1
|
Chen L, Fukuda N, Ueno T, Abe M, Matsumoto T. Development of multifunctional pyrrole-imidazole polyamides that increase hepatocyte growth factor and suppress transforming growth factor-β1. J Pharmacol Sci 2024; 154:1-8. [PMID: 38081679 DOI: 10.1016/j.jphs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-β1. METHODS We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-β1 in human dermal fibroblasts (HDFs). FINDINGS Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-β1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-β1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-β1. CONCLUSION The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-β, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.
Collapse
Affiliation(s)
- Lan Chen
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, 173-8610, Japan; Department of General Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, 173-8610, Japan; Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| | - Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| |
Collapse
|
2
|
Obata H, Tsuji AB, Sudo H, Sugyo A, Hashiya K, Ikeda H, Itoh M, Minegishi K, Nagatsu K, Ogawa M, Bando T, Sugiyama H, Zhang MR. Novel Auger-Electron-Emitting 191Pt-Labeled Pyrrole-Imidazole Polyamide Targeting MYCN Increases Cytotoxicity and Cytosolic dsDNA Granules in MYCN-Amplified Neuroblastoma. Pharmaceuticals (Basel) 2023; 16:1526. [PMID: 38004392 PMCID: PMC10675227 DOI: 10.3390/ph16111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Auger electrons can cause nanoscale physiochemical damage to specific DNA sites that play a key role in cancer cell survival. Radio-Pt is a promising Auger-electron source for damaging DNA efficiently because of its ability to bind to DNA. Considering that the cancer genome is maintained under abnormal gene amplification and expression, here, we developed a novel 191Pt-labeled agent based on pyrrole-imidazole polyamide (PIP), targeting the oncogene MYCN amplified in human neuroblastoma, and investigated its targeting ability and damaging effects. A conjugate of MYCN-targeting PIP and Cys-(Arg)3-coumarin was labeled with 191Pt via Cys (191Pt-MYCN-PIP) with a radiochemical purity of >99%. The binding potential of 191Pt-MYCN-PIP was evaluated via the gel electrophoretic mobility shift assay, suggesting that the radioagent bound to the DNA including the target sequence of the MYCN gene. In vitro assays using human neuroblastoma cells showed that 191Pt-MYCN-PIP bound to DNA efficiently and caused DNA damage, decreasing MYCN gene expression and MYCN signals in in situ hybridization analysis, as well as cell viability, especially in MYCN-amplified Kelly cells. 191Pt-MYCN-PIP also induced a substantial increase in cytosolic dsDNA granules and generated proinflammatory cytokines, IFN-α/β, in Kelly cells. Tumor uptake of intravenously injected 191Pt-MYCN-PIP was low and its delivery to tumors should be improved for therapeutic application. The present results provided a potential strategy, targeting the key oncogenes for cancer survival for Auger electron therapy.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hayato Ikeda
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8578, Japan
- Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai 982-0826, Japan
| | - Masatoshi Itoh
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8578, Japan
| | - Katsuyuki Minegishi
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
| |
Collapse
|
3
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Development of gene silencer pyrrole-imidazole polyamides targeting GSK3β for treatment of polycystic kidney diseases. J Pharmacol Sci 2023; 151:148-155. [PMID: 36828617 DOI: 10.1016/j.jphs.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB)-glycogen synthase kinase 3β (GSK3β) signaling pathway was reported to be involved in the progression of autosomal dominant polycystic kidney diseases (ADPKD). We designed and synthesized pyrrole-imidazole (PI) polyamides as novel gene-silencers to prevent binding of CREB on the GSK3β gene promoter and examined the effects of the PI polyamides on proliferation and cyst formation of mouse collecting duct M1 cells. The GSK3β PI polyamides significantly inhibited expression of GSK3β mRNA in M1 cells with forskolin. To obtain cells as collecting ducts from ADPKD, the PKD1 gene was knocked down by shRNA. Lower concentrations of forskolin significantly stimulated proliferation of PKD1 knock-down M1 cells, whereas GSK3β PI polyamide significantly inhibited proliferation of PKD1 knock-down M1 cells with forskolin. Stimulation with forskolin for 5 days induced enlargement of cysts from PKD1 knock-down M1 cells. GSK3β PI polyamides significantly suppressed the enlargement of cysts with forskolin stimulation in PKD1 knock-down M1 cells. Thus, the present study showed that transcriptional suppression of the GSK3β gene by PI polyamides targeting the binding of CREB inhibited the proliferation and cyst formation of PKD1 knock-down M1 cells. The GSK3β PI polyamides may potentially be novel medicines for ADPKD.
Collapse
|
5
|
Yang GN, Roberts PK, Gardner-Russell J, Shah MH, Couper TA, Zhu Z, Pollock GA, Dusting GJ, Daniell M. From bench to clinic: Emerging therapies for corneal scarring. Pharmacol Ther 2023; 242:108349. [PMID: 36682466 DOI: 10.1016/j.pharmthera.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corneal diseases are one of the leading causes of moderate-to-severe visual impairment and blindness worldwide, after glaucoma, cataract, and retinal disease in overall importance. Given its tendency to affect people at a younger age than other blinding conditions such as cataract and glaucoma, corneal scarring poses a huge burden both on the individuals and society. Furthermore, corneal scarring and fibrosis disproportionately affects people in poorer and remote areas, making it a significant ophthalmic public health problem. Traditional medical strategies, such as topical corticosteroids, are not effective in preventing fibrosis or scars. Corneal transplantation, the only effective sight-restoring treatment for corneal scars, is curbed by challenges including a severe shortage of tissue, graft rejection, secondary conditions, cultural barriers, the lack of well-trained surgeons, operating rooms, and well-equipped infrastructures. Thanks to tremendous research efforts, emerging therapeutic options including gene therapy, protein therapy, cell therapy and novel molecules are in development to prevent the progression of corneal scarring and compliment the surgical options currently available for treating established corneal scars in clinics. In this article, we summarise the most relevant preclinical and clinical studies on emerging therapies for corneal scarring in recent years, showing how these approaches may prevent scarring in its early development.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia.
| | - Philippe Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna 1090, Austria
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Terry A Couper
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Graeme A Pollock
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
6
|
Hatanaka J, Hirose Y, Hashiya K, Bando T, Sugiyama H. N‐terminal cationic modification of linear pyrrole−imidazole polyamide improves its binding to DNA. Chembiochem 2022; 23:e202200124. [DOI: 10.1002/cbic.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yuki Hirose
- Kyoto University - Yoshida Campus: Kyoto Daigaku Chemistry JAPAN
| | - Kaori Hashiya
- Kyoto University - Yoshida Campus: Kyoto Daigaku Chemistry JAPAN
| | - Toshikazu Bando
- Kyoto University - Yoshida Campus: Kyoto Daigaku Chemistry JAPAN
| | - Hiroshi Sugiyama
- Kyoto University Department of Chemistry Kitashirakawa-Oiwakecho 606-8502 Kyoto JAPAN
| |
Collapse
|
7
|
Mistry R, Veres M, Issa F. A Systematic Review Comparing Animal and Human Scarring Models. Front Surg 2022; 9:711094. [PMID: 35529910 PMCID: PMC9073696 DOI: 10.3389/fsurg.2022.711094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction A reproducible, standardised model for cutaneous scar tissue to assess therapeutics is crucial to the progress of the field. A systematic review was performed to critically evaluate scarring models in both animal and human research. Method All studies in which cutaneous scars are modelling in animals or humans were included. Models that were focused on the wound healing process or those in humans with scars from an existing injury were excluded. Ovid Medline® was searched on 25 February 2019 to perform two near identical searches; one aimed at animals and the other aimed at humans. Two reviewers independently screened the titles and abstracts for study selection. Full texts of potentially suitable studies were then obtained for analysis. Results The animal kingdom search yielded 818 results, of which 71 were included in the review. Animals utilised included rabbits, mice, pigs, dogs and primates. Methods used for creating scar tissue included sharp excision, dermatome injury, thermal injury and injection of fibrotic substances. The search for scar assessment in humans yielded 287 results, of which 9 met the inclusion criteria. In all human studies, sharp incision was used to create scar tissue. Some studies focused on patients before or after elective surgery, including bilateral breast reduction, knee replacement or midline sternotomy. Discussion The rabbit ear scar model was the most popular tool for scar research, although pigs produce scar tissue which most closely resembles that of humans. Immunodeficient mouse models allow for in vivo engraftment and study of human scar tissue, however, there are limitations relating to the systemic response to these xenografts. Factors that determine the use of animals include cost of housing requirements, genetic traceability, and ethical concerns. In humans, surgical patients are often studied for scarring responses and outcomes, but reproducibility and patient factors that impact healing can limit interpretation. Human tissue use in vitro may serve as a good basis to rapidly screen and assess treatments prior to clinical use, with the advantage of reduced cost and setup requirements.
Collapse
Affiliation(s)
- Riyam Mistry
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Correspondence: Riyam Mistry
| | - Mark Veres
- John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Wang M, Ma X, Zhou K, Mao H, Liu J, Xiong X, Zhao X, Narva S, Tanaka Y, Wu Y, Guo C, Sugiyama H, Zhang W. Discovery of Pyrrole-imidazole Polyamides as PD-L1 Expression Inhibitors and Their Anticancer Activity via Immune and Nonimmune Pathways. J Med Chem 2021; 64:6021-6036. [PMID: 33949196 DOI: 10.1021/acs.jmedchem.1c00120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, PD-1 immune checkpoint inhibitors based on monoclonal antibodies have revolutionized cancer therapy, but there still exist unresolved issues, such as the high cost, the relatively low response rates, and so on, compared with small-molecule drugs. Herein a type of pyrrole-imidazole (Py-Im) polyamide as a small-molecule DNA binder was designed and synthesized, which could competitively bind to the same double-stranded DNA stretch in the PD-L1 promoter region as the STAT3 binding site and thus downregulate PD-L1 expression. It was demonstrated that the Py-Im polyamides directly caused apoptosis in tumor cells and retarded cell migration in the absence of T cells through inhibiting the Akt/caspase-3 pathway. Also, in a coculture system, they enhanced the T-cell-mediated killing of tumor cells by the reversal of immune escape. Because such polyamides induced antitumor effects via both immune and nonimmune pathways, they could be further developed as promising PD-L1 gene-targeting antitumor drugs.
Collapse
Affiliation(s)
- Ming Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xudong Ma
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kang Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijuan Mao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiachun Liu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuqiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Chuanxin Guo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Zhang M, Liang J, Jiang SK, Xu L, Wu YL, Awadasseid A, Zhao XY, Xiong XQ, Sugiyama H, Zhang W. Design, synthesis and anti-cancer activity of pyrrole-imidazole polyamides through target-downregulation of c-kit gene expression. Eur J Med Chem 2020; 207:112704. [DOI: 10.1016/j.ejmech.2020.112704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
|
11
|
Li T, Chen W, Zhang Q, Deng C. Human-specific gene CHRFAM7A mediates M2 macrophage polarization via the Notch pathway to ameliorate hypertrophic scar formation. Biomed Pharmacother 2020; 131:110611. [PMID: 32890966 DOI: 10.1016/j.biopha.2020.110611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic scars often cause great pain to patients. It is generally believed that anti-inflammatory scar therapies are the best strategies for treatment because excessive inflammation is observed in hypertrophic scar tissue. However, the results of such treatment are unsatisfactory. In recent studies, immune stimulatory therapies have been suggested to be a preferable method for ameliorating hypertrophic scars. In this study, the expression of the human-specific gene CHRFAM7A, which has been reported to be a promoter of inflammation, was found to be lower in human hypertrophic scars than in normotrophic scars. The CHRFAM7A gene was overexpressed in a hypertrophic scar mouse model using a lentivirus system. Scar fibrosis decreased in the CHRFAM7A transfection group compared to the control group, and the proportion of M2 macrophages decreased at 4 and 8 weeks after establishing the model. We also found that CHRFAM7A increased the activation of the Notch pathway, which eventually attenuated M2 polarization. In the CHRFAM7A-transfected hypertrophic scar mouse group, the number of M1 macrophages increased dramatically in the initial period. Moreover, the expression of the inflammatory gene TNFα was also increased in transfected mice. Our results demonstrate that CHRFAM7A can effectively ameliorate hypertrophic scar formation via regulation of macrophage phenotypic transition. CHRFAM7A might be a therapeutic target for hypertrophic scars.
Collapse
Affiliation(s)
- Tianya Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China.
| | - Wei Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China.
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China.
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
12
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
13
|
Effects of Pyrrole-Imidazole Polyamides Targeting Human TGF-β1 on the Malignant Phenotypes of Liver Cancer Cells. Molecules 2020; 25:molecules25122883. [PMID: 32585841 PMCID: PMC7356887 DOI: 10.3390/molecules25122883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.
Collapse
|
14
|
Bando T, Sugiyama H. Epigenetic Drug Discovery by Artificial Genetic Switches. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University
| |
Collapse
|
15
|
The Road Not Taken with Pyrrole-Imidazole Polyamides: Off-Target Effects and Genomic Binding. Biomolecules 2020; 10:biom10040544. [PMID: 32260120 PMCID: PMC7226143 DOI: 10.3390/biom10040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
The high sequence specificity of minor groove-binding N-methylpyrrole-N-methylimidazole polyamides have made significant advances in cancer and disease biology, yet there have been few comprehensive reports on their off-target effects, most likely as a consequence of the lack of available tools in evaluating genomic binding, an essential aspect that has gone seriously underexplored. Compared to other N-heterocycles, the off-target effects of these polyamides and their specificity for the DNA minor groove and primary base pair recognition require the development of new analytical methods, which are missing in the field today. This review aims to highlight the current progress in deciphering the off-target effects of these N-heterocyclic molecules and suggests new ways that next-generating sequencing can be used in addressing off-target effects.
Collapse
|
16
|
Miyamoto A, Yagishita K, Aoyama T, Abe M, Fukuda N, Matsumoto Y. Method of Determining Pyrrole-Imidazole Polyamide in Rat Plasma Using Ultra-Fast Liquid Chromatography-Ultraviolet Spectrometry. Biol Pharm Bull 2020; 43:124-128. [PMID: 31645526 DOI: 10.1248/bpb.b19-00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To improve the efficiency of drug-discovery research on pyrrole-imidazole polyamides (PIs), a more rapid method for quantitative and qualitative measurement of PI in rat plasma samples was developed here using ultra-fast liquid chromatography-ultraviolet spectrometry (UFLC-UV) in order to shorten the measurement time. A measurement method of PIs by HPLC developed until now takes 45 min for one sample measurement. This method was inefficient to investigate extraction conditions from biological samples and measurement of animal experimental samples. In the developed method of this study, PI and phenacetin (internal standard, IS) were separated with an ACQUITY UPLC HSS T3 (1.8 µm, 2.1 × 50 mm; Nihon Waters K.K., Japan) column using a mobile phase of 0.1% acetic acid (mobile phase A) and acetonitrile (mobile phase B) at a flow rate of 0.3 mL/min with a linear gradient. The detection wavelength was 310 nm. The calibration curve was linear in the range of 0.225-4.5 µg/mL (correlation coefficients ≥0.9995, n = 5). The intra- and inter-day accuracies were in the range of -6.04 to 12.2%, and the precision was less than 2.99%. The measurement time of this method (7 min per injection) was markedly shortened to about one-sixth of the previous measurement time (45 min per injection). This is the first report describing the quantitative and qualitative measurement of PI in plasma using UFLC-UV. The present method will be very useful for the drug-discovery research of PIs.
Collapse
Affiliation(s)
- Aoi Miyamoto
- Laboratory of Clinical Pharmacokinetics, School of Pharmacy, Nihon University
| | - Kouta Yagishita
- Laboratory of Clinical Pharmacokinetics, School of Pharmacy, Nihon University
| | - Takahiko Aoyama
- Laboratory of Clinical Pharmacokinetics, School of Pharmacy, Nihon University
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine.,Research Center Nihon University
| | - Yoshiaki Matsumoto
- Laboratory of Clinical Pharmacokinetics, School of Pharmacy, Nihon University
| |
Collapse
|
17
|
Ilieş RF, Cătană A, Popp R, Aioanei CS, Halmagyi SR, Lukacs I, Tokes RE, Rotar IC, Pop IV. The influence of GSTT/GSTM null genotypes in scarring. Med Pharm Rep 2019; 92:S73-S77. [PMID: 31989113 PMCID: PMC6978933 DOI: 10.15386/mpr-1513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/10/2023] Open
Abstract
Background and aims The process of scarring is a common denominator of interest for the medical field. From general medicine to dentistry, pathological scar tissue represents a challenge in providing optimal care to a patient. The present study aims to investigate whether a systemically reduced antioxidant potential, revealed by null isoforms of glutathione S transferase, affects the process of scarring in a group of female patients. Methods The study is based on a group of 54 patients with physiological scars after a 6-month observation period, as well as 18 patients with hypertrophic or atrophic scars. Peripheral venous blood was collected, from which DNA was extracted using a commercial kit. Genotyping followed a Multiplex PCR protocol for GSTT1/GSTM1. Results In a dominant model, the combination of wild type (heterozygous or homozygous) GSTT1 and GSTM1 was negatively associated with pathological scarring, with the wild type (heterozygous or homozygous) GSTM1 genotype being potentially responsible for this effect. Other factors affecting pathological scarring were investigated: family history, phototype, as well as scores on the POSAS and SCAR scales. Conclusions The presence of GSTT1 and GSTM1 alleles brings forward an increased antioxidant capacity, serving as a protective factor for patients during scar formation.
Collapse
Affiliation(s)
- Roxana Flavia Ilieş
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Andreea Cătană
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania.,Ion Chiricuţă Oncological Institute, Cluj-Napoca, Romania
| | - Radu Popp
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Casian Simon Aioanei
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Salomea-Ruth Halmagyi
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Istvan Lukacs
- 1 Department of Obstetrics and Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Reka-Eniko Tokes
- 1 Department of Obstetrics and Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Ioana Cristina Rotar
- 1 Department of Obstetrics and Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Ioan Victor Pop
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| |
Collapse
|
18
|
Malinee M, Kumar A, Hidaka T, Horie M, Hasegawa K, Pandian GN, Sugiyama H. Targeted suppression of metastasis regulatory transcription factor SOX2 in various cancer cell lines using a sequence-specific designer pyrrole-imidazole polyamide. Bioorg Med Chem 2019; 28:115248. [PMID: 31879179 DOI: 10.1016/j.bmc.2019.115248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
Metastasis, a deadly feature of cancer, compromises the prognosis and accounts for mortality in the majority of cancer patients. SOX2, a well-known pluripotency transcription factor, plays a central role in cell fate determination and has an overlapping role as a regulatory factor in tumorigenesis and metastasis. The demand is increasing for clinically useful strategies for artificial control of SOX2 expression and its complex transcription machinery in cancer cells. N-Methylpyrrole (Py) and N-methylimidazole (Im) polyamides are small programmable designer ligands that can be pre-programmed to selectively recognize DNA sequence and control endogenous gene expression. Herein, we evaluated the anticancer activity of a designer ligand (SOX2i). SOX2i remarkably altered the expression of SOX2 at the mRNA and protein level in human cancer cell lines such as SW620 (colorectal adenocarcinoma), MKN45 (gastric adenocarcinoma), MCF7 (breast carcinoma), U2OS (osteosarcoma) and other cancer cell lines of different origin and type. Genome-wide transcriptome analysis and cell-based assays showed SOX2 to be a downregulated upstream regulator that alters cell proliferation, cell cycle progression, metabolism and apoptotic pathway. Studies in the mouse model confirmed the anti-metastatic property of SOX2i. SOX2i inhibited the expression of genes associated with EMT and stemness. Moreover, Wnt-canonical signaling was found to be downregulated in the SOX2i-treated group. Our proof-of-concept study supports the potential of DNA-based programmable small molecules for controlling the key regulatory factors associated with tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Madhu Malinee
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alok Kumar
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masanobu Horie
- Division of Biochemical System Engineering, Radioisotope Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouichi Hasegawa
- Institute of Integrated Cell Material Sciences (iCeMS), Kyoto University of Advanced Study, Kyoto, Japan
| | - Ganesh N Pandian
- Institute of Integrated Cell Material Sciences (iCeMS), Kyoto University of Advanced Study, Kyoto, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Otsuki M, Fukuda N, Inoue T, Mineshige T, Otsuki T, Horikoshi S, Endo M, Abe M. Preclinical Study of DNA-Recognized Peptide Compound Pyrrole-Imidazole Polyamide Targeting Human TGF-β1 Promoter for Progressive Renal Diseases in the Common Marmoset. Molecules 2019; 24:molecules24173178. [PMID: 31480595 PMCID: PMC6749436 DOI: 10.3390/molecules24173178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022] Open
Abstract
Pyrrole-imidazole (PI) polyamides are novel gene silencers that strongly bind the promoter region of target genes in a sequence-specific manner to inhibit gene transcription. We created a PI polyamide targeting human TGF-β1 (hTGF-β1). To develop this PI polyamide targeting hTGF-β1 (Polyamide) as a practical medicine for treating progressive renal diseases, we examined the effects of Polyamide in two common marmoset models of nephropathy. We performed lead optimization of PI polyamides that targeted hTGF-β1 by inhibiting in a dose-dependent manner the expression of TGF-β1 mRNA stimulated by PMA in marmoset fibroblasts. Marmosets were housed and fed with a 0.05% NaCl and magnesium diet and treated with cyclosporine A (CsA; 37.5 mg/kg/day, eight weeks) to establish chronic nephropathy. We treated the marmosets with nephropathy with Polyamide (1 mg/kg/week, four weeks). We also established a unilateral urethral obstruction (UUO) model to examine the effects of Polyamide (1 mg/kg/week, four times) in marmosets. Histologically, the renal medulla from CsA-treated marmosets showed cast formation and interstitial fibrosis in the renal medulla. Immunohistochemistry showed strong staining of Polyamide in the renal medulla from CsA-treated marmosets. Polyamide treatment (1 mg/kg/week, four times) reduced hTGF-β1 staining and urinary protein excretion in CsA-treated marmosets. In UUO kidneys from marmosets, Polyamide reduced the glomerular injury score and tubulointerstitial injury score. Polyamide significantly suppressed hTGF-β1 and snail mRNA expression in UUO kidneys from the marmosets. Polyamide effectively improved CsA- and UUO-associated nephropathy, indicating its potential application in the prevention of renal fibrosis in progressive renal diseases.
Collapse
Affiliation(s)
- Masari Otsuki
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Research Center Nihon University, Tokyo 101-0061, Japan.
| | - Takashi Inoue
- Marmoset Research Department, Central Institute for Experimental Animals, Kanagawa 210-0821, Japan.
| | - Takayuki Mineshige
- Marmoset Research Department, Central Institute for Experimental Animals, Kanagawa 210-0821, Japan.
| | - Tomoyasu Otsuki
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Shu Horikoshi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Morito Endo
- Faculty of Human Health Science, Hachinohe Gakuin University, Hachinohe, Aomori 031-8588, Japan.
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| |
Collapse
|
20
|
Yu Z, Pandian GN, Hidaka T, Sugiyama H. Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 2019; 147:66-85. [PMID: 30742856 DOI: 10.1016/j.addr.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/22/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Recent innovations in cutting-edge sequencing platforms have allowed the rapid identification of genes associated with communicable, noncommunicable and rare diseases. Exploitation of this collected biological information has facilitated the development of nonviral gene therapy strategies and the design of several proteins capable of editing specific DNA sequences for disease control. Small molecule-based targeted therapeutic approaches have gained increasing attention because of their suggested clinical benefits, ease of control and lower costs. Pyrrole-imidazole polyamides (PIPs) are a major class of DNA minor groove-binding small molecules that can be predesigned to recognize specific DNA sequences. This programmability of PIPs allows the on-demand design of artificial genetic switches and fluorescent probes. In this review, we detail the progress in the development of PIP-based designer ligands and their prospects as advanced DNA-based small-molecule drugs for therapeutic gene modulation.
Collapse
|
21
|
Corneal chemical burn treatment through a delivery system consisting of TGF-β 1 siRNA: in vitro and in vivo. Drug Deliv Transl Res 2018; 8:1127-1138. [PMID: 29869292 DOI: 10.1007/s13346-018-0546-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chemical burns are major causes of corneal blindness. Transforming growth factor beta-1 (TGFβ1) plays an important role in induction of corneal inflammation-related-fibrosis leading to the blindness. Here, a topical delivery system consisting anti-fibrotic TGF-β1 siRNA, an inflammatory suppressing gene, was designed for treatment of corneal injuries. TGF-β1 siRNA loaded in nanoparticles (NPs) made up of polyethyleneimine polymer demonstrated high fibroblast transfection efficiency. Moreover, TGF-β1 and PDGF genes and ECM deposition were suppressed in isolated human corneal fibroblasts. NPs inhibited proliferation and transformation of fibroblasts to myofibroblasts by S-phase arrest and α-SMA suppression in vitro, respectively. The mentioned finding was also confirmed in vivo, addressing high wound-healing potential of prepared gene delivery system which was superior to conventional betamethasone treatment. Besides, CD4+ and α-SMA antibody staining showed inhibited angiogenesis and myofibroblast accumulation in treated corneas. This study opens a new way for treating corneal fibrosis through topical siRNA delivery.
Collapse
|
22
|
Saha HR, Kaneda-Nakashima K, Shimosaki S, Suekane A, Sarkar B, Saito Y, Ogoh H, Nakahata S, Inoue K, Watanabe T, Nagase H, Morishita K. Suppression of GPR56 expression by pyrrole-imidazole polyamide represents a novel therapeutic drug for AML with high EVI1 expression. Sci Rep 2018; 8:13741. [PMID: 30214063 PMCID: PMC6137133 DOI: 10.1038/s41598-018-32205-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptor 56 (GPR56) is highly expressed in acute myeloid leukemia (AML) cells with high EVI1 expression (EVI1high AML). Because GPR56 is a transcriptional target of EVI1 and silencing of GPR56 expression induces apoptosis, we developed a novel drug to suppress GPR56 expression in EVI1high AML cells. For this purpose, we generated pyrrole-imidazole (PI) polyamides specific to GPR56 (PIP/56-1 or PIP/56-2) as nuclease-resistant novel compounds that interfere with the binding of EVI1 to the GPR56 promoter in a sequence-specific manner. Treatment of EVI1high AML cell lines (UCSD/AML1 and Kasumi-3) with PIP/56-1 or PIP/56-2 effectively suppressed GPR56 expression by inhibiting binding of EVI1 to its promoter, leading to suppression of cell growth with increased rates of apoptosis. Moreover, intravenous administration of PIP/56-1 into immunodeficient Balb/c-RJ mice subcutaneously transplanted with UCSD/AML1 cells significantly inhibited tumor growth and extended survival. Furthermore, organ infiltration by leukemia cells in immunodeficient Balb/c-RJ mice, which were intravenously transplanted using UCSD/AML1 cells, was successfully inhibited by PIP/56-1 treatment with no apparent effects on murine hematopoietic cells. In addition, PIP treatment did not inhibit colony formation of human CD34+ progenitor cells. Thus, PI polyamide targeting of GPR56 using our compound is promising, useful, and safe for the treatment of EVI1high AML.
Collapse
Affiliation(s)
- Hasi Rani Saha
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuko Kaneda-Nakashima
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shunsuke Shimosaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akira Suekane
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Bidhan Sarkar
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Honami Ogoh
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kentaro Inoue
- Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Takayoshi Watanabe
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hiroki Nagase
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
23
|
Alagarswamy K, Shinohara KI, Takayanagi S, Fukuyo M, Okabe A, Rahmutulla B, Yoda N, Qin R, Shiga N, Sugiura M, Sato H, Kita K, Suzuki T, Nemoto T, Kaneda A. Region-specific alteration of histone modification by LSD1 inhibitor conjugated with pyrrole-imidazole polyamide. Oncotarget 2018; 9:29316-29335. [PMID: 30034620 PMCID: PMC6047668 DOI: 10.18632/oncotarget.25451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
Epigenome regulates gene expression to determine cell fate, and accumulation of epigenomic aberrations leads to diseases, including cancer. NCD38 inhibits lysine-specific demethylase-1 (LSD1), a histone demethylase targeting H3K4me1 and H3K4me2, but not H3K4me3. In this study, we conjugated NCD38 with a potent small molecule called pyrrole (Py) imidazole (Im) polyamide, to analyze whether targets of the inhibitor could be regulated in a sequence-specific manner. We synthesized two conjugates using β-Ala (β) as a linker, i.e., NCD38-β-β-Py-Py-Py-Py (NCD38-β2P4) recognizing WWWWWW sequence, and NCD38-β-β-Py-Im-Py-Py (NCD38-β2PIPP) recognizing WWCGWW sequence. When RKO cells were treated with NCD38, H3K4me2 levels increased in 103 regions with significant activation of nearby genes (P = 0.03), whereas H3K4me3 levels were not obviously increased. H3K27ac levels were also increased in 458 regions with significant activation of nearby genes (P = 3 × 10-10), and these activated regions frequently included GC-rich sequences, but less frequently included AT-rich sequences (P < 1 × 10-15) or WWCGWW sequences (P = 2 × 10-13). When treated with NCD38-β2P4, 234 regions showed increased H3K27ac levels with significant activation of nearby genes (P = 2 × 10-11), including significantly fewer GC-rich sequences (P < 1 × 10-15) and significantly more AT-rich sequences (P < 1 × 10-15) compared with NCD38 treatment. When treated with NCD38-β2PIPP, 82 regions showed increased H3K27ac levels, including significantly fewer GC-rich sequences (P = 1 × 10-11) and fewer AT-rich sequences (P = 0.005), but significantly more WWCGWW sequences (P = 0.0001) compared with NCD38 treatment. These indicated that target regions of epigenomic inhibitors could be modified in a sequence-specific manner and that conjugation of Py-Im polyamides may be useful for this purpose.
Collapse
Affiliation(s)
| | - Ken-Ichi Shinohara
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Shihori Takayanagi
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Natsumi Yoda
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Rui Qin
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoki Shiga
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Sugiura
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Sato
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Kita
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuhiro Nemoto
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Geel TM, Ruiters MHJ, Cool RH, Halby L, Voshart DC, Andrade Ruiz L, Niezen-Koning KE, Arimondo PB, Rots MG. The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170077. [PMID: 29685979 PMCID: PMC5915719 DOI: 10.1098/rstb.2017.0077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
The ability to target DNA specifically at any given position within the genome allows many intriguing possibilities and has inspired scientists for decades. Early gene-targeting efforts exploited chemicals or DNA oligonucleotides to interfere with the DNA at a given location in order to inactivate a gene or to correct mutations. We here describe an example towards correcting a genetic mutation underlying Pompe's disease using a nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene correction, scientists soon realized that genes could be inactivated or even re-activated without inducing potentially harmful DNA damage by targeting transcriptional modulators to a particular gene. However, it proved difficult to fuse protein effector domains to the first generation of programmable DNA-binding agents. The engineering of gene-targeting proteins (zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs)) circumvented this problem. The disadvantage of protein-based gene targeting is that a fusion protein needs to be engineered for every locus. The recent introduction of CRISPR/Cas offers a flexible approach to target a (fusion) protein to the locus of interest using cheap designer RNA molecules. Many research groups now exploit this platform and the first human clinical trials have been initiated: CRISPR/Cas has kicked off a new era of gene targeting and is revolutionizing biomedical sciences.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- T M Geel
- Epigenetic Editing, Dept Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - M H J Ruiters
- Epigenetic Editing, Dept Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - R H Cool
- Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - L Halby
- CNRS FRE3600 ETaC, bât IBCG, 31062 Toulouse, France
| | - D C Voshart
- Epigenetic Editing, Dept Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - L Andrade Ruiz
- Epigenetic Editing, Dept Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - K E Niezen-Koning
- Laboratory of Metabolic Diseases, Dept Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - P B Arimondo
- CNRS FRE3600 ETaC, bât IBCG, 31062 Toulouse, France
| | - M G Rots
- Epigenetic Editing, Dept Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
25
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
26
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
27
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
28
|
Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy. Bioorg Med Chem Lett 2017; 27:2197-2200. [PMID: 28389153 DOI: 10.1016/j.bmcl.2017.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct.
Collapse
|
29
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
30
|
Kashiwazaki G, Chandran A, Asamitsu S, Kawase T, Kawamoto Y, Sawatani Y, Hashiya K, Bando T, Sugiyama H. Comparative Analysis of DNA-Binding Selectivity of Hairpin and Cyclic Pyrrole-Imidazole Polyamides Based on Next-Generation Sequencing. Chembiochem 2016; 17:1752-8. [DOI: 10.1002/cbic.201600282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Gengo Kashiwazaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Anandhakumar Chandran
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Takashi Kawase
- Department of Systems Science; Graduate School of Informatics; Kyoto University; Yoshida-Honmachi 36-1 Sakyo Kyoto 606-8501 Japan
| | - Yusuke Kawamoto
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Yoshito Sawatani
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Kaori Hashiya
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
31
|
Sawatani Y, Kashiwazaki G, Chandran A, Asamitsu S, Guo C, Sato S, Hashiya K, Bando T, Sugiyama H. Sequence-specific DNA binding by long hairpin pyrrole-imidazole polyamides containing an 8-amino-3,6-dioxaoctanoic acid unit. Bioorg Med Chem 2016; 24:3603-11. [PMID: 27301681 DOI: 10.1016/j.bmc.2016.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
Abstract
With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive Py or Im rings separated by a β-alanine to match the curvature and twist of long DNA helices. Polyamides 2 and 3 contained an 8-amino-3,6-dioxaoctanoic acid (AO) unit, which has previously only been used as a linker within linear Py-Im polyamides or between Py-Im hairpin motifs for tandem hairpin. It is demonstrated herein that AO also functions as a linker element that can extend to 2-bp in hairpin motifs. Notably, although the AO-containing unit can fail to bind the expected sequence, polyamide 4, which has two AO units facing each other in a hairpin form, successfully showed the expected motif and a KD value of 16nM was recorded. Polyamide 5, containing a β-alanine-β-alanine unit instead of the AO of polyamide 2, was synthesized for comparison. The aqueous solubilities and nuclear localization of three of the polyamides were also examined. The results suggest the possibility of applying the AO unit in the core of Py-Im polyamide compounds.
Collapse
Affiliation(s)
- Yoshito Sawatani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Chuanxin Guo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|