responsible for AD in the majority of patients. PURPOSE This review describes epidemiology, pathogenesis, genetics, natural history, clinical manifestations, immunological markers and diagnostic strategies in patients with AD. Standard care treatments including the management of patients during pregnancy and adrenal crises consistent with the recent consensus statement of the European Consortium and the Endocrine Society Clinical Practice Guideline are described. In addition, emerging therapies designed to improve the quality of life and new strategies to modify the natural history of autoimmune AD are discussed. CONCLUSIONS Progress in optimizing replacement therapy for patients with AD has allowed the patients to lead a normal life. However, continuous education of patients and health care professionals of ever-present danger of adrenal crisis is essential to save lives of patients with AD.
Collapse
Affiliation(s)
- C Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale Civile 105, 35128, Padua, Italy
| | - F Presotto
- Endocrine Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale Civile 105, 35128, Padua, Italy.
- Unit of Internal Medicine, Ospedale dell'Angelo, via Paccagnella 11, 30174, Mestre-Venice, Italy.
| | | |
Collapse
|
5
|
Hellesen A, Bratland E. The potential role for infections in the pathogenesis of autoimmune Addison's disease. Clin Exp Immunol 2018; 195:52-63. [PMID: 30144040 DOI: 10.1111/cei.13207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Autoimmune Addison's disease (AAD), or primary adrenocortical insufficiency, is a classical organ-specific autoimmune disease with 160 years of history. AAD is remarkably homogeneous with one major dominant self-antigen, the cytochrome P450 21-hydroxylase enzyme, which is targeted by both autoantibodies and autoreactive T cells. Like most autoimmune diseases, AAD is thought to be caused by an unfortunate combination of genetic and environmental factors. While the number of genetic associations with AAD is increasing, almost nothing is known about environmental factors. A major environmental factor commonly proposed for autoimmune diseases, based partly on experimental and clinical data and partly on shared pathways between anti-viral immunity and autoimmunity, is viral infections. However, there are few reports associating viral infections to AAD, and it has proved difficult to establish which immunological processes that could link any viral infection with the initiation or progression of AAD. In this review, we will summarize the current knowledge on the underlying mechanisms of AAD and take a closer look on the potential involvement of viruses.
Collapse
Affiliation(s)
- A Hellesen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, Bergen, Norway
| | - E Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Wu Z, Xu Q, Qiu X, Xu L, Jiao Z, Zhang M, Zhong M. FKBP1A rs6041749 polymorphism is associated with allograft function in renal transplant patients. Eur J Clin Pharmacol 2018; 75:33-40. [PMID: 30215102 DOI: 10.1007/s00228-018-2546-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
AIM To investigate the potential impact of single-nucleotide polymorphisms (SNPs) in the FK506-binding protein (FKBP)-calcineurin (CaN)-nuclear factor of activated T cells (NFAT) signaling pathway on the efficacy and safety of tacrolimus (TAC) in Chinese renal transplant patients. METHODS Seventy-seven tag SNPs were detected in 146 patients who were on TAC-based maintenance immunosuppression and who followed up for at least 2 years. The relationships of these polymorphisms with clinical outcomes such as acute rejection, acute nephrotoxicity, pneumonia, and estimated glomerular filtration rate (eGFR) were explored. For the FKBP1A rs6041749 polymorphism, which has a significant association with renal function over time, a preliminary functional analysis was performed using a dual-luciferase reporter gene system. RESULTS The patients with FKBP1A rs6041749 TT genotype had a more stable eGFR level than CC and CT carriers (P = 2.08 × 10-8) during the 2 years following transplantation. Dual-luciferase reporter assay results showed that the rs6041749 C variant could enhance the relative luciferase activity compared with the T variant, which indicated that the rs6041749 C allele may increase the FKBP1A gene transcription. In addition, we did not find any association between these genetic variants and the risk of acute rejection, acute nephrotoxicity, and pneumonia in renal transplant patients receiving TAC-based immunosuppression. CONCLUSIONS FKBP1A rs6041749 C allele carriers are at higher risk for eGFR deterioration. The variant might serve as a biomarker to predict allograft function in renal transplant patients.
Collapse
Affiliation(s)
- Zhuo Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Qinxia Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China.
| | - Luyang Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Ming Zhang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| |
Collapse
|
7
|
Hellesen A, Bratland E, Husebye ES. Autoimmune Addison's disease - An update on pathogenesis. ANNALES D'ENDOCRINOLOGIE 2018; 79:157-163. [PMID: 29631795 DOI: 10.1016/j.ando.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease.
Collapse
Affiliation(s)
- Alexander Hellesen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, 5021 Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, 5021 Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (Solna), Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
8
|
Xu Q, Qiu X, Jiao Z, Zhang M, Chen J, Zhong M. NFATC1 genotypes affect acute rejection and long-term graft function in cyclosporine-treated renal transplant recipients. Pharmacogenomics 2017; 18:381-392. [PMID: 28244807 DOI: 10.2217/pgs-2016-0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To investigate the effects of SNPs in the cyclophilin A/calcineurin/nuclear factor of activated T-cells (NFATs) pathway genes (PPIA, PPP3CB, PPP3R1, NFATC1 and NFATC2) on cyclosporine (CsA) efficacy in renal transplant recipients. MATERIALS & METHODS Seventy-six tag SNPs were detected in 155 CsA-treated renal recipients with at least a 5-year follow-up. The associations of SNPs with acute rejection, nephrotoxicity, pneumonia and estimated glomerular filtration rate post transplant were explored. RESULTS NFATC1 rs3894049 GC was a risk factor for acute rejection compared with CC carriers (p = 0.0005). NFATC1 rs2280055 TT carriers had a more stable estimated glomerular filtration rate level than CC (p = 0.0004). CONCLUSION Detecting NFATC1 polymorphisms could help predict CsA efficacy in renal transplant patients.
Collapse
Affiliation(s)
- Qinxia Xu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Ming Zhang
- Department of Nephrology, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Jianping Chen
- Key Lab of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, 779 Lao Hu Min Road, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| |
Collapse
|
9
|
Eriksson D, Bianchi M, Landegren N, Nordin J, Dalin F, Mathioudaki A, Eriksson GN, Hultin-Rosenberg L, Dahlqvist J, Zetterqvist H, Karlsson Å, Hallgren Å, Farias FHG, Murén E, Ahlgren KM, Lobell A, Andersson G, Tandre K, Dahlqvist SR, Söderkvist P, Rönnblom L, Hulting AL, Wahlberg J, Ekwall O, Dahlqvist P, Meadows JRS, Bensing S, Lindblad-Toh K, Kämpe O, Pielberg GR. Extended exome sequencing identifies BACH2 as a novel major risk locus for Addison's disease. J Intern Med 2016; 280:595-608. [PMID: 27807919 DOI: 10.1111/joim.12569] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autoimmune disease is one of the leading causes of morbidity and mortality worldwide. In Addison's disease, the adrenal glands are targeted by destructive autoimmunity. Despite being the most common cause of primary adrenal failure, little is known about its aetiology. METHODS To understand the genetic background of Addison's disease, we utilized the extensively characterized patients of the Swedish Addison Registry. We developed an extended exome capture array comprising a selected set of 1853 genes and their potential regulatory elements, for the purpose of sequencing 479 patients with Addison's disease and 1394 controls. RESULTS We identified BACH2 (rs62408233-A, OR = 2.01 (1.71-2.37), P = 1.66 × 10-15 , MAF 0.46/0.29 in cases/controls) as a novel gene associated with Addison's disease development. We also confirmed the previously known associations with the HLA complex. CONCLUSION Whilst BACH2 has been previously reported to associate with organ-specific autoimmune diseases co-inherited with Addison's disease, we have identified BACH2 as a major risk locus in Addison's disease, independent of concomitant autoimmune diseases. Our results may enable future research towards preventive disease treatment.
Collapse
Affiliation(s)
- D Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden
| | - M Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - N Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - F Dalin
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Mathioudaki
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - G N Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - L Hultin-Rosenberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - J Dahlqvist
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - H Zetterqvist
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Å Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Å Hallgren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - F H G Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - E Murén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - K M Ahlgren
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Lobell
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - G Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Tandre
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - S R Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - P Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - L Rönnblom
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A-L Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Wahlberg
- Department of Endocrinology, Department of Medical and Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - O Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - P Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - J R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - S Bensing
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - K Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - O Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - G R Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Mitchell AL, Bøe Wolff A, MacArthur K, Weaver JU, Vaidya B, Erichsen MM, Darlay R, Husebye ES, Cordell HJ, Pearce SHS. Correction: Linkage Analysis in Autoimmune Addison's Disease: NFATC1 as a Potential Novel Susceptibility Locus. PLoS One 2015; 10:e0138844. [PMID: 26382621 PMCID: PMC4575066 DOI: 10.1371/journal.pone.0138844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|