1
|
Human FoxP Transcription Factors as Tractable Models of the Evolution and Functional Outcomes of Three-Dimensional Domain Swapping. Int J Mol Sci 2021; 22:ijms221910296. [PMID: 34638644 PMCID: PMC8508939 DOI: 10.3390/ijms221910296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
The association of two or more proteins to adopt a quaternary complex is one of the most widespread mechanisms by which protein function is modulated. In this scenario, three-dimensional domain swapping (3D-DS) constitutes one plausible pathway for the evolution of protein oligomerization that exploits readily available intramolecular contacts to be established in an intermolecular fashion. However, analysis of the oligomerization kinetics and thermodynamics of most extant 3D-DS proteins shows its dependence on protein unfolding, obscuring the elucidation of the emergence of 3D-DS during evolution, its occurrence under physiological conditions, and its biological relevance. Here, we describe the human FoxP subfamily of transcription factors as a feasible model to study the evolution of 3D-DS, due to their significantly faster dissociation and dimerization kinetics and lower dissociation constants in comparison to most 3D-DS models. Through the biophysical and functional characterization of FoxP proteins, relevant structural aspects highlighting the evolutionary adaptations of these proteins to enable efficient 3D-DS have been ascertained. Most biophysical studies on FoxP suggest that the dynamics of the polypeptide chain are crucial to decrease the energy barrier of 3D-DS, enabling its fast oligomerization under physiological conditions. Moreover, comparison of biophysical parameters between human FoxP proteins in the context of their minute sequence differences suggests differential evolutionary strategies to favor homoassociation and presages the possibility of heteroassociations, with direct impacts in their gene regulation function.
Collapse
|
2
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
3
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
4
|
Steele HBB, Elmer-Dixon MM, Rogan JT, Ross JBA, Bowler BE. The Human Cytochrome c Domain-Swapped Dimer Facilitates Tight Regulation of Intrinsic Apoptosis. Biochemistry 2020; 59:2055-2068. [PMID: 32428404 PMCID: PMC7291863 DOI: 10.1021/acs.biochem.0c00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidation of cardiolipin (CL) by cytochrome c (cytc) has been proposed to initiate the intrinsic pathway of apoptosis. Domain-swapped dimer (DSD) conformations of cytc have been reported both by our laboratory and by others. The DSD is an alternate conformer of cytc that could oxygenate CL early in apoptosis. We demonstrate here that the cytc DSD has a set of properties that would provide tighter regulation of the intrinsic pathway. We show that the human DSD is kinetically more stable than horse and yeast DSDs. Circular dichroism data indicate that the DSD has a less asymmetric heme environment, similar to that seen when the monomeric protein binds to CL vesicles at high lipid:protein ratios. The dimer undergoes the alkaline conformational transition near pH 7.0, 2.5 pH units lower than that of the monomer. Data from fluorescence correlation spectroscopy and fluorescence anisotropy suggest that the alkaline transition of the DSD may act as a switch from a high affinity for CL nanodiscs at pH 7.4 to a much lower affinity at pH 8.0. Additionally, the peroxidase activity of the human DSD increases 7-fold compared to that of the monomer at pH 7 and 8, but by 14-fold at pH 6 when mixed Met80/H2O ligation replaces the lysine ligation of the alkaline state. We also present data that indicate that cytc binding shows a cooperative effect as the concentration of cytc is increased. The DSD appears to have evolved into a pH-inducible switch that provides a means to control activation of apoptosis near pH 7.0.
Collapse
Affiliation(s)
- Harmen B. B. Steele
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Margaret M. Elmer-Dixon
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - James T. Rogan
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - J. B. Alexander Ross
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
5
|
Nagao S, Suda A, Kobayashi H, Shibata N, Higuchi Y, Hirota S. Thermodynamic Control of Domain Swapping by Modulating the Helical Propensity in the Hinge Region of Myoglobin. Chem Asian J 2020; 15:1743-1749. [DOI: 10.1002/asia.202000307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Satoshi Nagao
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
- Present address: Graduate School of Life ScienceUniversity of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Ayaka Suda
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Hisashi Kobayashi
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Naoki Shibata
- Graduate School of Life ScienceUniversity of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Yoshiki Higuchi
- Graduate School of Life ScienceUniversity of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Shun Hirota
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
6
|
Klünemann T, Henke S, Blankenfeldt W. The crystal structure of the heme d 1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo. Acta Crystallogr D Struct Biol 2020; 76:375-384. [PMID: 32254062 PMCID: PMC7137109 DOI: 10.1107/s2059798320003101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/05/2020] [Indexed: 11/10/2022] Open
Abstract
Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.
Collapse
Affiliation(s)
- Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Steffi Henke
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Yang H, Yamanaka M, Nagao S, Yasuhara K, Shibata N, Higuchi Y, Hirota S. Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140265. [PMID: 31437585 DOI: 10.1016/j.bbapap.2019.140265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Many c-type cytochromes (cyts) can form domain-swapped oligomers. The positively charged Hydrogenobacter thermophilus (HT) cytochrome (cyt) c552 forms domain-swapped oligomers during expression in the Escherichia coli (E. coli) expression system, but the factors influencing the oligomerization remain unrevealed. Here, we found that the dimer of the negatively charged Shewanella violacea (SV) cyt c5 exhibits a domain-swapped structure, in which the N-terminal helix is exchanged between protomers, similar to the structures of the HT cyt c552 and Pseudomonas aeruginosa (PA) cyt c551 domain-swapped dimers. Positively charged horse cyt c and HT cyt c552 domain swapped during expression in E. coli, whereas negatively charged PA cyt c551 and SV cyt c5 did not. Oligomers were formed during expression in E. coli for HT cyt c552 attached to either a co- or post-translational signal peptide for transportation through the cytoplasm membrane, but not for PA cyt c551 attached to either signal peptide. HT cyt c552 formed oligomers in E. coli in the presence and absence of rare codons. More oligomers were obtained from the in vitro folding of horse cyt c and HT cyt c552 by the addition of negatively charged liposomes during folding, whereas the amount of oligomers for the in vitro folding of PA cyt c551 and SV cyt c5 did not change significantly by the addition. These results indicate that the protein surface charge affects the oligomerization of c-type cyts in cells; positively charged c-type cyts assemble on a negatively charged membrane, inducing formation of domain-swapped oligomers during folding.
Collapse
Affiliation(s)
- Hongxu Yang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
8
|
Hirota S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 2019; 194:170-179. [DOI: 10.1016/j.jinorgbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
9
|
Oda A, Nagao S, Yamanaka M, Ueda I, Watanabe H, Uchihashi T, Shibata N, Higuchi Y, Hirota S. Construction of a Triangle-Shaped Trimer and a Tetrahedron Using an α-Helix-Inserted Circular Permutant of Cytochrome c
555. Chem Asian J 2018; 13:964-967. [DOI: 10.1002/asia.201800252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Akiya Oda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ikki Ueda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Hiroki Watanabe
- Department of Physics; Nagoya University; Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Takayuki Uchihashi
- Department of Physics; Nagoya University; Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Naoki Shibata
- Department of Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Yoshiki Higuchi
- Department of Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
10
|
Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. J Biol Inorg Chem 2017; 23:7-25. [DOI: 10.1007/s00775-017-1506-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
|
11
|
Zhang M, Nakanishi T, Yamanaka M, Nagao S, Yanagisawa S, Shomura Y, Shibata N, Ogura T, Higuchi Y, Hirota S. Rational Design of Domain-Swapping-Based c
-Type Cytochrome Heterodimers by Using Chimeric Proteins. Chembiochem 2017; 18:1712-1715. [DOI: 10.1002/cbic.201700219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Mohan Zhang
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsukasa Nakanishi
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science; University of Hyogo; RSC-UH Leading Program Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Yasuhito Shomura
- Graduate School of Science and Engineering; Ibaraki University; 4-12-1 Nakanarusawa Hitachi Ibaraki 316-8511 Japan
| | - Naoki Shibata
- Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Takashi Ogura
- Graduate School of Life Science; University of Hyogo; RSC-UH Leading Program Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
12
|
Yamanaka M, Hoshizumi M, Nagao S, Nakayama R, Shibata N, Higuchi Y, Hirota S. Formation and carbon monoxide-dependent dissociation of Allochromatium vinosum cytochrome c' oligomers using domain-swapped dimers. Protein Sci 2017; 26:464-474. [PMID: 27883268 PMCID: PMC5326568 DOI: 10.1002/pro.3090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c' from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four-helix bundle structure containing a covalently bound five-coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer-monomer transition according to the absence and presence of CO. Herein, domain-swapped dimeric AVCP was constructed and utilized to form a tetramer and high-order oligomers. The X-ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain-swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain-swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit-subunit interactions at the interfaces of the domain-swapped dimer and monomer subunits in the tetramer were also similar to the subunit-subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain-swapped dimer and two monomers upon CO binding. Without monomers, the domain-swapped dimers formed tetramers, hexamers, and higher-order oligomers in the absence of CO, whereas the oligomers dissociated to domain-swapped dimers in the presence of CO, demonstrating that the domain-swapped dimer maintains the CO-induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer-monomer transition protein.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Makoto Hoshizumi
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Satoshi Nagao
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Ryoko Nakayama
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| | - Naoki Shibata
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Yoshiki Higuchi
- Department of Life ScienceGraduate School of Life Science, University of Hyogo3‐2‐1 Koto, Kamigori‐cho, Ako‐gunHyogo678‐1297Japan
- RIKEN SPring‐8 Center1‐1‐1 Koto, Sayo‐cho, Sayo‐gunHyogo679‐5148Japan
| | - Shun Hirota
- Graduate School of Materials ScienceNara Institute of Science and Technology8916‐5 Takayama, IkomaNara630‐0192Japan
| |
Collapse
|
13
|
Effect of methionine80 heme coordination on domain swapping of cytochrome c. J Biol Inorg Chem 2017; 22:705-712. [DOI: 10.1007/s00775-017-1446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
14
|
McClelland LJ, Steele HBB, Whitby FG, Mou TC, Holley D, Alexander Ross JB, Sprang SR, Bowler BE. Cytochrome c Can Form a Well-Defined Binding Pocket for Hydrocarbons. J Am Chem Soc 2016; 138:16770-16778. [PMID: 27990813 PMCID: PMC5564421 DOI: 10.1021/jacs.6b10745] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytochrome c can acquire peroxidase activity when it binds to cardiolipin in mitochondrial membranes. The resulting oxygenation of cardiolipin by cytochrome c provides an early signal for the onset of apoptosis. The structure of this enzyme-substrate complex is a matter of considerable debate. We present three structures at 1.7-2.0 Å resolution of a domain-swapped dimer of yeast iso-1-cytochrome c with the detergents, CYMAL-5, CYMAL-6, and ω-undecylenyl-β-d-maltopyranoside, bound in a channel that places the hydrocarbon moieties of these detergents next to the heme. The heme is poised for peroxidase activity with water bound in place of Met80, which serves as the axial heme ligand when cytochrome c functions as an electron carrier. The hydroxyl group of Tyr67 sits 3.6-4.0 Å from the nearest carbon of the detergents, positioned to act as a relay in radical abstraction during peroxidase activity. Docking studies with linoleic acid, the most common fatty acid component of cardiolipin, show that C11 of linoleic acid can sit adjacent to Tyr67 and the heme, consistent with the oxygenation pattern observed in lipidomics studies. The well-defined hydrocarbon binding pocket provides atomic resolution evidence for the extended lipid anchorage model for cytochrome c/cardiolipin binding. Dimer dissociation/association kinetics for yeast versus equine cytochrome c indicate that formation of mammalian cytochrome c dimers in vivo would require catalysis. However, the dimer structure shows that only a modest deformation of monomeric cytochrome c would suffice to form the hydrocarbon binding site occupied by these detergents.
Collapse
Affiliation(s)
- Levi J. McClelland
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana, 59812, United States
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Harmen B. B. Steele
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana, 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, 84112, United States
| | - Tung-Chung Mou
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - David Holley
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - J. B. Alexander Ross
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana, 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Stephen R. Sprang
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana, 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, United States
| |
Collapse
|
15
|
Hayashi Y, Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Sci Rep 2016; 6:19334. [PMID: 26838805 PMCID: PMC4738263 DOI: 10.1038/srep19334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
Knowledge on domain swapping in vitro is increasing, but domain swapping may not occur regularly in vivo, and its information in cells is limited. Herein, we show that domain-swapped oligomers of a thermostable c-type cytochrome, Hydrogenobacter thermophilus cyt c552, are formed in E. coli which expresses cyt c552. The region containing the N-terminal α-helix and heme was domain-swapped between protomers in the dimer formed in E. coli. The amount of cyt c552 oligomers increased in E. coli as the cyt c552 concentration was increased, whereas that of high-order oligomers decreased in the order of decrease in protein stability, indicating that domain swapping decreases in cells when the protein stability decreases. Apo cyt c552 was detected in the cyt c552 oligomer formed in E. coli, but not in that of the A5F/M11V/Y32F/Y41E/I76V mutant. The cyt c552 oligomer containing its apo protein may form at the periplasm, since the apo protein detected by mass measurements did not contain the signal peptide. These results show that domain-swapped cyt c552 oligomers were formed in E. coli, owing to the stability of the transient oligomer containing the apo protein before heme attachment. This is an indication that exceedingly stable proteins may have disadvantages forming domain-swapped oligomers in cells.
Collapse
Affiliation(s)
- Yugo Hayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
16
|
Transient misfolding dominates multidomain protein folding. Nat Commun 2015; 6:8861. [PMID: 26572969 PMCID: PMC4660218 DOI: 10.1038/ncomms9861] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated. Single molecule kinetics investigations and molecular simulations are useful tools in elucidating protein assembly mechanisms. Here, the authors use these to show that even naturally occurring tandem repeats undergo transient misfolding and that assembly is much more complex than we previously understood.
Collapse
|
17
|
Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S. Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO 4 cluster in the internal cavity. Chem Sci 2015; 6:7336-7342. [PMID: 28791095 PMCID: PMC5519777 DOI: 10.1039/c5sc02428e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Three domain-swapped cytochrome cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity.
Protein nanostructures have been gaining in interest, along with developments in new methods for construction of novel nanostructures. We have previously shown that c-type cytochromes and myoglobin form oligomers by domain swapping. Herein, we show that a four-helix bundle protein cyt cb562, with the cyt b562 heme attached to the protein moiety by two Cys residues insertion, forms a domain-swapped dimer. Dimeric cyt cb562 did not dissociate to monomers at 4 °C, whereas dimeric cyt b562 dissociated under the same conditions, showing that heme attachment to the protein moiety stabilizes the domain-swapped structure. According to X-ray crystallographic analysis of dimeric cyt cb562, the two helices in the N-terminal region of one protomer interacted with the other two helices in the C-terminal region of the other protomer, where Lys51–Asp54 served as a hinge loop. The heme coordination structure of the dimer was similar to that of the monomer. In the crystal, three domain-swapped cyt cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity. The Zn–SO4 cluster consisted of fifteen Zn2+ and seven SO42– ions, whereas six additional Zn2+ ions were detected inside the cavity. The cage structure was stabilized by coordination of the amino acid side chains of the dimers to the Zn2+ ions and connection of two four-helix bundle units through the conformation-adjustable hinge loop. These results show that domain swapping can be applied in the construction of unique protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Mai Kuribayashi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Satoshi Nagao
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Yasuhito Shomura
- Graduate School of Science and Engineering , Ibaraki University , 4-12-1, Nakanarusawa , Hitachi , Ibaraki 316-8511 , Japan
| | - Yoshiki Higuchi
- Department of Life Science , Graduate School of Life Science , University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan.,RIKEN SPring-8 Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Shun Hirota
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| |
Collapse
|
18
|
Ren C, Nagao S, Yamanaka M, Komori H, Shomura Y, Higuchi Y, Hirota S. Oligomerization enhancement and two domain swapping mode detection for thermostable cytochrome c552via the elongation of the major hinge loop. MOLECULAR BIOSYSTEMS 2015; 11:3218-21. [DOI: 10.1039/c5mb00545k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-order oligomers increased whereas N-terminal domain swapping and C-terminal domain swapping were elucidated by the insertion of Gly residues at the major hinge loop of cytochrome c552.
Collapse
Affiliation(s)
- Chunguang Ren
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | - Satoshi Nagao
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | | | - Yasuhito Shomura
- Department of Life Science
- Graduate School of Life Science
- University of Hyogo
- Hyogo 678-1297
- Japan
| | - Yoshiki Higuchi
- Department of Life Science
- Graduate School of Life Science
- University of Hyogo
- Hyogo 678-1297
- Japan
| | - Shun Hirota
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| |
Collapse
|