1
|
Shi H, Duan L, Tong L, Pu P, Wei L, Wang L, Hu D, Tang H. Research Progress on Flavonoids in Traditional Chinese Medicine to Counteract Cardiotoxicity Associated with Anti-Tumor Drugs. Rev Cardiovasc Med 2024; 25:74. [PMID: 39076949 PMCID: PMC11263839 DOI: 10.31083/j.rcm2503074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 07/31/2024] Open
Abstract
The development of anti-tumor drugs has notably enhanced the survival rates and quality of life for patients with malignant tumors. However, the side effects of these drugs, especially cardiotoxicity, significantly limit their clinical application. The cardiotoxicity associated with anti-tumor drugs has been a subject of extensive attention and research. Traditional to mitigate these side effects have included reducing drug dosages, shortening treatment duration, modifying administration methods, and opting for drugs with lower toxicity. However, either approach may potentially compromise the anti-tumor efficacy of the medications. Therefore, exploring other effective methods for anti-cardiotoxicity will be the focus of future research. The potential of traditional Chinese medicine (TCM) in managing cardiovascular diseases and cancer treatment has gained widespread recognition. TCM is valued for its minimal side effects, affordability, and accessibility, offering promising avenues in the prevention and treatment of cardiotoxicity caused by anti-tumor drugs. Among its constituents, flavonoids, which are present in many TCMs, are particularly notable. These monomeric compounds with distinct structural components have been shown to possess both cardiovascular protective properties and anti-tumor capabilities. In this discussion, we will delve into the classification of anti-tumor drugs and explore the underlying mechanisms of their associated cardiotoxicity. Additionally, we will examine flavonoids found in TCM and investigate their mechanisms of cardiovascular protection. This will include an analysis of how these natural compounds can mitigate the cardiac side effects of anti-tumor therapies while potentially enhancing overall patient health and treatment outcomes.
Collapse
Affiliation(s)
- Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
- Department of Oncology, Renmin Hospital of Wuhan University, 430064 Wuhan, Hubei, China
| | - Lian Duan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Li Tong
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lai Wei
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| |
Collapse
|
2
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
3
|
Thonusin C, Nawara W, Khuanjing T, Prathumsup N, Arinno A, Ongnok B, Arunsak B, Sriwichaiin S, Chattipakorn SC, Chattipakorn N. Blood metabolomes as non-invasive biomarkers and targets of metabolic interventions for doxorubicin and trastuzumab-induced cardiotoxicity. Arch Toxicol 2023; 97:603-618. [PMID: 36357623 DOI: 10.1007/s00204-022-03412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
This study aimed to identify the alterations of blood metabolome levels and their association with cardiac dysfunction and cardiac injury following treatment with doxorubicin and trastuzumab. Eight-week-old male Wistar rats were divided into four groups (n = 6 per group) to receive intraperitoneal injection with either: (1) 1 mL of normal saline solution (NSS) at days 0, 4, 8, 15, 22, and 29 (control group for doxorubicin); (2) 3 mg/kg/day of doxorubicin at days 0, 4, 8, 15, 22, and 29 (doxorubicin group); (3) 1 mL of NSS at days 0-6 (control group for trastuzumab); or (4) 4 mg/kg/day of trastuzumab at days 0-6 (trastuzumab group). Four days after the last injected dose, cardiac function was determined. The rats were then euthanized to collect venous blood and the heart for the quantification of 107 serum and 100 cardiac metabolomes using mass spectrometry-based targeted metabolomics. We observed strong relationships between 72 cardiac versus 61 serum metabolomes in doxorubicin and trastuzumab groups. Moreover, significant correlations between cardiac function and the cardiac injury biomarker versus 28 and 58 serum metabolomes were revealed in doxorubicin and trastuzumab-treated rats, respectively. Interestingly, the patterns of both serum and cardiac metabolome alterations differed between doxorubicin and trastuzumab groups. Our findings emphasize the potential role of the constituents of the blood metabolome as non-invasive biomarkers to assess severity and prognosis of heart failure induced by doxorubicin and trastuzumab. These findings may contribute to the development of metabolic-targeted therapy specific for cardioprotection during different phases of cancer treatment.
Collapse
Affiliation(s)
- Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nanthip Prathumsup
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Xia ZD, Sun B, Wen JF, Ma RX, Wang FY, Wang YQ, Li ZH, Jia P, Zheng XH. Research progress on metabolomics in the quality evaluation and clinical study of Panax ginseng. Biomed Chromatogr 2022:e5546. [PMID: 36342761 DOI: 10.1002/bmc.5546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Panax ginseng, an essential component of traditional medicine and often referred to as the king of herbs, has played a pivotal role in medicine globally for several millennia. Previously, traditional phytochemical methods were mainly used for quality evaluation and pharmacological mechanism studies of ginseng, resulting in the lack of systematicness and innovation and hindering the development and utilization of ginseng resources. Since the beginning of the new century, systems biology technology represented by metabolomics has shown unique advantages in the modernization and internationalization of herbal medicine, establishing a bridge for communication between traditional medicine and modern medicine. P. ginseng, a special herb used in medicine and food, is one of the main research objects for qualitative and quantitative analysis of metabolomics and has gradually become the focus of researchers globally. Here, we conducted a comprehensive summary and analysis of numerous studies published in ginseng metabolomics. This review aims to provide more novel ideas for the quality evaluation, development, and clinical application of ginseng in the future and offer more useful technical references for the modernization and internationalization of herbal medicine based on metabolomics.
Collapse
Affiliation(s)
- Zhao-di Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China.,Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jin-Feng Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ruo-Xin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Feng-Yun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yu-Qi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhi-Hao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Integrated multi-omics analysis of adverse cardiac remodeling and metabolic inflexibility upon ErbB2 and ERRα deficiency. Commun Biol 2022; 5:955. [PMID: 36097051 PMCID: PMC9467976 DOI: 10.1038/s42003-022-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles in heart physiology, and this approach could pose a potential liability to cardiovascular health. Herein, using integrated phosphoproteomic, transcriptomic and metabolic profiling, we uncovered molecular mechanisms associated with the adverse remodeling of cardiac functions in mice with combined attenuation of ErbB2 and ERRα activity. Genetic disruption of both effectors results in profound effects on cardiomyocyte architecture, inflammatory response and metabolism, the latter leading to a decrease in fatty acyl-carnitine species further increasing the reliance on glucose as a metabolic fuel, a hallmark of failing hearts. Furthermore, integrated omics signatures of ERRα loss-of-function and doxorubicin treatment exhibit common features of chemotherapeutic cardiotoxicity. These findings thus reveal potential cardiovascular risks in discrete combination therapies in the treatment of breast and other cancers. Murine hearts deficient in ErbB2 and/or ERRα are used to profile the adverse cardiac remodeling associated with potential targeted breast cancer treatments by phosphoproteomic, transcriptomic and metabolomic profiling.
Collapse
|
6
|
Lima MF, Amaral AG, Moretto IA, Paiva-Silva FJTN, Pereira FOB, Barbas C, dos Santos AM, Simionato AVC, Rupérez FJ. Untargeted Metabolomics Studies of H9c2 Cardiac Cells Submitted to Oxidative Stress, β-Adrenergic Stimulation and Doxorubicin Treatment: Investigation of Cardiac Biomarkers. Front Mol Biosci 2022; 9:898742. [PMID: 35847971 PMCID: PMC9277393 DOI: 10.3389/fmolb.2022.898742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
One of the biggest challenges in the search for more effective treatments for diseases is understanding their etiology. Cardiovascular diseases (CVD) are an important example of this, given the high number of deaths annually. Oxidative stress (the imbalance between oxidant and antioxidant species in biological system) is one of the factors responsible for CVD occurrence, demanding extensive investigation. Excess of reactive oxygen species (ROS) are primarily responsible for this condition, and clinical and scientific literature have reported a significant increase in ROS when therapeutic drugs, such as doxorubicin and isoproterenol, are administered. In this context, the aim of this study is the investigation of potential biomarkers that might be associated with oxidative stress in cardiomyocytes. For this purpose, H9c2 cardiomyocytes were submitted to oxidative stress conditions by treatment with doxorubicin (DOX), isoproterenol (ISO) and hydrogen peroxide (PER). Metabolomics analyses of the cell extract and the supernatant obtained from the culture medium were then evaluated by CE-ESI(+)-TOF-MS. Following signal processing, statistical analyses, and molecular features annotations, the results indicate changes in the aspartate, serine, pantothenic acid, glycerophosphocholine and glutathione metabolism in the cell extract.
Collapse
Affiliation(s)
- Monica Força Lima
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alan Gonçalves Amaral
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabela Aparecida Moretto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Flávia Oliveira Borges Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Aline Mara dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| | - Ana Valéria Colnaghi Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, Brazil
| | - Francisco Javier Rupérez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| |
Collapse
|
7
|
Ibrahim Fouad G, Ahmed KA. Curcumin Ameliorates Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity Via Suppressing Oxidative Stress and Modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc Toxicol 2022; 22:152-166. [PMID: 34837640 DOI: 10.1007/s12012-021-09710-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023]
Abstract
Doxorubicin (DOX) is one of the widely used anti-tumor drugs. However, DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) are among the side effects that limited its therapeutic efficiency and clinical applicability. This study aimed to investigate the cardioprotective and hepatoprotective potentials of curcumin (CMN)-a bioactive polyphenolic compound-in alleviating DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) in male rats. A single intraperitoneal (i.p.) dose of DOX (20 mg/kg) was used to induce DIC and DIH. DOX-intoxicated rats were co-treated with CMN (100 mg/kg, oral) for 10 days before and 5 days after a single dose of DOX. We studied the anti-inflammatory and anti-oxidative activities of CMN on biochemical and immunohistochemical aspects. DOX disrupted cardiac and hepatic functions and stimulated oxidative stress and inflammation in both tissues that was confirmed biochemically and immunohistochemically. DOX enhanced inflammatory interferon-gamma (IFN-γ) and upregulated immunoexpression of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α). DOX induced structural alterations in both cardiac and hepatic tissues. CMN demonstrated cardioprotective potential through reducing cardiac troponin I (cTn1) and aspartate amino transaminase (AST). In addition, CMN significantly ameliorated liver function through decreasing alanine amino transaminase (ALT) and, gamma-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG). CMN demonstrated anti-inflammatory potential through decreasing IFN-γ levels and immunoexpression of iNOS, NF-κB, and TNF-α. Histopathologically, CMN restored DOX-associated cardiac and liver structural alterations. CMN showed anti-oxidative and anti-inflammatory potentials in both the cardiac and hepatic tissues. In addition, cTn1, IFN-γ, and AST could be used as blood-based biomarkers.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
8
|
Chiba K. [In vivo integrated safety assessment of the cardiovascular system in drug development]. Nihon Yakurigaku Zasshi 2022; 157:47-52. [PMID: 34980813 DOI: 10.1254/fpj.21075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Drug-induced cardiotoxicity still remains a major cause of concern, and non-clinical integrated risk assessments from both functional and structural alterations in the cardiovascular system are strongly required in the creation of drugs with superior safety profiles. Although systemic blood pressure, heart rate, and electrocardiogram are the main items in safety pharmacology studies, direct cardiac function assessments such as cardiac output and ventricular contractility, mentioned in ICH S7A guideline, are also desirable. General toxicology studies are important to detect structural changes through clinical pathology and histopathological examination, and translational biomarkers and metabolomics analysis with high extrapolation to humans also provide useful insights. In this paper, we will introduce our basic research to investigate the cardiac effects of milrinone, a cAMP phosphodiesterase III inhibitor in cynomolgus monkeys, and share the importance of comprehensive risk assessment in non-clinical in vivo studies.
Collapse
|
9
|
Zhang K, Xue K, Loh XJ. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021; 7:77. [PMID: 34202514 PMCID: PMC8293033 DOI: 10.3390/gels7030077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Thermogels are also known as thermo-sensitive or thermo-responsive hydrogels and can undergo a sol-gel transition as the temperature increases. This thermogelling behavior is the result of combined action from multiscale thermo-responsive mechanisms. From micro to macro, these mechanisms can be attributed to LCST behavior, micellization, and micelle aggregation of thermogelling polymers. Due to its facile phase conversion properties, thermogels are injectable yet can form an in situ gel in the human body. Thermogels act as a useful platform biomaterial that operates at physiological body temperatures. The purpose of this review is to summarize the recent progress in thermogel research, including investigations on the thermogel gelation mechanism and its applications in drug delivery, 3D cell culture, and tissue engineering. The review also discusses emerging directions in the study of thermogels.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
10
|
Zhang X, Zhang J, Ji X, Wei Z, Ding B, Liu G, Lv X, Zheng Y, Zhan S. A Quantitative Serum Proteomic Analysis Helps to Explore the Comprehensive Mechanism and Identify Serum Biomarkers of Shengmai Injection's Effect on Isoproterenol-Induced Myocardial Ischemia in Rats. Front Pharmacol 2021; 12:666429. [PMID: 33995093 PMCID: PMC8113823 DOI: 10.3389/fphar.2021.666429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Shengmai injection (SMI), a traditional Chinese medicine formula with the nature of multicomponent and multi-target, has been widely used in clinic for treating cardiovascular diseases in China; however, its comprehensive mechanism of action remains unclear. In this study, a TMT-based quantitative serum proteomics was performed to explore SMI's global mechanism and help identify serum biomarkers of its effect on isoproterenol (ISO)-induced myocardial ischemia rats. The results of TMT-based proteomic analysis identified 227, 100, and 228 differentially expressed proteins (DEPs) for the model compared to the control group, SMI pretreatment + model compared to the model group, and SMI pretreatment + model compared to the control group, respectively. Based on bioinformatics analyses of gene ontology (GO), KEGG pathways, and the protein-protein interaction (PPI) networks for the DEPs, it is concluded that the comprehensive mechanism of SMI's effect on ISO-induced myocardial ischemia injury includes regulation of energy metabolism, reducing endothelial cell permeability, regulation of vessel and cardiac contractility, anti-inflammation, and prevention of cell apoptosis. Furthermore, 10 common DEPs were found, and six of them were regulated in model vs. control group, while back-regulated in SMI pretreatment + model vs. model group. Among them, three functional proteins of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Fas apoptotic inhibitory molecule 3 (FAIM3), and uncharacterized protein (M0R5J4), which were verified by the PRM analysis, might be the potential serum biomarkers on SMI's effects. Overall, this serum proteomics of SMI not only provides insights into the comprehensive mechanism underlying SMI's effects on ischemic heart disease but also helps identify serum biomarkers for directing SMI's cardioprotective effects.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Science and Education, the First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jie Zhang
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiangyu Ji
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Zhenzhen Wei
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Baoyue Ding
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Guoqiang Liu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaoqing Lv
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yongxia Zheng
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shuyu Zhan
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Geng C, Cui C, Wang C, Lu S, Zhang M, Chen D, Jiang P. Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS OMEGA 2021; 6:358-366. [PMID: 33458487 PMCID: PMC7807767 DOI: 10.1021/acsomega.0c04677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Doxorubicin (DOX) is widely used to treat solid tumors, but its use is limited by its severe cardiotoxicity, nephrotoxicity, hepatotoxicity, and neurotoxicity. Metabolomic studies on DOX-induced toxicity are mainly focused on alterations in the heart and kidney, but systematic research on multiple matrices (serum, heart, liver, brain, and kidney) is rare. Thus, in our study, gas chromatography-mass spectrometry analysis of main targeted tissues (serum, heart, liver, brain, and kidney) was used to systemically evaluate the toxicity of DOX. Multivariate analyses, including orthogonal projections to the latent structure and t-test, revealed 21 metabolites in the serum, including cholesterol, d-glucose, d-lactic acid, glycine, l-alanine, l-glutamic acid, l-isoleucine, l-leucine, l-proline, l-serine, l-tryptophan, l-tyrosine, l-valine, MG (0:0/18:0/0:0), MG (16:0/0:0/0:0), N-methylphenylethanolamine, oleamide, palmitic acid, pyroglutamic acid, stearic acid, and urea. In the heart, perturbed metabolites included 3-methyl-1-pentanol, cholesterol, d-glucose, d-lactic acid, glycerol, glycine, l-alanine, l-valine, MG (16:0/0:0/0:0), palmitic acid, phenol, propanoic acid, and stearic acid. For the liver, DOX exposure caused alterations of acetamide, acetic acid, d-glucose, glycerol, l-threonine, palmitic acid, palmitoleic acid, stearic acid, and urea. In the brain, metabolic changes involved 2-butanol, carbamic acid, cholesterol, desmosterol, d-lactic acid, l-valine, MG (16:0/0:0/0:0), palmitic acid, and stearic acid. In the kidney, disturbed metabolites were involved in cholesterol, glycerol, glycine, l-alanine, MG (0:0/18:0/0:0), MG (16:0/0:0/0:0), and squalene. Complementary evidence by multiple matrices revealed disturbed pathways concerning amino acid metabolism, energy metabolism, and lipid metabolism. Our results may help to systematically elucidate the metabolic changes of DOX-induced toxicity and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Chunmei Geng
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
| | - Changmeng Cui
- Department
of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Changshui Wang
- Department
of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Shuxin Lu
- Department
of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Maokun Zhang
- Department
of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Dan Chen
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
- . Phone: +86 537 2106208. Fax: +86 537 2106208
| |
Collapse
|
12
|
Li L, Li J, Wang Q, Zhao X, Yang D, Niu L, Yang Y, Zheng X, Hu L, Li Y. Shenmai Injection Protects Against Doxorubicin-Induced Cardiotoxicity via Maintaining Mitochondrial Homeostasis. Front Pharmacol 2020; 11:815. [PMID: 32581790 PMCID: PMC7289952 DOI: 10.3389/fphar.2020.00815] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Shenmai injection (SMI), as a patented traditional Chinese medicine, is extracted from Panax ginseng and Ophiopogon japonicus. It commonly used in the treatment of cardiovascular disease and in the control of cardiac toxicity induced by doxorubicin (DOX) treatment. However, its anti-cardiotoxicity mechanism remains unknown. The purpose of this study was to investigate the underlying mitochondrial protective mechanisms of SMI on DOX-induced myocardial injury. The cardioprotective effect of SMI against DOX-induced myocardial damage was evaluated in C57BL/6 mice and H9c2 cardiomyocytes. In vivo, myocardial injury, apoptosis and phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt)/glycogen synthase kinase 3 beta (GSK-3β) signaling pathway related proteins were measured. In vitro, apoptosis, mitochondrial superoxide, mitochondrial membrane potential, mitochondrial morphology, levels of mitochondrial fission/fusion associated proteins, mitochondrial respiratory function, and AMP-activated protein kinase (AMPK) activity were assessed. To further elucidate the regulating effects of SMI on AMPK and PI3K/Akt/GSK-3β signaling pathway, compound C and LY294002 were utilized. In vivo, SMI decreased mortality rate, levels of creatine kinase, and creatine kinase-MB. SMI significantly prevented DOX-induced cardiac dysfunction and apoptosis, decreased levels of Bax/Bcl-2 and cleaved-Caspase3, increased levels of PI3K, p-Akt, and p-GSK-3β. In vitro, SMI rescued DOX-injured H9c2 cardiomyocytes from apoptosis, excessive mitochondrial reactive oxygen species production and descending mitochondrial membrane potential, which were markedly suppressed by LY294002. SMI increased ratio of L-OPA1 to S-OPA1, levels of AMPK phosphorylation, and DRP1 phosphorylation (Ser637) in order to prevent DOX-induced excessive mitochondrial fission and insufficient mitochondrial fusion. In conclusion, SMI prevents DOX-induced cardiotoxicity, inhibits mitochondrial oxidative stress and mitochondrial fragmentation through activation of AMPK and PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianxian Zheng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Hu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon 2020; 6:e03803. [PMID: 32337383 PMCID: PMC7177035 DOI: 10.1016/j.heliyon.2020.e03803] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOXO), a potent and widely used chemotherapeutic agent, causes irreversible heart failure by increasing oxidative stress, which limits its clinical utility. Nuclear factor erythroid-derived 2 -like 2 (Nrf2) is a prominent central regulator of cellular impenetrable to oxidants. The purpose of the study is to assess the ameliorative outcome of quercetin in cardiomyopathic rats induced by doxorubicin. Cardiomyopathy was produced in rats by single intraperitoneal weekly with DOXO (2 mg/kg) for 4 weeks. The rats were divided into five groups: (I) control group; (II) DOXO (2 mg/kg, i.p.) group; (III-V) DOXO + quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally), and were treated for 7 weeks. At the end of the treatment duration, cardiac function and biochemical parameters were assessed. Quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally) treatment reduced the raised blood pressure (BP) and left ventricular dysfunction. Withal, it prevented the rise in CKMB and LDH, suggesting the effect of quercetin in the maintaining the integrity of the cell membrane Besides, it also prevented the alteration in electrolyte levels, the activity of ATPase, and antioxidant status. Quercetin increased Nrf2 mRNA expression and reduced histological abnormalities compared to the DOXO control group. In conclusion, quercetin protected against DOXO- induced cardiomyopathy, by increasing expression of NRF2, and thereby increasing antioxidant defense and restoring biochemical and histological abnormalities.
Collapse
|
14
|
Li L, Yang D, Li J, Niu L, Chen Y, Zhao X, Oduro PK, Wei C, Xu Z, Wang Q, Li Y. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC Complement Med Ther 2020; 20:112. [PMID: 32293408 PMCID: PMC7158159 DOI: 10.1186/s12906-020-02905-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Shenmai injection (SMI) has been used in the treatment of cardiovascular disease (CVD), such as heart failure, myocardial ischemia and coronary heart disease. It has been found to have efficacy on doxorubicin (DOX)-induced cardiomyopathy. The aims of this study were to explore the underlying molecular mechanisms of SMI treatment on CVD by using network pharmacology and its protective effect on DOX-induced cardiotoxicity by in vitro and in vivo experiment based on network pharmacology prediction. METHODS Network pharmacology method was used to reveal the relationship between ingredient-target-disease and function-pathway of SMI on the treatment of CVD. Chemical ingredients of SMI were collected form TCMSP, BATMAN-TCM and HIT Database. Drugbank, DisGeNET and OMIM Database were used to obtain potential targets for CVD. Networks were visualized utilizing Cytoscape software, and the enrichment analysis was performed using IPA system. Finally, cardioprotective effects and predictive mechanism confirmation of SMI were investigated in H9c2 rat cardiomyocytes and DOX-injured C57BL/6 mice. RESULTS An ingredient-target-disease & function-pathway network demonstrated that 28 ingredients derived from SMI modulated 132 common targets shared by SMI and CVD. The analysis of diseases & functions, top pathways and upstream regulators indicated that the cardioprotective effects of SMI might be associated with 28 potential ingredients, which regulated the 132 targets in cardiovascular disease through regulation of G protein-coupled receptor signaling. In DOX-injured H9c2 cardiomyocytes, SMI increased cardiomyocytes viability, prevented cell apoptosis and increased PI3K and p-Akt expression. This protective effect was markedly weakened by PI3K inhibitor LY294002. In DOX-treated mice, SMI treatment improved cardiac function, including enhancement of ejection fraction and fractional shortening. CONCLUSIONS Collectively, the protective effects of SMI on DOX-induced cardiotoxicity are possibly related to the activation of the PI3K/Akt pathway, as the downstream of G protein-coupled receptor signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chun Wei
- Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Zongpei Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
15
|
Abstract
Anthracycline-based chemotherapy can result in the development of a cumulative and progressively developing cardiomyopathy. Doxorubicin is one of the most highly prescribed anthracyclines in the United States due to its broad spectrum of therapeutic efficacy. Interference with different mitochondrial processes is chief among the molecular and cellular determinants of doxorubicin cardiotoxicity, contributing to the development of cardiomyopathy. The present review provides the basis for the involvement of mitochondrial toxicity in the different functional hallmarks of anthracycline toxicity. Our objective is to understand the molecular determinants of a progressive deterioration of functional integrity of mitochondria that establishes a historic record of past drug treatments (mitochondrial memory) and renders the cancer patient susceptible to subsequent regimens of drug therapy. We focus on the involvement of doxorubicin-induced mitochondrial oxidative stress, disruption of mitochondrial oxidative phosphorylation, and permeability transition, contributing to altered metabolic and redox circuits in cardiac cells, ultimately culminating in disturbances of autophagy/mitophagy fluxes and increased apoptosis. We also suggest some possible pharmacological and nonpharmacological interventions that can reduce mitochondrial damage. Understanding the key role of mitochondria in doxorubicin-induced cardiomyopathy is essential to reduce the barriers that so dramatically limit the clinical success of this essential anticancer chemotherapy.
Collapse
Affiliation(s)
- Kendall B Wallace
- From the Department of Biomedical Sciences, University of Minnesota Medical School, Duluth (K.B.W.)
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| |
Collapse
|
16
|
Li A, Zhang W, Zhang L, Liu Y, Li K, Du G, Qin X. Elucidating the time-dependent changes in the urinary metabolome under doxorubicin-induced nephrotoxicity. Toxicol Lett 2020; 319:204-212. [DOI: 10.1016/j.toxlet.2019.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
|
17
|
Cao Y, Han X, Pan H, Jiang Y, Peng X, Xiao W, Rong J, Chen F, He J, Zou L, Tang Y, Pei Y, Zheng J, Wang J, Zhong J, Hong X, Liu Z, Zheng Z. Emerging protective roles of shengmai injection in septic cardiomyopathy in mice by inducing myocardial mitochondrial autophagy via caspase-3/Beclin-1 axis. Inflamm Res 2020; 69:41-50. [PMID: 31712853 DOI: 10.1007/s00011-019-01292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sepsis, a life-threatening systemic syndrome related to inflammatory response, usually accompanied by major organ dysfunctions. The aim of the present study was to elucidate the role by which Shengmai injection (SMI) acts to septic cardiomyopathy. METHODS Initially, the induced mice with septic cardiomyopathy were treated with SMI or normal saline (NS) with oe-caspase-3, and HL-1 cells were treated with oe-Beclin-1 and oe-caspase-3 and then cultured with lipopolysaccharide (LPS). Subsequently, we measured the cardiac troponin I (cTnI) level, and expression of mitochondrial autophagy protein (parkin and pink1) and myocardial cell autophagy-related proteins (LC3-II and LC3-I). Additionally, we identified the cleavage of Beclin-1 by caspase-3 and detected the changes of mitochondrial membrane potential, level of reactive oxygen species (ROS), and apoptosis of myocardial cells in myocardial tissues of mice. RESULTS It has been demonstrated that SMI contributed to the increase of myocardial mitochondrial autophagy, reduction of cTnI level, and elevation of mitochondrial membrane potential in septic cardiomyopathy mice. Both in vitro and in vivo experiments showed that caspase-3 promoted cleavage of Beclin-1 and release of ROS, whereas repressed lipopolysaccharide (LPS)-induced mitochondrial autophagy. Furthermore, the facilitation of myocardial mitochondrial autophagy and protection of myocardial mitochondria by SMI through inhibition of cleavage Beclin-1 by caspase-3 in septic cardiomyopathy mice were also proved by in vivo experiments. CONCLUSION Taken together, SMI could protect myocardial mitochondria by promoting myocardial mitochondrial autophagy in septic cardiomyopathy via inhibition of cleavage of Beclin-1 by caspase-3. Our study demonstrates that SMI could represent a novel target for treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Yan Cao
- Department of Emergency, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China.,Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Xiaotong Han
- Department of Emergency, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China.,Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Hongwei Pan
- Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China.,Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Yu Jiang
- Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China.,Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics, Changsha, 410000, People's Republic of China
| | - Xiang Peng
- Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China.,Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Weiwei Xiao
- Department of Emergency, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China.,Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Jingjing Rong
- Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Fang Chen
- Department of Emergency, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China
| | - Jin He
- Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Lianhong Zou
- Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China.,Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Yi Tang
- Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China
| | - Yanfang Pei
- Department of Emergency, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China
| | - Jiao Zheng
- Institute of Clinical Pharmacology Research, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China
| | - Jia Wang
- Department of Research, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China
| | - Jie Zhong
- Department of Research, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China
| | - Xiuqing Hong
- Department of Research, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000, People's Republic of China
| | - Zhengyu Liu
- Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China. .,Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China.
| | - Zhaofen Zheng
- Chest Pain Center of Hunan, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China. .,Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410000, People's Republic of China.
| |
Collapse
|
18
|
Li Y, Ruan X, Xu X, Li C, Qiang T, Zhou H, Gao J, Wang X. Shengmai Injection Suppresses Angiotensin II-Induced Cardiomyocyte Hypertrophy and Apoptosis via Activation of the AMPK Signaling Pathway Through Energy-Dependent Mechanisms. Front Pharmacol 2019; 10:1095. [PMID: 31616303 PMCID: PMC6764192 DOI: 10.3389/fphar.2019.01095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023] Open
Abstract
Shengmai injection (SMI), a traditional Chinese herbal medicine extracted from Panax ginseng C.A. Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., has been used to treat acute and chronic heart failure. This study aimed to further clarify the effects of SMI on energy metabolism. SMI could improve cell-survival rate and also reduce myocardial cell hypertrophy and apoptosis. Mitochondria are important sites of cellular energy metabolism, and SMI protects mitochondrial function which was evaluated by mitochondrial ultrastructure, mitochondrial respiratory control ratio (RCR), and mitochondrial membrane potential (ΔΨm) in this study. The expression levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (PCr) increased. The expression levels of free fatty acid oxidation [carnitine palmitoyltransferase-1 (CPT-1)], glucose oxidation [glucose transporter-4 (GLUT-4)], and mitochondrial biogenesis-related genes (peroxisome proliferator-activated receptor-γ coactivator-1α [PGC-1α]) were upregulated after SMI treatment. AMP-activated protein kinase (AMPK) is an important signaling pathway regulating energy metabolism and also can regulate the above-mentioned indicators. In the present study, SMI was found to promote phosphorylation of AMPK. However, the effects of SMI on fatty acid, glucose oxidation, mitochondrial biogenesis, as well as inhibiting apoptosis of hypertrophic cardiomyocytes were partly blocked by AMPK inhibitor–compound C. Moreover, decreased myocardial hypertrophy and apoptosis treated by SMI were inhibited by AMPK knockdown with shAMPK to a certain degree and AMPK knockdown almost abolished the SMI-induced increase in the expression of GLUT-4, CPT-1, and PGC-1α. These data suggest that SMI suppressed Ang II–induced cardiomyocyte hypertrophy and apoptosis via activation of the AMPK signaling pathway through energy-dependent mechanisms.
Collapse
Affiliation(s)
- Yiping Li
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofen Ruan
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowen Xu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cha Li
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Qiang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junjie Gao
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Gu YY, Shi L, Zhang DD, Huang X, Chen DZ. Metabonomics delineates allergic reactions induced by Shuang-huang-lian injection in rats using ultra performance liquid chromatography-mass spectrometry. Chin J Nat Med 2018; 16:628-640. [PMID: 30197129 DOI: 10.1016/s1875-5364(18)30101-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/19/2022]
Abstract
Shuang-huang-lian Injection (SHLI) is the first successfully developed drug from traditional Chinese medicine (TCM) powder for injection, since its use for the treatment of acute respiratory tract infection, pneumonia, influenza, etc. At the same time, its allergic reactions have also emerged, which limits clinical applications. However, few scholars pay attention to the mechanism of allergic reactions. In this present study, metabonomics technology was used to explore the changes in endogenous metabolites in urine of the rat model of SHLI induced allergic reaction; we and analyzed the metabolites, metabolic pathway, and the mechanism which were closely related to the allergic reactions. The levels of serum histamine and tryptase were examined and changes in histomorphology were also observed. Based on the UPLC-Q-TOF/MS metabonomics, we carried out the pattern recognition analysis, selected potential biomarkers associated with allergic reactions, and explored the pathological mechanism for SHLI induced allergic reaction, which laid the foundation for the safety research of SHLI. Our results showed that SHLI increased the levels of serum histamine and tryptase in rats with allergic reaction; we determined 15 biomarkers in rat allergic reaction model induced by SHLI and found multiple metabolic pathways involved, such as metabolism of linolenic acid, phenylalanine, amino acid, 2-oxo acid, and purine and other metabolic pathways.
Collapse
Affiliation(s)
- Yuan-Yuan Gu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lang Shi
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dan-Dan Zhang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xin Huang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Da-Zhong Chen
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
20
|
Meng Y, Du Z, Li Y, Wang L, Gao P, Gao X, Li C, Zhao M, Jiang Y, Tu P, Guo X. Integration of Metabolomics With Pharmacodynamics to Elucidate the Anti-myocardial Ischemia Effects of Combination of Notoginseng Total Saponins and Safflower Total Flavonoids. Front Pharmacol 2018; 9:667. [PMID: 29988484 PMCID: PMC6026671 DOI: 10.3389/fphar.2018.00667] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023] Open
Abstract
Notoginseng (Sanqi), the roots and rhizomes of Panax notoginseng and safflower, the flowers of Carthamus tinctorius, are widely used traditional Chinese medicines (TCMs) for the treatment of cardiovascular diseases. Positive evidences have fueled growing acceptance for cardioprotective effects of the combination of the notoginseng total saponins and safflower total flavonoids (CNS) against myocardial ischemia (MI). However, the underlying cardioprotective mechanisms of CNS are still obscured. Metabolomics is a comprehensive tool for investigating biological mechanisms of disease, monitoring therapeutic outcomes, and advancing drug discovery and development. Herein, we investigated the cardioprotective effects of CNS on the isoproterenol (ISO)-induced MI rats by using plasma and urine metabolomics based on ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) and multiple pharmacodynamics approaches. The results showed that pretreatment with CNS could attenuate the cardiac injury resulting from ISO, as evidenced by decreasing the myocardial infarct size, converting the echocardiographic, histopathological, and plasma biochemical abnormalities, and reversing the perturbations of plasma and urine metabolic profiles, particularly for the 55.0 mg/kg dosage group. In addition, 44 metabolites were identified as the potential MI biomarkers, mainly including a range of free fatty acids (FFAs), sphingolipids, and glycerophospholipids. CNS pretreatment group may robustly ameliorate these potential MI-related biomarkers. The accumulation of LysoPCs and FFAs, caused by PLA2, may activate NF-κB pathway and increase proinflammatory cytokines. However, our results showed that CNS at 55.0 mg/kg dosage could maximally attenuate the NF-κB signaling pathway, depress the expressions of TNF-α, IL-6, IL-1β, and PLA2. The results suggested that the anti-inflammatory property of CNS may contribute to its cardioprotection against MI. Our results demonstrate that the integrating of metabolomics with pharmacodynamics provides a reasonable approach for understanding the therapeutic effects of TCMs and CNS provide a potential candidate for prevention and treatment of MI.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lichao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingbo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Zhan S, Ding B, Ruan YE, Huang X, Liu G, Lv X, Huang X, Li M, Jiang N, Shao Q. A simple blood microdialysis in freely-moving rats for pharmacokinetic–pharmacodynamic modeling study of Shengmai injection with simultaneous determination of drug concentrations and efficacy levels in dialysate. J Pharm Biomed Anal 2018. [DOI: 10.1016/j.jpba.2018.02.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Zhang Y, Hou Y, Wang X, Ping J, Ma Z, Suo C, Lei Z, Li X, Zhang Z, Jia C, Su J. The effects of kisspeptin-10 on serum metabolism and myocardium in rats. PLoS One 2017; 12:e0179164. [PMID: 28692647 PMCID: PMC5503227 DOI: 10.1371/journal.pone.0179164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Kisspeptin is a peptide encoded by the Kiss 1 gene and is also called metastin. Previous studies have generally focused on several functions of this peptide, including metastasis, puberty, vasoconstriction and reproduction. However, few studies have focused on the cardiac functions of kisspeptin. In the present study, cardiac histomorphology was observed via TEM (transmission electron microscope) and HE and Masson staining to observe instinctive changes. Serum metabolites levels were also measured and analyzed using GC/TOF-MS after injection with kisspeptin-10. A gene chip was employed to screen the potential genes and pathways in the myocardium at the transcriptional leve, while RT-PCR and Western Blot were conducted to verify the relevant mRNA and protein expression, respectively. Histopathological findings demonstrated that there were many irregular wavy contractions through HE staining and increased fibrosis around the heart cells through Masson staining after treatment with kisspeptin-10. Additionally, the main changes in ultrastructure, including changes in mitochondrial and broken mitochondrial cristae, could be observed with TEM after treatment with kisspeptin-10. The PCA scores plot of the serum metabolites was in the apparent partition after injection of kisspeptin-10. Twenty-six obviously changed metabolites were detected and classified as amino acids, carbohydrate metabolites, organic acids and other metabolites. Furthermore, gene chip analysis showed 1112 differentially expressed genes after treatment with kisspeptin-10, including 330 up-regulated genes and 782 down-regulated genes. These genes were enriched in several signaling pathways related to heart diseases. The RT-PCR result for ITGB8, ITGA4, ITGB7, MYL7, HIF1-α and BNP corresponded with the gene chip assay. Moreover, the upregulated genes ITGB8, ITGA4 and BNP also displayed consistent protein levels in Western Blot results. In summary, these findings suggest that kisspeptin-10 could alter the morphology and structure of myocardial cells, serum metabolite levels, and expression of genes and proteins in heart tissues. Our work determined the profound effects of kisspeptin-10 on the heart, which could further lead to the development of therapeutics related to kisspeptin-10, including antagonists and analogs.
Collapse
Affiliation(s)
- Ying Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jihui Ping
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Chuan Suo
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zheng Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Cuicui Jia
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
- * E-mail:
| |
Collapse
|
23
|
Anderton B, Camarda R, Balakrishnan S, Balakrishnan A, Kohnz RA, Lim L, Evason KJ, Momcilovic O, Kruttwig K, Huang Q, Xu G, Nomura DK, Goga A. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer. EMBO Rep 2017; 18:569-585. [PMID: 28219903 PMCID: PMC5376764 DOI: 10.15252/embr.201643068] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.
Collapse
Affiliation(s)
- Brittany Anderton
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Roman Camarda
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sanjeev Balakrishnan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Asha Balakrishnan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Rebecca A Kohnz
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Lionel Lim
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberley J Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake, UT, USA
| | - Olga Momcilovic
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Klaus Kruttwig
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Qiang Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
24
|
Wang X, Zhang A, Zhou X, Liu Q, Nan Y, Guan Y, Kong L, Han Y, Sun H, Yan G. An integrated chinmedomics strategy for discovery of effective constituents from traditional herbal medicine. Sci Rep 2016; 6:18997. [PMID: 26750403 PMCID: PMC4707445 DOI: 10.1038/srep18997] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
Traditional natural product discovery affords no information about compound structure or pharmacological activities until late in the discovery process, and leads to low probabilities of finding compounds with unique biological properties. By integrating serum pharmacochemistry-based screening with high-resolution metabolomics analysis, we have developed a new platform, termed chinmedomics which is capable of directly discovering the bioactive constituents. In this work, the focus is on ShenQiWan (SQW) treatment of ShenYangXu (SYX, kidney-yang deficiency syndrome) as a case study, as determined by chinmedomics. With serum pharmacochemistry, a total of 34 peaks were tentatively characterised in vivo, 24 of which were parent components and 10 metabolites were detected. The metabolic profiling and potential biomarkers of SYX were also investigated and 23 differential metabolites were found. 20 highly correlated components were screened by the plotting of correlation between marker metabolites and serum constituents and considered as the main active components of SQW. These compounds are imported into a database to predict the action targets: 14 importantly potential targets were found and related to aldosterone-regulated sodium reabsorption and adrenergic signaling pathways. Our study showed that integrated chinmedomics is a powerful strategy for discovery and screening of effective constituents from herbal medicines.
Collapse
Affiliation(s)
- Xijun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Aihua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaohang Zhou
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qi Liu
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yang Nan
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ling Kong
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Guangli Yan
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Research Center of Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| |
Collapse
|