1
|
Khorasani MMY, Hassanshahi G, Brodzikowska A, Khorramdelazad H. Role(s) of cytokines in pulpitis: Latest evidence and therapeutic approaches. Cytokine 2019; 126:154896. [PMID: 31670007 DOI: 10.1016/j.cyto.2019.154896] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Pulpitis is known as a typical inflammation of dental pulp tissue, and microorganisms of the oral microbiome are involved in this opportunistic infection. Studies indicated that several factors related to host response have a crucial role in pulpitis. Among these factors, inflammatory mediators of the immune system such as cytokines and chemokines contribute to pulpal defense mechanisms. A wide range of cytokines have been observed in dental pulp and these small molecules are able to trigger inflammation and participate in immune cell trafficking, cell proliferation, inflammation, and tissue damage in pulp space. Therefore, the aim of this review was to describe the role of cytokines in the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Mohammad M Y Khorasani
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, Miodowa 18, 00-246 Warsaw, Poland
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Pan Y, Wang M, Wang L, Xu G, Baloch AR, Kashif J, Fan J, Yu S. Interleukin-1 beta induces autophagy of mouse preimplantation embryos and improves blastocyst quality. J Cell Biochem 2019; 121:1087-1100. [PMID: 31453635 DOI: 10.1002/jcb.29345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023]
Abstract
Autophagy is one of the basic cellular mechanism during preimplantation development of mammalian embryos, and it plays crucial role in several physiological processes. It is induced by interleukin (IL)-1β in mammalian cells. Our present study shows that IL-1β is important for autophagy activation in embryo development. Our in vitro culture system analysis shows effect of IL-1β in medium on the development of mouse embryos and it was found to be concentration dependent. A preimplantation embryo culture using medium containing IL-1β did not improve cleavage and blastocyst development rates of mouse embryos; however, blastocyst quality was significantly improved by increasing total cell number, especially in supplementary 20 ng/mL IL-1β. Furthermore, autophagy activation mainly occurs in 2 to 4 cell embryo and blastocyst, 20 ng/mL IL-1β into culture medium can effectively enhance levels of messenger RNA and protein of autophagy-related-factors in 2 to 4 cell embryos and blastocyst, while these factors reduce in VGX-1027 (IL-1β inhibitor) groups that also reduce the quality of blastocyst. Effects of IL-1β on the development of embryo reduced in 20 ng/mL IL-1β supplemented group when 5 mM 3-methyladenine (3-MA) was also added, which used to inhibit autophagy activation in endogenous PtdIns3Ks signal pathway. Our current results show that exogenous IL-1β can effectively induce autophagy in mouse embryos at stages of 2 to 8 cell and blastocyst, that also help to improve the quality of blastocyst.
Collapse
Affiliation(s)
- Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Gengquan Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Abdul Rasheed Baloch
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Jam Kashif
- Department of Veterinary Medicine, Sindh Agriculture University, Tandojam, Pakistan
| | - Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP. Cypermethrin Activates Autophagosome Formation Albeit Inhibits Autophagy Owing to Poor Lysosome Quality: Relevance to Parkinson's Disease. Neurotox Res 2017; 33:377-387. [PMID: 28840510 DOI: 10.1007/s12640-017-9800-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is the second most familiar, progressive and movement-related neurodegenerative disorder after Alzheimer disease. This study aimed to decipher the role of autophagy in cypermethrin-induced Parkinsonism, an animal model of PD. Indicators of autophagy [expression of beclin 1, autophagy-related protein 12 (Atg 12), unc-51 like autophagy activating kinase 1 (Ulk 1), p62 and lysosome-associated membrane protein 2 (LAMP 2) and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3) I to II], signalling cascade [phosphorylated (p) 5' adenosine monophosphate-activated protein kinase (p-AMPK), sirtuin 1 (Sirt 1), phosphorylated-mammalian target of rapamycin (p-mTOR), tuberous sclerosis complex 2 (TSC 2), p317Ulk 1 and p757Ulk 1 levels] and lysosome morphology were assessed in control and cypermethrin-treated rat model of PD. Autophagy markers were also measured in cypermethrin-treated neuroblastoma cells in the presence of 3-methyl adenine, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) class III inhibitor; vinblastine, an autophagosome elongation inhibitor; bafilomycin A1, an autophagolysosome and lysosome fusion/abnormal acidification inhibitor or torin 1, a mechanistic target of rapamycin inhibitor. Cypermethrin reduced LAMP 2 and increased p-AMPK and Sirt 1 without causing any change in other signalling proteins. 3-Methyl adenine did not change LC3 conversion; vinblastine and bafilomycin A1 decreased LAMP 2 expression in controls. While cypermethrin increased LC3 conversion in the presence of 3-methyl adenine, LAMP 2 reduction was more pronounced in vinblastine and bafilomycin A1-treated cells. Torin 1 normalized the expression of LAMP 2 without any change in other autophagy markers. Results demonstrate that albeit cypermethrin activates autophagosome formation, it reduces LAMP 2 expression and lysosome quality leading to autophagy inhibition.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Saumya Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Charul Rajput
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India.,Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Rodolfo C, Di Bartolomeo S, Cecconi F. Autophagy in stem and progenitor cells. Cell Mol Life Sci 2016; 73:475-96. [PMID: 26502349 PMCID: PMC11108450 DOI: 10.1007/s00018-015-2071-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Sabrina Di Bartolomeo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Francesco Cecconi
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy.
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|