1
|
Zhang X, Xu H, Sun R, Xiong G, Shi X. An insight into G-quadruplexes: Identification and potential therapeutic targets in livestock viruses. Eur J Med Chem 2024; 279:116848. [PMID: 39255642 DOI: 10.1016/j.ejmech.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that involve in the regulation of some key biological processes, such as replication, transcription, and translation. G4s have been extensively described in the genomes of human and related diseases. In recent years, G4s were identified in several livestock viruses, including those of the emerging epidemics, like Nipah virus (NiV). Since their discovery, G4s have been developed as the potential antiviral targets, and the employment of G4 ligands or interacting proteins has helped to expound the viral infectivity and pathogenesis through G4-mediated mechanisms, and highlight the potential as therapeutic approaches. However, the comprehensively studies of G4s in livestock viruses have not been summarized. This review delves into the reported literatures of G4s in livestock viruses, particular focus on the presence, biophysical identification, and possible function of G4s in viral genome, summarizing the G4 ligands, interacted proteins and aptamers on antiviral applications. The strengths and the challenges of G4 targeting in this field are also discussed. Therefore, this review will shed new light on the future development of highly potent and targeting antiviral therapy.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hongyu Xu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Ranran Sun
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Guihong Xiong
- Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Xugen Shi
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an, Jiangxi Province, 331400, PR China.
| |
Collapse
|
2
|
Miura D, Hayashi W, Hirano K, Sasaki I, Tsukakoshi K, Kakizoe H, Asai S, Vavricka CJ, Takemae H, Mizutani T, Tsugawa W, Sode K, Ikebukuro K, Asano R. Proximity-Unlocked Luminescence by Sequential Enzymatic Reactions from Antibody and Antibody/Aptamer (PULSERAA): A Platform for Detection and Visualization of Virus-Containing Spots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403871. [PMID: 39316377 DOI: 10.1002/advs.202403871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/23/2024] [Indexed: 09/25/2024]
Abstract
The SARS-CoV-2 pandemic has challenged more scientists to detect viruses and to visualize virus-containing spots for diagnosis and infection control; however, detection principles of commercially available technologies are not optimal for visualization. Here, a convenient and universal homogeneous detection platform named proximity-unlocked luminescence by sequential enzymatic reactions from antibody and antibody/aptamer (PULSERAA) is developed. This is designed so that the signal appears only when the donor and acceptor are in proximity on the viral surface. PULSERAA specifically detected in the range of 25-500 digital copies/mL of inactivated SARS-CoV-2 after simply mixing reagents; it is elucidated that the accumulation of chemical species in a limited space of the viral surface contributed to such high sensitivity. PULSERAA was quickly adapated to detect another virus variant, inactivated influenza A virus, and infectious SARS-CoV-2 in a clinical sample. Furthermore, on-site (direct, rapid, and portable) visualization of the inactivated SARS-CoV-2-containing spots by a conventional smartphone camera was achieved, demonstrating that PULSERAA can be a practical tool for preventing the next pandemic in the future.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Wakana Hayashi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kensuke Hirano
- Department of Industrial Technology and Innovation, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ikkei Sasaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hidehumi Kakizoe
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Infection Control, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| |
Collapse
|
3
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
5
|
Gautam V, Kumar R, Jain VK, Nagpal S. An overview of advancement in aptasensors for influenza detection. Expert Rev Mol Diagn 2022; 22:705-724. [PMID: 35994712 DOI: 10.1080/14737159.2022.2116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The platforms for early identification of infectious diseases such as influenza has seen a surge in recent years as delayed diagnosis of such infections can lead to dreadful effects causing large numbers of deaths. The time taken in detection of an infectious disease may vary from a few days to a few weeks depending upon the choice of the techniques. So, there is an urgent need for advanced methodologies for early diagnosis of the influenza. AREAS COVERED The emergence of "Aptasensor" synergistically with biosensors for diagnosis has opened a new era for sensitive, selective and early detection approaches. This review described various conventional as well as advanced methods based on artificial immunogenic nucleotide sequences complementing a part of the virus, i.e., aptamers based aptasensors for influenza diagnosis and the challenges faced in their commercialization. EXPERT OPINION Although numerous traditional methods are available for influenza detection but mostly associated with low sensitivity, specificity, high cost, trained personnel, and animals required for virus culture/ antibody raising as the major drawbacks. Aptamers can be manufactured invitro as 'chemical antibodies' at commercial level, no animal required. Following these advantages, aptamers can pave the way for an efficient diagnostic technique as compared to other existing conventional methods..
Collapse
Affiliation(s)
- Varsha Gautam
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Ramesh Kumar
- Department of Biotechnology, Indira Gandhi University, Meerpur, India
| | - Vinod Kumar Jain
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Suman Nagpal
- Department of Environmental sciences, Indira Gandhi University, Meerpur, India
| |
Collapse
|
6
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
7
|
|
8
|
Bizyaeva AA, Bunin DA, Moiseenko VL, Gambaryan AS, Balk S, Tashlitsky VN, Arutyunyan AM, Kopylov AM, Zavyalova EG. The Functional Role of Loops and Flanking Sequences of G-Quadruplex Aptamer to the Hemagglutinin of Influenza a Virus. Int J Mol Sci 2021; 22:2409. [PMID: 33673708 PMCID: PMC7957560 DOI: 10.3390/ijms22052409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5'- and 3'-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385-hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.
Collapse
Affiliation(s)
- Anastasia A. Bizyaeva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Dmitry A. Bunin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Valeria L. Moiseenko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | | | - Vadim N. Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Alexander M. Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| |
Collapse
|
9
|
Wang Y, Li Z, Yu H. Aptamer-Based Western Blot for Selective Protein Recognition. Front Chem 2020; 8:570528. [PMID: 33195056 PMCID: PMC7658645 DOI: 10.3389/fchem.2020.570528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Selective protein recognition is critical in molecular biology techniques such as Western blotting and ELISA. Successful detection of the target proteins in these methods relies on the specific interaction of the antibodies, which often bring a high production cost and require a long incubation time. Aptamers represent an alternative class of simple and affordable affinity reagents for protein recognition, and replacing antibodies with aptamers in Western blotting would potentially be more time- and cost-effective. In this work, multiple fluorescent DNA aptamers were isolated by in vitro selection to selectively label commonly used tag proteins including GST, MBP, and His-tag. The generated aptamers G1, M1, and H1 specifically bound to their cognate target proteins with nanomolar affinities, respectively. Compared with conventional antibody-based immunoblotting, such aptamer-based procedure gave a cleaner background and was able to selectively label target protein in a complex mixture. Lastly, the identified aptamers were also effective in recognition of different fusion proteins with the same tag, thus greatly expanding the scope of the potential applications of these aptamers. This work provided aptamers as useful molecular tools for selective protein recognition in Western blotting analysis.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Mohammadinezhad R, Jalali SAH, Farahmand H. Evaluation of different direct and indirect SELEX monitoring methods and implementation of melt-curve analysis for rapid discrimination of variant aptamer sequences. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3823-3835. [PMID: 32676627 DOI: 10.1039/d0ay00491j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an iterative method for in vitro selection of aptamers from a random synthetic oligonucleotide library. Successful retrieving of aptamers by SELEX relies on optimization of various steps including target immobilization, aptamer partitioning, amplification, and ssDNA generation, which all require spending considerable effort and cost. Furthermore, due to the random nature of the initial library, SELEX may redirect toward the selection of low-affinity aptamers that are over-represented in the ssDNA population due to PCR bias. Thus, precise monitoring of the SELEX process is crucial to ensure the selection of target-specific aptamers. In the present study, we investigated the reliability and simplicity of different direct and indirect monitoring methods including UV-Vis spectroscopy, real-time PCR quantification and melt-curve analysis, electrophoretic mobility shift assay (EMSA) and enzyme-linked oligonucleotide assay (ELONA) for selection of DNA aptamers for a protein target. All the examined methods were capable of illustrating the gradual evolution of specific aptamers by the progression of SELEX and showed almost similar results regarding the identification of the enriched round of selection. Moreover, we describe the use of melt-curve analysis in the colony real-time PCR method as a simple, robust, and repeatable tool for pre-sequencing separation of distinct aptamer clones.
Collapse
Affiliation(s)
- Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | | |
Collapse
|
11
|
Aptamers in diagnosis and therapeutics against the antimicrobial-resistant microorganisms: recent trends and challenges. Bioanalysis 2020; 12:1111-1115. [PMID: 32757867 DOI: 10.4155/bio-2020-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Novoseltseva AA, Ivanov NM, Novikov RA, Tkachev YV, Bunin DA, Gambaryan AS, Tashlitsky VN, Arutyunyan AM, Kopylov AM, Zavyalova EG. Structural and Functional Aspects of G-Quadruplex Aptamers Which Bind a Broad Range of Influenza A Viruses. Biomolecules 2020; 10:biom10010119. [PMID: 31936820 PMCID: PMC7022617 DOI: 10.3390/biom10010119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
An aptamer is a synthetic oligonucleotide with a unique spatial structure that provides specific binding to a target. To date, several aptamers to hemagglutinin of the influenza A virus have been described, which vary in affinity and strain specificity. Among them, the DNA aptamer RHA0385 is able to recognize influenza hemagglutinins with highly variable sequences. In this paper, the structure of RHA0385 was studied by circular dichroism spectroscopy, nuclear magnetic resonance, and size-exclusion chromatography, demonstrating the formation of a parallel G-quadruplex structure. Three derivatives of RHA0385 were designed in order to determine the contribution of the major loop to affinity. Shortening of the major loop from seven to three nucleotides led to stabilization of the scaffold. The affinities of the derivatives were studied by surface plasmon resonance and an enzyme-linked aptamer assay on recombinant hemagglutinins and viral particles, respectively. The alterations in the loop affected the binding to influenza hemagglutinin, but did not abolish it. Contrary to aptamer RHA0385, two of the designed aptamers were shown to be conformationally homogeneous, retaining high affinities and broad binding abilities for both recombinant hemagglutinins and whole influenza A viruses.
Collapse
Affiliation(s)
- Anastasia A. Novoseltseva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
- Correspondence: ; Tel.: +7-495-939-3149
| | - Nikita M. Ivanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Roman A. Novikov
- Engelhardt Institute of Molecular Biology RAS, 119991 Moscow, Russia; (R.A.N.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology RAS, 119991 Moscow, Russia; (R.A.N.)
| | - Dmitry A. Bunin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | - Vadim N. Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Alexander M. Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| |
Collapse
|
13
|
Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014-2019). Mikrochim Acta 2019; 186:563. [PMID: 31338623 DOI: 10.1007/s00604-019-3659-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed: quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disulfide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with useful information on the current state of research in the field. Graphical abstract Schematic representation of a fluorescence resonance energy transfer-based aptamer nanoprobe in the absence and presence of a given target molecule (analyte). Structures are not drawn to their original scales.
Collapse
|
14
|
Bhardwaj J, Chaudhary N, Kim H, Jang J. Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Anal Chim Acta 2019; 1064:94-103. [PMID: 30982523 DOI: 10.1016/j.aca.2019.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Rapid subtyping of influenza viruses in clinical laboratories has been increasingly important because three subtypes (seasonal H1N1, H3N2, and 2009 H1N1) of influenza A virus currently disseminated in humans have variable susceptibilities to antiviral drug. Herein, we present DNA aptamers for selective detection of influenza A H1N1 (seasonal and 2009 pandemic H1N1) viruses by targeting recombinant influenza A mini-hemagglutinin (mini-HA) protein (the stable stem region of HA) and whole H1N1 viruses. The dissociation constants (KD) of aptamer candidates V46 and V57 were 19.2 nM and 29.6 nM, respectively, according to electrochemical characterization (differential pulse voltammetry), demonstrating strong binding to mini-HA. In comparison, the KD of the influenza virus antibodies is in the range of 1 μM-10 nM. Aptamer V46 showed higher specificity and binding affinity to the mini-HA protein and H1N1 subtypes, and it was also incorporated into an indium tin oxide-based electrochemical sensor, showing sensitive and specific detection of H1N1 viruses, with a limit of detection (LOD) of 3.7 plaque-forming units per mL. The binding affinity, specificity, and LOD achieved with the electrochemical sensor suggest that it can be used for rapid subtyping of H1N1. We also propose that this aptamer can be used for the neutralization of H1N1 subtypes, suggesting potential therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Narendra Chaudhary
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
15
|
Kang J, Yeom G, Ha SJ, Kim MG. Development of a DNA aptamer selection method based on the heterogeneous sandwich form and its application in a colorimetric assay for influenza A virus detection. NEW J CHEM 2019. [DOI: 10.1039/c8nj06458j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we introduce an effective method for selecting aptamer that increases the signal-to-noise ratio in a heterogenous sandwich-type immunosensor and confirm the efficiency of selected aptamer candidates in the colorimetric assay. Using the proposed method, four aptamer candidates withKdvalues ranging from 77.6 nM to 125.7 nM were obtained.
Collapse
Affiliation(s)
- Juyoung Kang
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Gyuho Yeom
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Su-Ji Ha
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| |
Collapse
|
16
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
17
|
Anderson CE, Holstein CA, Strauch EM, Bennett S, Chevalier A, Nelson J, Fu E, Baker D, Yager P. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein. Anal Chem 2017; 89:6608-6615. [PMID: 28499086 DOI: 10.1021/acs.analchem.7b00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 107 and 1.34 × 107 CEID50/mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.
Collapse
Affiliation(s)
- Caitlin E Anderson
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | - Carly A Holstein
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | - Eva-Maria Strauch
- Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Steven Bennett
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | - Aaron Chevalier
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States.,Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Jorgen Nelson
- Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Elain Fu
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | - David Baker
- Department of Biochemistry, University of Washington , Seattle, Washington 98195-7350, United States
| | - Paul Yager
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| |
Collapse
|
18
|
Anderson CE, Shah KG, Yager P. Sensitive Protein Detection and Quantification in Paper-Based Microfluidics for the Point of Care. Methods Enzymol 2017; 589:383-411. [PMID: 28336071 DOI: 10.1016/bs.mie.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The design of appropriate diagnostic assays for the point of care requires development of suitable biosensors, detection methods, and diagnostic platforms for sensitive, quantitative detection of biological analytes. Protein targets in particular are especially challenging to detect quantitatively and sensitively due to the lack of amplification strategies akin to nucleic acid amplification. However, recent advances in transducer and biosensor design, new detection labels, and paper-based microfluidics may realize the goal of sensitive, fast, portable, and low-cost protein detection. In this review, we discuss the biochemistry, optics, and engineering advances that may be leveraged to design such a sensitive protein diagnostic assay. The binding kinetics, mechanisms of binding in porous networks, and potential transducers are explained in detail. We discuss the relative merits of various optical detection strategies, potential detection labels, optical readout approaches, and image-processing techniques that are amenable to point-of-care use. To conclude, we present a systematic analysis of potential approaches to enhance the sensitivity of paper-based assays. The assay development framework presented here provides bioassay developers a strategy to methodically enhance the sensitivity and point-of-care suitability of protein diagnostics.
Collapse
Affiliation(s)
| | - Kamal G Shah
- University of Washington, Seattle, WA, United States
| | - Paul Yager
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
19
|
Hmila I, Wongphatcharachai M, Laamiri N, Aouini R, Marnissi B, Arbi M, Sreevatsan S, Ghram A. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J Virol Methods 2017; 243:83-91. [PMID: 28159667 DOI: 10.1016/j.jviromet.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 01/16/2023]
Abstract
H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions.
Collapse
Affiliation(s)
- Issam Hmila
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia.
| | - Manoosak Wongphatcharachai
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA; Department of Soil, Water, & Climate, and BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Nacira Laamiri
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia; University of Carthage, Faculty of Sciences Bizerte, 7021 Zarzouna Bizerte, Tunisia
| | - Rim Aouini
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia; University of Carthage, Faculty of Sciences Bizerte, 7021 Zarzouna Bizerte, Tunisia
| | - Boutheina Marnissi
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia
| | - Marwa Arbi
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota,St. Paul, MN, USA
| | - Abdeljelil Ghram
- University Tunis El Manar, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis,13 Place Pasteur, 1002 Tunis Belvedere, Tunisia
| |
Collapse
|
20
|
Yüce M, Ullah N, Budak H. Trends in aptamer selection methods and applications. Analyst 2016; 140:5379-99. [PMID: 26114391 DOI: 10.1039/c5an00954e] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aptamers are target specific ssDNA, RNA or peptide sequences generated by an in vitro selection and amplification method called SELEX (Systematic Evolution of Ligands by EXponential Enrichment), which involves repetitive cycles of binding, recovery and amplification steps. Aptamers have the ability to bind with a variety of targets such as drugs, proteins, heavy metals, and pathogens with high specificity and selectivity. Aptamers are similar to monoclonal antibodies regarding their binding affinities, but they offer a number of advantages over the existing antibody-based detection methods, which make the aptamers promising diagnostic and therapeutic tools for future biomedical and analytical applications. The aim of this review article is to provide an overview of the recent advancements in aptamer screening methods along with a concise description of the major application areas of aptamers including biomarker discovery, diagnostics, imaging and nanotechnology.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey.
| | | | | |
Collapse
|