1
|
Gallo-Orive Á, Moreno-Guzmán M, Sanchez-Paniagua M, Montero-Calle A, Barderas R, Escarpa A. Gold Nanoparticle-Decorated Catalytic Micromotor-Based Aptassay for Rapid Electrochemical Label-Free Amyloid-β42 Oligomer Determination in Clinical Samples from Alzheimer's Patients. Anal Chem 2024; 96:5509-5518. [PMID: 38551492 PMCID: PMC11007680 DOI: 10.1021/acs.analchem.3c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Micromotor (MM) technology offers a valuable and smart on-the-move biosensing microscale approach in clinical settings where sample availability is scarce in the case of Alzheimer's disease (AD). Soluble amyloid-β protein oligomers (AβO) (mainly AβO42) that circulate in biological fluids have been recognized as a molecular biomarker and therapeutic target of AD due to their high toxicity, and they are correlated much more strongly with AD compared to the insoluble Aβ monomers. A graphene oxide (GO)-gold nanoparticles (AuNPs)/nickel (Ni)/platinum nanoparticles (PtNPs) micromotors (MMGO-AuNPs)-based electrochemical label-free aptassay is proposed for sensitive, accurate, and rapid determination of AβO42 in complex clinical samples such as brain tissue, cerebrospinal fluid (CSF), and plasma from AD patients. An approach that implies the in situ formation of AuNPs on the GO external layer of tubular MM in only one step during MM electrosynthesis was performed (MMGO-AuNPs). The AβO42 specific thiolated-aptamer (AptAβO42) was immobilized in the MMGO-AuNPs via Au-S interaction, allowing for the selective recognition of the AβO42 (MMGO-AuNPs-AptAβO42-AβO42). AuNPs were smartly used not only to covalently bind a specific thiolated-aptamer for the design of a label-free electrochemical aptassay but also to improve the final MM propulsion performance due to their catalytic activity (approximately 2.0× speed). This on-the-move bioplatform provided a fast (5 min), selective, precise (RSD < 8%), and accurate quantification of AβO42 (recoveries 94-102%) with excellent sensitivity (LOD = 0.10 pg mL-1) and wide linear range (0.5-500 pg mL-1) in ultralow volumes of the clinical sample of AD patients (5 μL), without any dilution. Remarkably, our MM-based bioplatform demonstrated the competitiveness for the determination of AβO42 in the target samples against the dot blot analysis, which requires more than 14 h to provide qualitative results only. It is also important to highlight its applicability to the potential analysis of liquid biopsies as plasma and CSF samples, improving the reliability of the diagnosis given the heterogeneity and temporal complexity of neurodegenerative diseases. The excellent results obtained demonstrate the analytical potency of our approach as a future tool for clinical/POCT (Point-of-care testing) routine scenarios.
Collapse
Affiliation(s)
- Álvaro Gallo-Orive
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28802 Alcalá de Henares, Madrid, Spain
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - María Moreno-Guzmán
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - Marta Sanchez-Paniagua
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Carlos III Health
Institute, 28220 Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Carlos III Health
Institute, 28220 Majadahonda, Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28802 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. Del Rio”, University of Alcalá, 28802 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Henderson F, Brem S, Hussain J, Buch L, Maloney E, Singhal S, Lee JYK. Second window indocyanine green localizes CNS lymphoma in real time in the operating room: report of two cases. Br J Neurosurg 2023; 37:619-623. [PMID: 32009484 PMCID: PMC10997215 DOI: 10.1080/02688697.2020.1716945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Intraoperative distinction of lesional tissue versus normal brain parenchyma can be difficult in neurosurgical oncology procedures. We report the successful, real-time visualization of central nervous system (CNS) lymphoma using the 'Second Window Indocyanine Green' (SWIG) method for two patients who underwent craniotomy for pathology that was determined to be large B cell lymphoma. Indocyanine green (ICG), when administered intravenously the day prior to cranial surgery, is a re-purposed fluorophore that may afford safe, immediate visual confirmation of on-target tissue resection, thereby providing a valuable adjunct to intraoperative navigation and decreasing reliance on frozen pathology analysis. These first reported cases of SWIG for lymphoma in the CNS indicate that further study of fluorophores to improve biopsy targeting and yield is warranted.
Collapse
Affiliation(s)
- Fraser Henderson
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Steven Brem
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jasmin Hussain
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Love Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen Maloney
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023; 15:300. [PMID: 36612296 PMCID: PMC9818631 DOI: 10.3390/cancers15010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuming Sun
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
4
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
5
|
|
6
|
Georges J, Qi X, Liu X, Zhou Y, Woolf EC, Valeri A, Al-Atrache Z, Belykh E, Feuerstein BG, Preul M, Scheck AC, Reiser M, Anderson T, Gopez J, Appelt D, Yocom S, Eschbacher J, Yan H, Nakaji P. Provision of rapid and specific ex vivo diagnosis of central nervous system lymphoma from rodent xenograft biopsies by a fluorescent aptamer. J Neurosurg 2021; 134:1783-1790. [PMID: 32707545 DOI: 10.3171/2020.4.jns192476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Differentiating central nervous system (CNS) lymphoma from other intracranial malignancies remains a clinical challenge in surgical neuro-oncology. Advances in clinical fluorescence imaging contrast agents and devices may mitigate this challenge. Aptamers are a class of nanomolecules engineered to bind cellular targets with antibody-like specificity in a fraction of the staining time. Here, the authors determine if immediate ex vivo fluorescence imaging with a lymphoma-specific aptamer can rapidly and specifically diagnose xenografted orthotopic human CNS lymphoma at the time of biopsy. METHODS The authors synthesized a fluorescent CNS lymphoma-specific aptamer by conjugating a lymphoma-specific aptamer with Alexa Fluor 488 (TD05-488). They modified human U251 glioma cells and Ramos lymphoma cells with a lentivirus for constitutive expression of red fluorescent protein and implanted them intracranially into athymic nude mice. Three to 4 weeks postimplantation, acute slices (biopsies, n = 28) from the xenografts were collected, placed in aptamer solution, and imaged with a Zeiss fluorescence microscope. Three aptamer staining concentrations (0.3, 1.0, and 3.0 μM) and three staining times (5, 10, and 20 minutes) followed by a 1-minute wash were tested. A file of randomly selected images was distributed to neurosurgeons and neuropathologists, and their ability to distinguish CNS lymphoma from negative controls was assessed. RESULTS The three staining times and concentrations of TD05-488 were tested to determine the diagnostic accuracy of CNS lymphoma within a frozen section time frame. An 11-minute staining protocol with 1.0-μM TD05-488 was most efficient, labeling 77% of positive control lymphoma cells and less than 1% of negative control glioma cells (p < 0.001). This protocol permitted clinicians to positively identify all positive control lymphoma images without misdiagnosing negative control images from astrocytoma and normal brain. CONCLUSIONS Ex vivo fluorescence imaging is an emerging technique for generating rapid histopathological diagnoses. Ex vivo imaging with a novel aptamer-based fluorescent nanomolecule could provide an intraoperative tumor-specific diagnosis of CNS lymphoma within 11 minutes of biopsy. Neurosurgeons and neuropathologists interpreted images generated with this molecular probe with high sensitivity and specificity. Clinical application of TD05-488 may permit specific intraoperative diagnosis of CNS lymphoma in a fraction of the time required for antibody staining.
Collapse
Affiliation(s)
- Joseph Georges
- 7Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- 8Department of Neurosurgery, Cooper University Health Care, Camden, New Jersey
- 9Department of Neurosurgery
| | - Xiaodong Qi
- 4The Biodesign Institute
- 5School of Molecular Sciences
| | | | - Yu Zhou
- 4The Biodesign Institute
- 5School of Molecular Sciences
| | | | - Amber Valeri
- 7Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- 8Department of Neurosurgery, Cooper University Health Care, Camden, New Jersey
| | - Zein Al-Atrache
- 7Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | | | - Burt G Feuerstein
- 2Neurology, and
- 3Child Health, University of Arizona, College of Medicine, Phoenix, Arizona
| | - Mark Preul
- 9Department of Neurosurgery
- 10Neuro-Oncology Research
| | - Adrienne C Scheck
- 3Child Health, University of Arizona, College of Medicine, Phoenix, Arizona
| | - Mark Reiser
- 6School of Mathematics and Statistical Sciences, Arizona State University, Tempe, Arizona
| | | | - Jonas Gopez
- 12Department of Neurosurgery, Abington Hospital-Jefferson Health, Abington, Pennsylvania
| | - Denah Appelt
- 7Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Steven Yocom
- 7Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- 8Department of Neurosurgery, Cooper University Health Care, Camden, New Jersey
| | - Jennifer Eschbacher
- 11Division of Neuropathology, Barrow Neurological Institute, Phoenix, Arizona; and
| | | | | |
Collapse
|
7
|
Amero P, Khatua S, Rodriguez-Aguayo C, Lopez-Berestein G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers (Basel) 2020; 12:cancers12102889. [PMID: 33050158 PMCID: PMC7600320 DOI: 10.3390/cancers12102889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
A relatively new paradigm in cancer therapeutics is the use of cancer cell-specific aptamers, both as therapeutic agents and for targeted delivery of anticancer drugs. After the first therapeutic aptamer was described nearly 25 years ago, and the subsequent first aptamer drug approved, many efforts have been made to translate preclinical research into clinical oncology settings. Studies of aptamer-based technology have unveiled the vast potential of aptamers in therapeutic and diagnostic applications. Among pediatric solid cancers, brain tumors are the leading cause of death. Although a few aptamer-related translational studies have been performed in adult glioblastoma, the use of aptamers in pediatric neuro-oncology remains unexplored. This review will discuss the biology of aptamers, including mechanisms of targeting cell surface proteins, various modifications of aptamer structure to enhance therapeutic efficacy, the current state and challenges of aptamer use in neuro-oncology, and the potential therapeutic role of aptamers in pediatric brain tumors.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| |
Collapse
|
8
|
Lynagh R, Ishak M, Georges J, Lopez D, Osman H, Kakareka M, Boyer B, Goldman HW, Eschbacher J, Preul MC, Nakaji P, Turtz A, Yocom S, Appelt D. Fluorescence-guided stereotactic biopsy: a proof-of-concept study. J Neurosurg 2020. [DOI: 10.3171/2018.11.jns18629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVEAccurate histopathological diagnoses are often necessary for treating neuro-oncology patients. However, stereotactic biopsy (STB), a common method for obtaining suspicious tissue from deep or eloquent brain regions, fails to yield diagnostic tissue in some cases. Failure to obtain diagnostic tissue can delay initiation of treatment and may result in further invasive procedures for patients. In this study, the authors sought to determine if the coupling of in vivo optical imaging with an STB system is an effective method for identification of diagnostic tissue at the time of biopsy.METHODSA minimally invasive fiber optic imaging system was developed by coupling a 0.65-mm-diameter coherent fiber optic fluorescence microendoscope to an STB system. Human U251 glioma cells were transduced for stable expression of blue fluorescent protein (BFP) to produce U251-BFP cells that were utilized for in vitro and in vivo experiments. In vitro, blue fluorescence was confirmed, and tumor cell delineation by fluorescein sodium (FNa) was quantified with fluorescence microscopy. In vivo, transgenic athymic rats implanted with U251-BFP cells (n = 4) were utilized for experiments. Five weeks postimplantation, the rats received 5–10 mg/kg intravenous FNa and underwent craniotomies overlying the tumor implantation site and contralateral normal brain. A clinical STB needle containing our 0.65-mm imaging fiber was passed through each craniotomy and images were collected. Fluorescence images from regions of interest ipsilateral and contralateral to tumor implantation were obtained and quantified.RESULTSLive-cell fluorescence imaging confirmed blue fluorescence from transduced tumor cells and revealed a strong correlation between tumor cells quantified by blue fluorescence and FNa contrast (R2 = 0.91, p < 0.001). Normalized to background, in vivo FNa-mediated fluorescence intensity was significantly greater from tumor regions, verified by blue fluorescence, compared to contralateral brain in all animals (301.7 ± 34.18 relative fluorescence units, p < 0.001). Fluorescence intensity measured from the tumor margin was not significantly greater than that from normal brain (p = 0.89). Biopsies obtained from regions of strong fluorescein contrast were histologically consistent with tumor.CONCLUSIONSThe authors found that in vivo fluorescence imaging with an STB needle containing a submillimeter-diameter fiber optic fluorescence microendoscope provided direct visualization of neoplastic tissue in an animal brain tumor model prior to biopsy. These results were confirmed in vivo with positive control cells and by post hoc histological assessment. In vivo fluorescence guidance may improve the diagnostic yield of stereotactic biopsies.
Collapse
Affiliation(s)
- Robert Lynagh
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Mark Ishak
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Joseph Georges
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Danielle Lopez
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Hany Osman
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts
| | - Michael Kakareka
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Brandon Boyer
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - H. Warren Goldman
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Cooper University Hospital, Camden, New Jersey; and
| | | | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Alan Turtz
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Cooper University Hospital, Camden, New Jersey; and
| | - Steven Yocom
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Cooper University Hospital, Camden, New Jersey; and
| | - Denah Appelt
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
10
|
Belykh E, Patel AA, Miller EJ, Bozkurt B, Yağmurlu K, Woolf EC, Scheck AC, Eschbacher JM, Nakaji P, Preul MC. Probe-based three-dimensional confocal laser endomicroscopy of brain tumors: technical note. Cancer Manag Res 2018; 10:3109-3123. [PMID: 30214304 PMCID: PMC6124793 DOI: 10.2147/cmar.s165980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Confocal laser endomicroscopy (CLE) is used during fluorescence-guided brain tumor surgery for intraoperative microscopy of tumor tissue with cellular resolution. CLE could augment and expedite intraoperative decision-making and potentially aid in diagnosis and removal of tumor tissue. Objective To describe an extension of CLE imaging modality that produces Z-stack images and three-dimensional (3D) pseudocolored volumetric images. Materials and methods Hand-held probe-based CLE was used to collect images from GL261-luc2 gliomas in C57BL/6 mice and from human brain tumor biopsies. The mice were injected with fluorescein sodium (FNa) before imaging. Patients received FNa intraoperatively, and biopsies were imaged immediately in the operating room. Some specimens were counterstained with acridine orange, acriflavine, or Hoechst and imaged on a benchtop confocal microscope. CLE images at various depths were acquired automatically, compiled, rendered into 3D volumes using Fiji software and reviewed by a neuropathologist and neurosurgeons. Results CLE imaging, Z-stack acquisition, and 3D image rendering were performed using 19 mouse gliomas and 31 human tumors, including meningiomas, gliomas, and pituitary adenomas. Volumetric images and Z-stacks provided additional information about fluorescence signal distribution, cytoarchitecture, and the course of abnormal vasculature. Conclusion 3D and Z-stack CLE imaging is a unique new option for live intraoperative endomicroscopy of brain tumors. The 3D images afford an increased spatial understanding of tumor cellular architecture and visualization of related structures compared with two-dimensional images. Future application of specific fluorescent probes could benefit from this rapid in vivo imaging technology for interrogation of brain tumor tissue.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Baran Bozkurt
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Kaan Yağmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric C Woolf
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| |
Collapse
|
11
|
Martirosyan NL, Georges J, Eschbacher JM, Belykh E, Carotenuto A, Spetzler RF, Nakaji P, Preul MC. Confocal scanning microscopy provides rapid, detailed intraoperative histological assessment of brain neoplasms: Experience with 106 cases. Clin Neurol Neurosurg 2018; 169:21-28. [PMID: 29604507 DOI: 10.1016/j.clineuro.2018.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Frozen section histological analysis is currently the mainstay for intraprocedural tissue diagnosis during the resection of intracranial neoplasms and for evaluating tumor margins. However, frozen sections are time-consuming and often do not reveal the histological features needed for final diagnosis when compared with permanent sections. Confocal scanning microscopy (CSM) with certain stains may be a valuable technology that can add rapid and detailed histological assessment advantage for the neurosurgical operating room. This study describes potential advantages of CSM imaging of fresh human brain tumor tissues labeled with acriflavine (AF), acridine orange (AO), cresyl violet (CV), methylene blue (MB), and indocyanine green (ICG) within the neurosurgical operating room facility. PATIENTS AND METHODS Acute slices from orthotopic human intracranial neoplasms were incubated with AF/AO and CV solutions for 10 s and 1 min respectively. Staining was also attempted with MB and ICG. Samples were imaged using a bench-top CSM system. Histopathologic features of corresponding CSM and permanent hematoxylin and eosin images were reviewed for each case. RESULTS Of 106 cases, 30 were meningiomas, 19 gliomas, 13 pituitary adenomas, 9 metastases, 6 schwannomas, 4 ependymomas, and 25 other pathologies. CSM using rapid fluorophores (AF, AO, CV) revealed striking microvascular, cellular and subcellular structures that correlated with conventional histology. By rapidly staining and optically sectioning freshly resected tissue, images were generated for intraoperative consultations in less than one minute. With this technique, an entire resected tissue sample was imaged and digitally stored for tele-pathology and archiving. CONCLUSION CSM of fresh human brain tumor tissue provides clinically meaningful and rapid histopathological assessment much faster than frozen section. With appropriate stains, including specific cellular structure or antibody staining, CSM could improve the timeliness of intraoperative decision-making, and the neurosurgical-pathology workflow during resection of human brain tumors, ultimately improving patient care.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Division of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Joseph Georges
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jennifer M Eschbacher
- Division of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Evgenii Belykh
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | | | - Robert F Spetzler
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Peter Nakaji
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Mark C Preul
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
12
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
13
|
Bauer M, Macdonald J, Henri J, Duan W, Shigdar S. The Application of Aptamers for Immunohistochemistry. Nucleic Acid Ther 2016; 26:120-6. [PMID: 26862683 DOI: 10.1089/nat.2015.0569] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immunohistochemistry has helped to make surgical pathology the "gold" standard for tumor diagnosis. However, given the numerous problems associated with the use of antibodies for the staining of cellular markers in paraffin-embedded tissues, there is a requirement for novel agents that have the advantages of antibodies, but with few of the disadvantages. Aptamers, which are chemical antibodies, are highly specific and sensitive, like their protein counterparts, but display few of the disadvantages. These molecules represent a unique reagent that has the potential to revolutionize the field of histopathological diagnostics. In this study, we present a review of some of the aptamers that have been validated for use in diagnoses and suggest some of the advantages to using these molecules in the future.
Collapse
Affiliation(s)
- Michelle Bauer
- 1 School of Medicine, Deakin University , Geelong, Victoria, Australia
| | - Joanna Macdonald
- 1 School of Medicine, Deakin University , Geelong, Victoria, Australia
| | - Justin Henri
- 1 School of Medicine, Deakin University , Geelong, Victoria, Australia
| | - Wei Duan
- 1 School of Medicine, Deakin University , Geelong, Victoria, Australia
- 2 Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria, Australia
| | - Sarah Shigdar
- 1 School of Medicine, Deakin University , Geelong, Victoria, Australia
- 2 Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria, Australia
| |
Collapse
|
14
|
Morales JM, Skipwith CG, Clark HA. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine. SENSORS 2015; 15:19912-24. [PMID: 26287196 PMCID: PMC4570402 DOI: 10.3390/s150819912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022]
Abstract
Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM.
Collapse
Affiliation(s)
- Jennifer M Morales
- Department of Pharmaceutical Sciences, Northeastern University, 206 The Fenway, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Christopher G Skipwith
- Department of Pharmaceutical Sciences, Northeastern University, 206 The Fenway, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Heather A Clark
- Department of Pharmaceutical Sciences, Northeastern University, 206 The Fenway, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015; 20:11959-80. [PMID: 26133761 PMCID: PMC6331864 DOI: 10.3390/molecules200711959] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/10/2023] Open
Abstract
Aptamers and SELEX (systematic evolution of ligands by exponential enrichment) technology have gained increasing attention over the past 25 years. Despite their functional similarity to protein antibodies, oligonucleotide aptamers have many unique properties that are suitable for clinical applications and industrialization. Aptamers may be superior to antibodies in fields such as biomarker discovery, in vitro and in vivo diagnosis, precisely controlled drug release, and targeted therapy. However, aptamer commercialization has not occurred as quickly as expected, and few aptamer-based products have yet successfully entered clinical and industrial use. Thus, it is important to critically review some technical barriers of aptamer and SELEX technology per se that may impede aptamer development and application. To date, how to rapidly obtain aptamers with superior bioavailability over antibodies remains the key issue. In this review, we discuss different chemical and structural modification strategies aimed to enhance aptamer bioavailability. We also discuss improvements to SELEX process steps to shorten the selection period and improve the SELEX process success rate. Applications in which aptamers are particularly suited and perform differently or superior to antibodies are briefly introduced.
Collapse
|