1
|
van Heule M, El-Sheikh Ali H, Monteiro HF, Scoggin K, Fedorka C, Weimer BC, Ball B, Daels P, Dini P. Characterization of the equine placental microbial population during nocardioform placentitis. Theriogenology 2024; 225:172-179. [PMID: 38810343 DOI: 10.1016/j.theriogenology.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nocardioform placentitis is a poorly understood disease of equine late gestation. The presence of nocardioform, filamentous branching gram-positive bacteria, has been linked to the disease, with Crossiella equi, Amycolatopsis spp., and Streptomyces spp. being the most frequently identified bacteria. However, these bacteria are not found in all clinical cases in addition to being isolated from healthy, normal postpartum placentas. To better understand this form of placentitis, we analyzed the microbial composition in the equine placenta (chorioallantois) of both healthy postpartum (control; n = 11) and nocardioform-affected samples (n = 22) using 16S rDNA sequencing. We found a lower Shannon index in nocardioform samples, a higher Chao1 index in nocardioform samples, and a difference in beta diversity between control and nocardioform samples (p < 0.05), suggesting the presence of dysbiosis during the disease. In the majority of the NP samples (77 %), one of the following genera-Amycolatopsis, Crossiella, Lentzea, an unidentified member of the Pseudonocardiaceae family, Mycobacterium, or Enterococcus -represented over 70 % of the relative abundance. Overall, the data suggest that a broader spectrum of potential opportunistic pathogens could be involved in nocardioform placentitis, extending beyond the traditionally recognized bacteria, resulting in a similar histomorphological profile.
Collapse
Affiliation(s)
- Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, 9800, Belgium
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Hugo Fernando Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Carleigh Fedorka
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, 9800, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Hockney R, Orr CH, Waring GJ, Christiaens I, Taylor G, Cummings SP, Robson SC, Nelson A. Formalin-Fixed Paraffin-Embedded (FFPE) samples are not a beneficial replacement for frozen tissues in fetal membrane microbiota research. PLoS One 2022; 17:e0265441. [PMID: 35298530 PMCID: PMC8929612 DOI: 10.1371/journal.pone.0265441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Formalin-Fixed Paraffin-Embedded (FFPE) tissues are routinely collected, archived, and used for clinical diagnosis, including maternal and neonatal health. Applying FFPE samples to microbiota research would be beneficial to reduce preparation, storage and costs associated with limited available frozen samples. This research aims to understand if FFPE fetal membrane samples are comparable to frozen tissues, which are the current gold standard for DNA microbiota analysis. Extracted DNA from nine matched paired patients were sequenced by Illumina sequencing of the V4 16S rRNA gene region. This included duplicate frozen amnion and chorion fetal membrane rolls or FFPE combined amniochorionic samples. Negative controls of surrounding wax blocks and DNA extraction reagents were processed alongside samples using identical methods. DNA quality and quantity was assessed by NanoDrop, agarose gel electrophoresis and Bioanalyzer. Decontam and SourceTracker were integrated into microbiota analysis to identify the presence of contaminating sources. The bacterial profile and nine genera differed between FFPE and frozen fetal membranes. There were no differences in bacterial profiles between FFPE samples and corresponding wax negative controls, with 49% of bacteria in FFPE fetal membrane samples matched to the source origin of paraffin wax, and 40% originating from DNA extraction reagent sources. FFPE samples displayed high fragmentation and low quantity of extracted DNA compared to frozen samples. The microbiota of FFPE fetal membrane samples is influenced by processing methods, with the inability to differentiate between the microbiota of the tissue sample and the surrounding wax block. Illumina sequencing results of FFPE and frozen fetal membrane samples should not be compared using the methods employed here. Variation could be influenced by limitations including storage time, DNA extraction and purification methods. To utilise FFPE fetal membrane samples in microbiota research then contamination prevention and detection methods must be included into optimised and standardised protocols, with recommendations presented here.
Collapse
Affiliation(s)
- Rochelle Hockney
- School of Health, Leeds Beckett University, Leeds, United Kingdom
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, John Dixon Lane, Darlington, United Kingdom
- * E-mail:
| | - Caroline H. Orr
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, John Dixon Lane, Darlington, United Kingdom
| | - Gareth J. Waring
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Inge Christiaens
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Gillian Taylor
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, John Dixon Lane, Darlington, United Kingdom
| | - Stephen P. Cummings
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, John Dixon Lane, Darlington, United Kingdom
| | - Stephen C. Robson
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| |
Collapse
|
3
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
El-Sheikh Ali H, Loux SC, Kennedy L, Scoggin KE, Dini P, Fedorka CE, Kalbfleisch TS, Esteller-Vico A, Horohov DW, Erol E, Carter CN, Smith JL, Ball BA. Transcriptomic analysis of equine chorioallantois reveals immune networks and molecular mechanisms involved in nocardioform placentitis. Vet Res 2021; 52:103. [PMID: 34238364 PMCID: PMC8268225 DOI: 10.1186/s13567-021-00972-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Nocardioform placentitis (NP) continues to result in episodic outbreaks of abortion and preterm birth in mares and remains a poorly understood disease. The objective of this study was to characterize the transcriptome of the chorioallantois (CA) of mares with NP. The CA were collected from mares with confirmed NP based upon histopathology, microbiological culture and PCR for Amycolatopsis spp. Samples were collected from the margin of the NP lesion (NPL, n = 4) and grossly normal region (NPN, n = 4). Additionally, CA samples were collected from normal postpartum mares (Control; CRL, n = 4). Transcriptome analysis identified 2892 differentially expressed genes (DEGs) in NPL vs. CRL and 2450 DEGs in NPL vs. NPN. Functional genomics analysis elucidated that inflammatory signaling, toll-like receptor signaling, inflammasome activation, chemotaxis, and apoptosis pathways are involved in NP. The increased leukocytic infiltration in NPL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP3, and MMP8) and apoptosis-related genes, such as caspases (CASP3 and CASP7), which could explain placental separation associated with NP. Also, NP was associated with downregulation of several placenta-regulatory genes (ABCG2, GCM1, EPAS1, and NR3C1), angiogenesis-related genes (VEGFA, FLT1, KDR, and ANGPT2), and glucose transporter coding genes (GLUT1, GLUT10, and GLUT12), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could elucidate placental insufficiency accompanying NP. In conclusion, our findings revealed for the first time, the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during NP, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shavahn C Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Laura Kennedy
- UK Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, 40546, USA
| | - Kirsten E Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Carleigh E Fedorka
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Theodore S Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | | | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Erdal Erol
- UK Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, 40546, USA
| | - Craig N Carter
- UK Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, 40546, USA
| | - Jackie L Smith
- UK Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, 40546, USA
| | - Barry A Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
5
|
Fedorka CE, Scoggin KE, El-Sheikh Ali H, Loux SC, Dini P, Troedsson MHT, Ball BA. Interleukin-6 pathobiology in equine placental infection. Am J Reprod Immunol 2021; 85:e13363. [PMID: 33098605 DOI: 10.1111/aji.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Ascending placentitis is the leading cause of abortion in the horse. Interleukin (IL)-6 is considered predictive of placental infection in other species, but little is understood regarding its role in the pathophysiology of ascending placentitis. METHOD OF STUDY Sub-acute ascending placentitis was induced via trans-cervical inoculation of S zooepidemicus, and various fluids/serum/tissues collected 8 days later. Concentrations of IL-6 were detected within fetal fluids and serum in inoculated (n = 6) and control (n = 6) mares. RNASeq was performed on the placenta (endometrium and chorioallantois) to assess transcripts relating to IL-6 pathways. IHC was performed for immunolocalization of IL-6 receptor (IL-6R) in the placenta. RESULTS IL-6 concentrations increased in allantoic fluid following inoculation, with a trend toward an increase in amniotic fluid. Maternal serum IL-6 was increased in inoculated animals, while no changes were noted in fetal serum. mRNA expression of IL-6-related transcripts within the chorioallantois indicates that IL-6 is activating the classical JAK/STAT pathway, thereby acting as anti-inflammatory, anti-apoptotic, and pro-survival. The IL-6R was expressed within the chorioallantois, indicating a paracrine signaling pathway of maternal IL-6 to fetal IL-6R. CONCLUSION IL-6 plays a crucial role in the placental response to induction of sub-acute equine ascending placentitis, and this could be noted in amniotic fluid, allantoic fluid, and maternal serum. Additionally, IL-6 is acting as anti-inflammatory in this disease, potentially altering disease progression, impeding abortion signals, and assisting with the production of a viable neonate.
Collapse
Affiliation(s)
- Carleigh E Fedorka
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kirsten E Scoggin
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Hossam El-Sheikh Ali
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Department of Theriogenology, University of Mansoura, Dakahlia, Egypt
| | - Shavahn C Loux
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Pouya Dini
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Department of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mats H T Troedsson
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Barry A Ball
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
El-Sheikh Ali H, Dini P, Scoggin K, Loux S, Fedorka C, Boakari Y, Norris J, Esteller-Vico A, Kalbfleisch T, Ball B. Transcriptomic analysis of equine placenta reveals key regulators and pathways involved in ascending placentitis†. Biol Reprod 2020; 104:638-656. [PMID: 33345276 DOI: 10.1093/biolre/ioaa209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
Improved understanding of the molecular mechanisms underlying ascending equine placentitis holds the potential for the development of new diagnostic tools and therapies to forestall placentitis-induced preterm labor. The current study characterized the equine placental transcriptome (chorioallantois [CA] and endometrium [EN]) during placentitis (placentitis group, n = 6) in comparison to gestationally-matched controls (control group, n = 6). Transcriptome analysis identified 2953 and 805 differentially expressed genes in CA and EN during placentitis, respectively. Upstream regulator analysis revealed the central role of toll-like receptors (TLRs) in triggering the inflammatory signaling, and consequent immune-cell chemotaxis. Placentitis was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, and MMP9) and apoptosis-related genes such as caspases (CASP3, CASP4, and CASP7) in CA. Also, placentitis was associated with downregulation of transcripts coding for proteins essential for placental steroidogenesis (SRD5A1 and AKR1C1), progestin signaling (PGRMC1 and PXR) angiogenesis (VEGFA, VEGFR2, and VEGFR3), and nutrient transport (GLUT12 and SLC1A4), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could explain placental insufficiency during placentitis. Placentitis was also associated with aberrant expression of several placenta-regulatory genes, such as PLAC8, PAPPA, LGALS1, ABCG2, GCM1, and TEPP, which could negatively affect placental functions. In conclusion, our findings revealed for the first time the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during equine placentitis, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kirsten Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shavahn Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Carleigh Fedorka
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Yatta Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jamie Norris
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alejandro Esteller-Vico
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Department of Biomedical and Diagnostic Sciences, University of Tennessee, USA
| | - Theodore Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Barry Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Parris KM, Amabebe E, Cohen MC, Anumba DO. Placental microbial-metabolite profiles and inflammatory mechanisms associated with preterm birth. J Clin Pathol 2020; 74:10-18. [PMID: 32796048 DOI: 10.1136/jclinpath-2020-206536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
There is growing emphasis on the potential significance of the placental microbiome and microbiome-metabolite interactions in immune responses and subsequent pregnancy outcome, especially in relation to preterm birth (PTB). This review discusses in detail the pathomechanisms of placental inflammatory responses and the resultant maternal-fetal allograft rejection in both microbial-induced and sterile conditions. It also highlights some potential placental-associated predictive markers of PTB for future investigation. The existence of a placental microbiome remains debatable. Therefore, an overview of our current understanding of the state and role of the placental microbiome (if it exists) and metabolome in human pregnancy is also provided. We critical evaluate the evidence for a placental microbiome, discuss its functional capacity through the elaborated metabolic products and also describe the consequent and more established fetomaternal inflammatory responses that stimulate the pathway to preterm premature rupture of membranes, preterm labour and spontaneous PTB.
Collapse
Affiliation(s)
- Kerry M Parris
- Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - Marta C Cohen
- Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Histopathology, Sheffield Childrens Hospital NHS Foundation Trust, Sheffield, UK
| | - Dilly O Anumba
- Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
9
|
Fetal membrane bacterial load is increased in histologically confirmed inflammatory chorioamnionitis: A retrospective cohort study. Placenta 2020; 91:43-51. [PMID: 32174306 DOI: 10.1016/j.placenta.2020.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION It is widely debated whether fetal membranes possess a genuine microbiome, and if bacterial presence and load is linked to inflammation. Chorioamnionitis is an inflammation of the fetal membranes. This research focussed on inflammatory diagnosed histological chorioamnionitis (HCA) and aimed to determine whether the bacterial load in fetal membranes correlates to inflammatory response, including histological staging and inflammatory markers in HCA. METHODS Fetal membrane samples were collected from patients with preterm spontaneous labour and histologically phenotyped chorioamnionitis (HCA; n = 12), or preterm (n = 6) and term labour without HCA (n = 6). The bacterial profile of fetal membranes was analysed by sequencing the V4 region of the 16S rRNA gene. Bacterial load was determined using qPCR copy number/mg of tissue. The association between bacterial load and bacterial profile composition was assessed using correlation analysis. RESULTS Bacterial load was significantly greater within HCA amnion (p = 0.002) and chorion (p = 0.042), compared to preterm birth without HCA. Increased bacterial load was positively correlated with increased histological staging (p = 0.001) and the expression of five inflammatory markers; IL8, TLR1, TLR2, LY96 and IRAK2 (p=<0.050). Bacterial profiles were significantly different between membranes with and without HCA in amnion (p = 0.012) and chorion (p = 0.001), but no differences between specific genera were detected. DISCUSSION Inflammatory HCA is associated with infection and increased bacterial load in a dose response relationship. Bacterial load is positively correlated with HCA severity and the TLR signalling pathway. Further research should investigate the bacterial load threshold required to generate an inflammatory response in HCA.
Collapse
|
10
|
Konwar C, Price EM, Wang LQ, Wilson SL, Terry J, Robinson WP. DNA methylation profiling of acute chorioamnionitis-associated placentas and fetal membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin 2018; 11:63. [PMID: 30373633 PMCID: PMC6205793 DOI: 10.1186/s13072-018-0234-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Placental inflammation, often presenting as acute chorioamnionitis (aCA), is commonly associated with preterm birth. Preterm birth can have both immediate and long-term adverse effects on the health of the baby. Developing biomarkers of inflammation in the placenta can help to understand its effects and potentially lead to new approaches for rapid prenatal diagnosis of aCA. We aimed to characterize epigenetic variation associated with aCA in placenta (chorionic villi) and fetal membranes (chorion and amnion) to better understand how aCA may impact processes that lead to preterm birth. This study lays the groundwork for development of novel biomarkers for aCA. METHODS Samples from 44 preterm placentas (chorionic villi) as well as matched chorion and amnion for 16 of these cases were collected for this study. These samples were profiled using the Illumina Infinium HumanMethylation850 BeadChip to measure DNA methylation (DNAm) at 866,895 CpGs across the genome. An additional 78 placental samples were utilized to independently validate the array findings by pyrosequencing. RESULTS Using a false discovery rate of < 0.15 and average group difference in DNAm of > 0.05, 66 differentially methylated (DM) CpG sites were identified between aCA cases and non-aCA cases in chorionic villi. For the majority of these 66 DM CpGs, the DNAm profile of the aCA cases as compared to the non-aCA cases trended in the direction of the blood cell DNAm. Interestingly, neutrophil-specific DNAm signatures, but not those associated with other immune cell types, were capable of separating aCA cases from the non-aCA cases. CONCLUSIONS Our results suggest that aCA-associated placentas showed altered DNAm signatures that were not observed in the absence of aCA. This DNAm profile is consistent with the activation of the innate immune response in the placenta and/or reflect increase in neutrophils as a response to inflammation.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - E. Magda Price
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Li Qing Wang
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Samantha L. Wilson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Jefferson Terry
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Pathology, BC Children’s Hospital, Vancouver, BC V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| |
Collapse
|
11
|
Moroi H, Kotani T, Miki R, Tsuda H, Mizuno M, Ito Y, Ushida T, Imai K, Nakano T, Li H, Sumigama S, Yamamoto E, Iwase A, Kikkawa F. The expression of Toll-like receptor 5 in preterm histologic chorioamnionitis. J Clin Biochem Nutr 2017; 62:63-67. [PMID: 29371755 PMCID: PMC5773826 DOI: 10.3164/jcbn.16-103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/23/2017] [Indexed: 12/23/2022] Open
Abstract
Spontaneous preterm birth is often caused by chorioamnionitis. Toll-like receptors (TLRs) have a role in the response of the innate immune system. The role of TLR5 in chorioamnionitis remains unclear: however, TLR5 was reported to have a significantly stronger effect on the induction of interleukin (IL)-6 when compared with other TLRs in amniotic epithelial cells. The aim of this study was to investigate TLR5 expression in placentas with preterm histologic chorioamnionitis (HCA). The expression levels of TLR5 were evaluated in the amnions, chorions, deciduae and villi with and without HCA using immunohistochemistry. The co-localization of IL-6 or IL-8 with TLR5 was examined by immunofluorescence. The production of IL-6 was examined in primary tissue cultured fetal membranes treated with and without the TLR5 agonist. The protein expression of TLR5 was significantly increased in amnions with HCA (p<0.05) and showed a trend toward an increase in chorions with HCA, whereas no significant difference was detected in the villi and decidua. TLR5 co-localized with IL-6 and IL-8 in amnions and chorions. IL-6 showed a significant increase (p<0.05) with the TLR5 agonist. These results suggest that TLR5 plays a role in the pathogenesis of preterm HCA and IL-6 production.
Collapse
Affiliation(s)
- Hiroaki Moroi
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Obstetrics and Gynecology, Handa City Hospital, 2-29 Toyo-cho, Handa-shi, Aichi 475-8559, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rika Miki
- Laboratory of Bell Research Centre-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya 453-8511, Japan
| | - Masako Mizuno
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Obstetrics and Gynecology, Handa City Hospital, 2-29 Toyo-cho, Handa-shi, Aichi 475-8559, Japan
| | - Yumiko Ito
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoko Nakano
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hua Li
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Neurology, Yanbian University Hospital, 1327 JuZi Street, Yanji City, JiLin Province 133000, China
| | - Seiji Sumigama
- Office of international Affairs, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya Graduate University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
12
|
Sweeney EL, Dando SJ, Kallapur SG, Knox CL. The Human Ureaplasma Species as Causative Agents of Chorioamnionitis. Clin Microbiol Rev 2017; 30:349-379. [PMID: 27974410 PMCID: PMC5217797 DOI: 10.1128/cmr.00091-16] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human Ureaplasma species are the most frequently isolated microorganisms from the amniotic fluid and placentae of women who deliver preterm and are also associated with spontaneous abortions or miscarriages, neonatal respiratory diseases, and chorioamnionitis. Despite the fact that these microorganisms have been habitually found within placentae of pregnancies with chorioamnionitis, the role of Ureaplasma species as a causative agent has not been satisfactorily explained. There is also controversy surrounding their role in disease, particularly as not all women infected with Ureaplasma spp. develop chorioamnionitis. In this review, we provide evidence that Ureaplasma spp. are associated with diseases of pregnancy and discuss recent findings which demonstrate that Ureaplasma spp. are associated with chorioamnionitis, regardless of gestational age at the time of delivery. Here, we also discuss the proposed major virulence factors of Ureaplasma spp., with a focus on the multiple-banded antigen (MBA), which may facilitate modulation/alteration of the host immune response and potentially explain why only subpopulations of infected women experience adverse pregnancy outcomes. The information presented within this review confirms that Ureaplasma spp. are not simply "innocent bystanders" in disease and highlights that these microorganisms are an often underestimated pathogen of pregnancy.
Collapse
Affiliation(s)
- Emma L Sweeney
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Samantha J Dando
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Suhas G Kallapur
- Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christine L Knox
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|